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CHAPTEHR 5

Two-Dimensional Problems
Using Constant Strain Tri,zmg|es

5.1 INTRODUCTION

The two-dimensional finite element formulationiin this chapter follows the

in the one-dimensional problem. The displacements,traction componens and s
uted body force values are functions of the position,indicated by (x, y). The dwh;:
vector u is given as ' N

where u and v are the x and'y comﬁ('jnents of u, respectively. The stresses and sirip
are given by ' 4
.‘A "_."‘ 0- B [a.x’ay,Txy]T (S.Z]

1‘ €= [e,€,7,]" (53
From Fig. 5.%&@ the two-dimensional problem in a general setting, the bod

forcc@ tor, and elemental volume are given by
v L

>

t = thickness at (¥, y)
f.»f, = body force components
" per unit volume at (x.))

=
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Finite Element Modeling 131

¢ is the thickness a] v and gy o
:glliﬁe, lwhlle the tractloarll (f)(l)]rgc;h'; lfacshtr}?qio'.l'ne body force ¢ ;dA (5.4)
relations are given by © units forcey Unit areg T‘t::asstthe units force/unit
rain—displacement
. af@’@*a”
Stresses and strains are related by (see Eqs. 1.18 d (5.5)
+7-1%and 1.19)
o = DE
The region is discretized with the (5.6)

5.

ements with curved boundaries. The idea of th
tinuous problem approximately, and+his ufy

filled region cont

4x

FIGURE 5.2 Finite element discretization.
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Two-Dimensional Problems Using Constant Strain Triap, I
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Chapter 5

132
the triangulation shown in Fig. 5.2, the node Numbe
I3

approximation. For :
at the corners and element numbers are circled. ang
In the two—dimensional problem discussed here, each node is ‘
Thus, each node has two degrees of frel:(e]::mmd (Od.m

A
%

in the two directions x and y.
from the numbering scheme used in trusses, the displacement com
Ponents o -

taken as @11 in the x direction and Q;; in the y direction. We deng g,
te the Ml;
§

placement vector as

Q=[0,0 - On]"
6

egrees of freedom.
nformation on the triangulation is to be
Iepr .
Presenteq &

Computationally, the i
form of noedal coordinates and connectivity. The nodal coordinates are storeg ;
dimensional array represented by the total number of nodes and the two coo M,
node. The connectivity may be clearly seen by isolating a typical element, z g "
Fig. 5.3. For the three nodes designated locally as/, 2, and 3, the Col'l'espo’ -sh(”’“l

node numbers are defined in Fig.5.2. This element cwwg information | Bloky
lements and'threc nodes per element. A typwale;

array of the size and number of €
nectivity representation is shown in Table 5d. Most'standard finite element codes
the convention of going around the element in acounterclockwise direction thvoid:
culating a negative area. However, in the program that accompanies this chapte;
ordering is not necessary. o g : e ailt W arese '
Table 5.1 establishes the correspondence of Jocal and global node numbers and
ment components of a local node i

corresponding degrees of freedom. The displace
as g,;-1and gy;in the x and y directions, respectively. We denot

| Fig. 5.3 are represented
the element displacement vector as
' )

w q=[q1’q2:"'sq6]T
¢ conectivity matrix in Table 5.1, we can extract the g vector from the
operation performed frequently in a finite element program

where N is the number of d

Note that fr

| Y6

I (*¥3,y3)

4,

|

T
2 (xZ9y2)

— <
o

ﬁ- q
Gy 31)
= X

Scanned by CamSca'mner



Section 5.3
Constant-Strain Triangle (CST) 133

TABLE 5.1 Element Conneclivi(y
Element number Three nodeg
P \
1
e e 2
3
| \
2 l ¢
: 4 2 ;
i 6 7 10

the nodal coordinates designated by (x, , )6y, 950 i
spondence established through Table 5.1. The lozcgflzzep‘; es(e J::t,a )3 ha\t{
and degrees of freedom provides a setting for a on of no

