EQUATIONS FROM
ELAsTICITY TI-!EOW A

Introduction " i o .'

equations should be referred to frequently throughout the structura
tions of this text. R

There are three basic sets of equations included in th Or
tions must be satisfied if an exact solution to a struc
obtained. These sets of equations are (1) the differential
lated here in terms of the stresses acting on a body, ;
patibility differential equations, and (3) the stress/!

normal stresses o, and ay,
and body forces X and Y

ever, the stresses ar
we have o, acti
right vertical face.

I“'l

R
# t .1
'(lf)

Scanned by CamScanner



Because we are cons
must be satisfied. The th
to the x-y plane; that is, t

Stresses on three mu
We can extend the !
dlmensions. The res

and
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840 A C Equations from Elasticity Theory

ﬂy

A c2 Stram/DlspIacementa
Equat'onﬁ A ) o

We ﬁrsttobtam the strain/di
m :
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C.2 Strain/Displacement and Compatibility Equations A 841

the original length of a line), we have

A'B' — AB

RO ol R €21

W=l (c2.1)
Now AB = dx (C.2.2)

2

And (A'B')? = (dx + ‘;—“dx) (g" dx) (C2.3)
Therefore, evaluating 4’B’ using the binomial theorem and neglecting the higher-
order terms (du/dx)> and (dv/dx)? (an approach consistent with the assumption of

small strains), we have

B du
| RS A'B' =dx+— 7 —dx (C24)
Bk Using Egs. (C.2.2) and (C.2.4) in Eq. (C.2.1), we Ob'K ,

o pisale! (C2.5)

ox .
~ Similarly, considering line element AD in the y Won, we have

(C256)
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A

C Equations from Elasticity Theory

. : . occur, For the plan
functions so that tearing or overlap of clements q()bf‘ llji"::iﬂg ., With rcsppect :;:om
case, we obtain the compatibility equation by d;”'Lruilvc(n by Eqs. (C.2 5)and (C Y
and y and then using the definitions for o and 2, ¢ ’ 6)
Hence,

2 P
T,‘)v H‘) u (7) Jv J Ly Z Ly
AV

(C2.1yy

. 2
oxdy  dxdydy I oxdydx  dy?  Ox

where the second equation in terms of the strains on lh‘c rlgl}:f s:td: 18 Obta]mcd
ing that single-valued continuity of displacements reg uires that 1? partia dlffer%,
tions with respect to x and y be interchangeable in order. Therefore, we

0% /oxdy = 07 Joydx. Equation (C.2.11) is called the condition ofEampatiblllty, and it
t

must be satisfied by the strain components in order for us to obta que expressiong

1 B 4 Hq_
for w and v. Equations (C.2.5), (C.2.6), (C.2.7), and (C.2.14 ether are then suffi.
cient to obtain unique single-valued functions for u and v. \ ‘ s

In three dimensions, we obtain five additional compati uations by d ffer-

entiating y,, and y,, in a manner similar to that deseribed above for 7xy- We nee no

list these equations here; details of their derivation can be found in Reference [1
In addition to the compatibility conditions that enstre single-valued contin

functions within the body, we must also satisfy displacement or kinematic

conditions. This simply means that the displacement functions must also

scribed or given displacements on the surface of the body. These condi ns

occur as support conditions from rollers ‘a}llg pins. In general, we m e

Uy

¢ N pex
U = Uy W=w, 'ffTV .':f[-.'
at specified surface locations o dy. We may also hayé
displacements prescribedﬁ- ‘fojnp ¢, prescribed rotaﬁOIIfs). i R |

?l 1

. N i . ‘ 4
We will now develop the three-dimensional stress-s 1)

tropic body ly. This is done by considering the reg

stresses. We subject the body to the stresses g o ooy
in Figure C-4, i st | ’f”?y d-‘

We first consider the change in len i v ¢
: “Ngth of thy ent in
mdependent stresses o, g, and a,. We gh,.,m:ht;:lm m
that is, we assume that (he resultant strain in 4 gveram, a4
algebraic sum of theijr individual effecgs, i W -

Considering Figure C-4(p ‘the in ik
itive strain (b)y the streqs in the x din
g e SO
L=< vl -

where Hooke's law, ¢ =
the modulus of elas

& ) CTSE
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844 A C Equationsfrom Elasticity Theory

Solving Egs. (C.3.4) and (C.3.5) for the normal stresses, We obtain

B ) ey tel
o= i :
E £
g, = m [vex + (1 v)ey + Ve
E [vex + vey + (1= v)e] :

%= T -2)

The Hooke’s law relationship, 0 = Ee, used for normal stress al;

shear stress and strain; that is,

=Gy

where G is the shear modulus. Hence, the exp

shear strains are
_ T Oz >
Yxy = —G— Vyz z s
ave

ressio

Solving Egs. (C.3.8) for the stresses, we h
txy = Gy.xy T}’ . nyz
In matrix form, we can express the stresses in Egs. (C.3.6

fa'x\

Symmetry :

!
where we note that the relationsilip
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r 168 Two-dimensional Finite Elewf

consider the r-z plane (a"alogo_ug ,

For axisymmetric problems, we can
y p We observe that, even though o P

plane elasticity) as shown in Figure 5.17.

]
l
s 1 .
) I Sa
[ : o .
: Axis of |
: symmetry |
1
l! Axis of i
: symmetry !
|
|
|
1
1

r

i 8 ,\Q

1 JE

Fig. 517 An axisymmetric ring element.
axisymmetric, there can be four indepeynt, nonzero strains (as L
automatically leads to circumferential strain &): inizuseily S

; Y _ ‘ au il 1 il Wl e I,.,:
= — f n.u.'} WY 'I.ft.f,

Cynete babon-xie Bl
- ™

In .

el T
where the size of [B] and
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2-d Eje
N 2 ment
( ress_stram relations for plane Sl s for Structural Machanics 169
ar

1he 5 } € given by
o " I+ v 4 0 "
o, = 0+ v =29 e 11 TN | 0 {ef 0
Ty 9 0 1_%‘[‘{ Vw |+ {o} (592
» axiS)’mmetriC problems, we have four independent ﬂon;ero .
i 1 VIl-v vil-y ; ses given by
f €, W

0| = (1+V)(1"2V)

shere the clements of the [D] r
1 taken from Eqgs. (5.91)—(2

A structure can, 1N ZENEl
wdume) forces {g,} such as gr
roncentrated forces lumpe
af stresses (such as those
iuds, the structure, when

~ The derivation of the
! 43)) except that we
SUress/strain,

From Egs. (5
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170 Two-dimensional Finite Element M

The potential of external forces is gIven by
‘ ' i
v m = {0F fn v ~J 1OF e 4 7 {5} {r}
i on which a concentrated force p, j¢ (5,97]

isplacement of the point
where {6); is the disp ts. It 1s observed that these dlsplaceme “&
Ntg { N

oin
the summation is taken over all such p
ave both X- and Y-components. Hence, typically at a point,

forces {g} h
y u
{ } -

From Eq. (5.97), using the notation of Eq. (5.14) and %%et .- .
ve j 16Y" INT tg,)dv - [ {6 [N]’& s{o} [Nf Yin-
M R

ation i. Thus the teul -‘

gy

where [N]; is the value of shape functions at t
element can be written as

I, = j %{5}”{3}%1)}[3}{5}‘@ - j {5 "1B] [Bﬁe} dv 1€.2) -

e 11;5 |
- [ 1oy f@sw%

it can be taken outside the integ
\ ’Jl;"-'i"} \»“uq"-qm

{’B‘f f EBI” [ﬁﬂz‘)w

+ [{oy" Bl (o av - |

Since {0)¢ is a vector of no

{ry =] 1BY (D)e\dv - j [B]’w:

I[. ’Iv v "

we can rewrite  Eq. (5.102) as

RERE e, W T

Once all the elemgm
the system as e
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Axisymmetric Solids SubjeCtecl
to Axisymmetric Loading

INTRODUCTION
Problems involving three-dimensional axisxmmetric soli’ds Or solids of -
jected to axisymmetric loading, reduce to §lmple two-dimensiong] PTOblcme‘
of total symmetry about the z-axis, as seen in Fig. 6.1. all deformation and ~
independent of the rotational angle . Thus, the problem needs to be l°0kedac:t‘
dimensional problem in rz, defined on the revolving area (Fig. 6.1b), Gravity (N
be considered if acting in the z direction. Revolving bodies like ﬂYWheelscm:‘:

lyzed by introducing centrifugal forces in the body force term, We NOW discyg;
axisymmetric problem formulation.