ment characteristics. simple and c| %
5.3 CONSTANT-STRAIN TRIANGLE (CST) \

The displacements at points inside an element need to be represented in terms of the
nodal displacements of the element. As di Cussedérlier’ the finits elément method imes
the concept of shape functions in systematically developing these interpolations. For
the constant strain triangle, the shape functions are linear over the element. The three

global corre-
oordinates
sentation of ele-

in Fig. 5.4. Shape function N, is . nd linearly reduces to 0 at nodes 2 and 3.
The values of shape function M;

spectively, and dropping't6 0 at the opposite edges. Any linear combination of these
shape functions also - epresents a plane surface. In particular, N; + N, + N; represents
aplane at a heightof 1 at nodes 1,2, and 3,and, thus, it is parallel to the triangle 123. Con-
N 25 and N3,

Nl F N2 St N3 = 1 (5.9)

re therefore not linearly independent; only two of these are ipdgpe:;
dent. The independent shape functions are conveniently represented by the pair §,m
Nl=§' N2=n N3=1—£—-7’ h(SIO)
. imilarity with the one-
where ¢, are natural coordinates (Fig. 5.4). At thJ_s stage, th-‘ma;‘g alw;roble o e
dimensional element (Chapter 3) should be noted: in the Olile functions were defined
x-coordinates were mapped onto the £ coordinates, and s afpe.coordinates are mapped
 functions of ¢. Here, in the two—dj;wnsio@ pmblemi'it::; a,syfunctions of £ and 7.
onto the ¢-, n-coordinates, and shape functions are de

. A point
; d by area coordinates
Toc shape D T and Ay s shovn i g 53T
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2.1.2 Variational Formulations

The classical use of the phrase “variational formulations” refers to the construction of a
functional (whose meaning will be made clear shortly) or a variational principle that is
equivalent to the governing equations of the problem. The modern use of the phrase refers
to the formulation in which the governing equations are translated into equivalent weighted-
integral statements that are not necessarily equivalent to a variational principle. Even those
problems that do not admit variationa] principles in the classical sense (e.g.. the Navier—
Stokes equations governing the flow of viscous or inviscid fluids) can now be formulated

using weighted-integral statements.
The importance of variational formulations of physical laws, in the'm In or general
other

sense of the phrase, goes far beyond its use as simply an alte it rmulations
[Oden and Reddy (1983)]. In fact. variational forms of the laws ofcontit um physics may
be the only natural and rigorously correct way to think of the ileallsufficiently smooth
fields lead to meaningful variational forms, the convej is not true: There exist physical

phenomena which can be adequately medeled mathem only in a variational setting;
they are nonsensical when viewed locally. :

The starting point for the discussion of the finite element method is differential equations
governing the physical phenomena under study. As w we shall first discuss why integral
statements of the differential equations apé'heeded.

In almost all approximate metha ds usec o determine the solution of differential and/or
integral equations, we seekf8 solu omvift the form

n functions ¢; of position x in the domain & on
ve shall shortly discuss conditions on ¢,. The approx-
10wn only “When ¢; are known. Thus, we must find

tisfi mwmq If somehow

@
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Pascal’s triangle Degree of Numbgr of Element with |
the complete terms in t.he nodes
polynomial polynomial

! 0 :

x oy 1 3

oy )y 2 4

T B 3 10

2y Aot 4 >
S Ay A B S 5 AN (Figwe notshown

e ——

Figure 9.2.1 Topmost six rows of Pascal’s triangle for the generation of the Lagrange family of
triangular elements. !

»

contains the terms of polynomials g variouﬁ! degrees in the two coordinates x and Y, as
shown in Fig. 9.2.1. Here x and y denete some local coordinates:; they do not, in general,
represent the global coordinates of thé problem. We can view the position of the terms as the

; ant term and the first and last terms of a given row being
Of course

the vertices of the triangle.