< u=[u,w]" Z
T~ [T
" L [fr* fz]T
P={pP P}
P, distributed
on circle

!
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Section 6.2 i
. Axusymmetric Formulation 179

2 AXISYMME TRIC FORMULATION

! nin Fig.
ten in the form & 02, the potentia) ¢ncrgy can be wriy

1 2m - -2"
I'I=--/ /0" d -~ ”
g b Ado : ‘urfrdAd(i-/z / ]
. 0 /“T’deda_ ":TP,

‘

where r d€ d6 1s the ¢clemental surfac
( ; ear :
distributed around a circle, as shown in Feiz and the,pott Wod represents a line load

All variables in the integrals are independent of 6. Th
. Thus,

1
[T= 217(;/0'TerdA * fuT&dA

where

The stress ve cto: _:
05

\_

e 9

-l
= i '
PRI EVF Ve
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f 1l

“

where the (4 X 4) matriy
three-dimensional matri
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z-coordinates, respectively, replace x and " Section 5.3, We note here that the r- and
Using the three shape functions N, Ny, and N,

we define
where u is defined in (6.3) and u = Nq (613)
N- [Nl 0 % 0 N o
0O M 0N o N (6.14)

q= [-.qls q,

If we denote N, =
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By using the isoparametric representation, we find

e =

and @ oy

d Py

where the Jmhm

1
'

) /

'

In the definis:
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Section 6.3 b <

 that [det 3| = 2A, . Thatis the absoluge 'Q:Mhm -

[};zc:rca of the element. The inverge elations = |
rg—u—\ rau\ :.Eq&&ls.ndﬁ‘]g Qf.lwm
or Y3 Mo : """"nby
J _ya] o ¥ \
B ?‘ J > ) or 0w
= du( tmd 1Y a il o
b 4 ey w
[ V& J \ai"J \‘a?J L! ’ (w)
where L
L
M ¢ b i
jntroducing these transformation relationghjne iy . -
i Eq 6.6and using EQs.6.16, weget ¢S
(7-23(41 —4) — )
—ns(q, U
- "zs(‘h‘j LE(E
N
Nig, + N
\

This can be written in th ;'-: ma
i ‘ 'th*
where the element strain-d

f_*'

S
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Axisymmetric Solids Subjected to Axisymmet. Loagi.

84 Chapter 6
The

clement strain energy U, given by the first terp, can e
1 A
U, = EqT(Zw /BTDBr dA)q Ay

The quantity inside the parentheses is the element stiffnegg

Matrj,
& o 4 % L N
k' =2m [ B'DBrag ‘i-

The fourth row in B has terms qf the type N/r. Further, this integm -
rinit. As a simple approximation, B and r can be evaluated 5¢ the 0 by,
gle and used as representative values for the triangle. At the . T Cent, San

ang
and
S rl +r +_ r

where 7 is the radius of the centroid. Denoting B as
trix B evaluated at the centroid, we get "
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-
ection 83 Finte Element poge,
Ng: Tria
once 38 dptp rovmating the variable quantigieg by th roulr Element 195 |
iantt® ™ p €ir Values at e centroid of th
2w / 1 e
ere the element body foree veetor is given (632)
: = Zﬂ'FA‘ - -
3 Unfobn BBy
<baronthe f terms indicates that they are evaluated at he ¢ | (6.33)

he primary load, greater accuracy may be obgainaq
g P\'_;rs into Eq. 6.32 and integrating my&et n&it[ M'ﬂ} S

\:f: T4

Rotating F ’ywbeel

o il
ample, let us consider

As an ex
¢ flywheel to be stat

wnsider th

and
For more precise results witl
and integrate.