» the shape of the triangle is arbitrary—not necessarily
an equilateral trianglejas

Mght appear from the position of the terms in Pascal’s triangle.
tangularelement of order 2 (i.e., the degree of the polynomial is 2) contains

six nodes, as camibe seen from the third row of Pascal’s triangle. The position of the six
nodes in the tri is at the thr

ee vertices and at the midpoints of the three sides. The

constants, which can be expressed in terms of the nodal values of

6
4= uix, y) (920

e

where ; are the quadratic interpolation fun
as that used for the linear element in Sec
has a number of n nodes

Tunctions obtained following the same procedure
ton8.2. Tn general, a pth-order triangular element

i,
B=s(P+1)(p + 2)4¢ (922

§ OO
i) 1 923

iJ '..‘""',l i
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The location of the entries in Pascal’s triangle gives a .

in clements that will produce exactly the right number of};,md etric location of nodal points
jation of any degree. It should be noted that the I st deﬁne‘a e
R driiarach ineitd agrange family of triangular elements

(of order gr¢ - : _ U§ed for second-order problems that require only
(he dependent vanaoics (not th.elr derivatives) of the problem to be continuous at interele-
ment poundaries. It can be easily seen that the pth-degree polynomial associated with the
th-order Lagrange .ele_ment. when evaluated on the boundary of the element, yields a
th-degree polynomial in the boundary coordinate. For example, the quadratic polynomial

associated with the quadratic (six-node) triangular element shown in Fig. 9.2.2(a) is given by
u®(x,y) =ay + arx + azy + asxy + asx” + agy’ (9.2.4)

The derivatives of u® are
du® u®
=a; + asy + 2asx, =az + asx + 2a¢y (9.25)

dx 3y
nt shown in Fig. 9.2.2(a) is an arbitrary quadratic triangular aﬁ? nent. By rotat-
s, 1 ‘:goordmate system

ordinate system, we obtain the ( ) :
formation from the (x, y) systemto the js t? system in-
inear) and translation, a kth;de ee,po ynofmial in the (x,y)

The eleme
ing and translating the (x, y) co

[see Fig. 9.2.2(b)]. Since the trans
volves only rotation (whichisl
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coordinate system is still a kth-degree polynomial in the (s, 1) system:

u(s, 1) =a, + as + ast + aqst + fss” + dgt

where @; (i =1,2,...,6) are constants that depend on a; and the angle of Iotation ¢
by setting t = 0, we get the restriction of « to side 1-2-3 of element §,; Now

~ ~ ~ )
u(s,0)=a, + azs + ass*

(9.2‘7)
which is a quadratic polynomial in s. If a neighboring element €2/ has its sjde 343 ;
common with side 1-2-3 of element §2,, then the function u on side 5-4-3 of eleme \
1s also a quadratic polynomial e

uf(S. 0) = i)l + i)z.ﬁ‘ e i)5S2 (928)
Since the polynomials are uniquely defined by the same nodal values Uy = u¢ = u{ Uy=

us=u,,and Us =ué = u{ we have u‘(s, 0) = u/(s, 0) and hence the function y i unique|
defined on the interelement boundary of elements e and f. §\ !
The ideas discussed above can be easily extended to threes dimensions, in which case
Pascal’s triangle takes the form of a Christmas tree and the elémentSare of a pyramid shape
called tetrahedral elements. We shall not elaborate on this anysfurther because the scopé
of the present study is limited to two-dimensionalglementsyonly. A brief introduction to
three-dimensional elements is presented in Chapter 144,

Recall from (8.2.21)—(8.2.25) that the procedure for deriving the interpolation functions

involves the inversion of a n x n matrix, where nis the number of terms in the polynomial
used to represent a function. When ngs 3, this &cedure is algebraically very tedious, and

was discussed for one-dimensional ele
The alternative derivation of the inter
family of triangular elementsiis simpli

ructthree nondimensionalized coordinates L; (i = 1, 2, 3) that

Li= ar s Z A, 9.29)
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where A s the area of the tiangle formed by nodes / and & and an arbitrary point /2 in the
element, and A \is l.lu' (otalaren of the element, For exnmple, A is the area of the shaded
griangle, which s Itlllllt'l‘l by nodes 2 and 3 and point 22, 'The point 2 is at a perpendicular
distance of v from the side connecting nodes 2 and 3, We huve A = 5/-,, and A wm 5;,/,,
Henee, ’ '

A b

A h

1y is zero on side 23 (hence, zero at nodes 2 and 3) and has a value of unity al
Thus, L1 is the interpolation function associated with node 1, Similarly, L and L
sterpolation functions associated with nodes 2 and 3, respectively. In summary, we