Surface Traction

For a uniformly dis g T
edge connecting nodes

Ny

\J r-v'

X

Scanned by CamScanner



Section 6.3 Finite |
, ':M"M
Sd:;:]’:r the following table: 189
Co
1 2 Coordingge

Elemem
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. tric Solids Subjected to Axisymmetric Leak
6 Axisymme oadip,
190 Chapter din

The stiffness matrices are obtained by finding 277 AB'DR foreg
(& |

Giobai dof — 1 2 3 4 y
403 -2.58 -234 l4s 93
8.45 137 —789 1 % LIy
k' = 107 230 -0.24 0.16
7.8 - 1.93
Symmetric 225
Global dof — 3 4 5 6
2.05 0, =222
0.645 1.29

w.)
il

[ —

S

N

—_

f—

Symmetric

Using the eliminaticn approach, on asse
of freedom | and 3, we get
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Section 6.4

Problem
Moc,% -~

g the product matrices DB’ anq q

Usm in the ¢
- la L)
= D‘,
we gel
o =[-166, -
) [ ]66, 58.2, S4 ‘284]|
o = [-169.3, ~66.9, | ‘54111 ::oam
L 0
re Effects Mp,
e mperatu .
lform increasc in temperature of AT inty i
€, = [QAT, aAT, 0, uﬂ'mm~ N
[he SLTEsSEd arc given by - : Svea |
= D(e —_— -‘n P ‘-' *"'l' \
sherc €18 the total strain. I 6s2)

On substitution into the strain energy, & ik
the pounnal energy [1. Using the element s
find that

w/eTDeo‘rd‘A“
. .

The consideration of the temper. U
simple. The term € Tin Eq. (6.53) is
The evpressmnmparen heses g

of the element. We have

where

Wehave seen that t]
Volving area, The bo
arrests the rotation,
dilly fixed. Let us now

Figure 67,
of the )
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6 Axisymmetric Solids Subjected to Axisym,-netric Load
ter |
192 Chap '

“

<

s
[
[7

.z

1 v

S e B = _

FIGURE 6.7 Hollow cylinder unal N7
Infinite Cylinder i . T

In Fig. 6.8, modeling of a cylinder of infinj % o
shown. The length dimensions are assumed o

dition is modeled by considering a upjt length
Z direction,
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Press Fit on an Elastic Shaft )

The condition at the contacti: ng g
tic sleeve is press fitted onto-an ela
with the shaft also treated as elast:
t0Fig.6.10. We may define pairs of
of one node on the

ical pair along the radial ¢ gree

When the — i
Proximately enforced. Th

e
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Axisymmetric Solids subjected to Axisymmetric Loading

Chapter 6
e - -8 " o]+ 1CQ] - 1CQQ, + )
‘ L COP — CQB + CH |
This implies the following modifications: “%
[Kn Kij __,[Ku +C K- C]
K K K,-C K;+C “
and
E]_[F-cé
F, F + Cb
Bellevilie Spring
The Belleville spring, also called the Belleville washer;is a co
e circle and supported at

is applied on the periphery of th
Fig. 6.11a. As load is applied in the axial direction, the supp
the rectangular area shown shaded in Fig. 6.11c ne '

load P is placed at the top corner, and the bottom Supj orti
the z direction. Load—deflection characteristics and s Tess C
by dividing the area into elemen
spring, the Jload—deflection curve i
geometry. We can find a good ar
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Section 6.4 .
Problem pa..
=K e |
siffness matrix K(x) for the give, Condition,

the ~ "y Q for an incremental 19
ﬁ“‘“mﬁ - 220 Of A frogy” =0ty We g
K(x) AQ = AF &‘
Jacements AQ are converted 1o he
te the new geometry: Mponents Au = (6505
10 pdﬂ ; ~~~
b Xe—x 4+ Auw . .~.
ated for the new geometry, ang
% s example illustrates the whn‘
el Stes roblem L ey
Shominﬁg.&lZaisasteelslee'ew “:"
. s then the (eMperature is raised by o7 R MStated wag
ecause of the constraint. The rectangular area of engr, - eSS
gdered (Fig 6.12b). with points on the outer radte.— - 2 DOUD
he finite clement equations are s
siscussed. In real life, each pro
ing of the loading, boundary c
problem can be broken down i 1t
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