L

Clearly,
node 1.
are the ir
have

l/l/ = I,/ {9.2,]0)

functions for

for a linear (riangular element. We shall use L; to construct interpola

higher-order (riangular elements,
Consider a higher-order element with & nodes (equally sp er side [see Fig.
9.2.4(a)]. Then the total number of nodes in the element is giyen
k=1
n=Y (k=) =kt k=D ) (9.2.11)
i
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P DEVELOPMENT OF

THE LINEAR-STRAIN
TRIANGLE EQUATIONS A

CHAPTER OBJECTIVES

o To develop the linear-strain triangular (LST) element stiffness maN
o To describe how the LST stiffness matrix can be determined

o To compare the difference in results using the CST and LST éle

Introduction

In this chapter, we consider the development of the stiffness matrix and equgtions for
a higher-order triangular element, called the linear-strain triangle (LST). This element
is available in many commercial computer programs/and has some advantages over

The procedures for developmer e equations for the LST element follow the
same steps as those used in Chapter.6 for the CST element. However, the number of equa-
tions now becomes twelvesdnstead of six, making a longhand solution extremely cumber-
some. Hence, we will use a.computer to perform many of the mathematical operations.

After deriving the element equations, we will compare results from problems
solved using the LST element with those solved using the CST element. The 1ntr_oduc-
tion of the high jer TST element will illustrate the possible advantages of higher-
f)rder elements should enhance your general understanding of the concepts
volved with finite,element procedures.

téilDe’fivaltion of the Linear-Strain Triangular ‘ A
“ment Stiffness Matrix and Equations
, We Gudlod::)

erive the tiffnes matrix and element equations. The steps used here
10 those used for the CST element, and much of the notation is the same.

O -
» (S 1 elemen
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428 A

Development of the Linear-Strain Triangle Equations
8 Deve

K]

»v

Figure 8-1 Basic six-node triangular element showing degrees of freedom,

Step 1 Select Element Type

Consider the triangular element shown in F igurdz‘;8-1 with the usua] end nogeg :
three additional nodes conveniently located at thevmidpoints of the Sides. Thy
computer program can automatically compute'the midpoint coordinates gpg, th:

coordinates of the corner nodes are given ¢ .input.‘

The unknown nodal displacements are ’ given by
L]
V 4 v
Uz
({a1}) 02
{d>} u3
) {ds} v3
{d}—AJ () r =J " r (8.11)
‘ {ds} vg
) \{dﬁ}J Us
\ E
, Ug
\ U6 J

Step 2 Select 3 Displacement Function

We now select a quadratic displacement function in each element as

u(x, y) = a +ayx + a3y + aux? +asxy + asyz (8 1.2)

Scanned by aScanne
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perivation of the Linear-Strain Triangiyar Element Stiffness m
1 atrix and

: al Triangle Pol i
r"ﬂ m P asc Iy,

— Triang
0 (constany) ‘l\\\b
X ) I (linear) \

CST

(Chap. 6)
oy ! 2 (Quadray f‘.
) 6 LST &e)

(Chap. 3

& oy oy 3 (cubic) 10 QST &
Figure 8-2 Relation between ty

. Pe of plane triangular element and polt
coefficients based on a Pascal triangle omial

Using internal nodes as necesg

ary for the higher-order abi and quartic elements, we
use all terms of a truncated Pascal triangle in the displacenent field or, equivalently,
the shape functions, as shown by Figure 8-2; that is, a com
used for the CST element considered previously in

function is used for the LST of this cha
the quadratic-strain triangle (QST), wi

The general displacement func
are now

plete linear function is
Qapter 6. The complete quadratic
r. The Complete cubic function is used for
internal node necessary as the tenth node.
» Eg8 (8.1.2), expressed in matrix form

a
2 2 a
{‘l'}={:}=[(l) oGm0 1 2 ; fy ;)2} B
ap
Alternatively, e Eq. (8.1.3) as
{v} = [M"{a} (8.1.4)
where [M*] to be the first matrix on the right side of Eq. (8.1.3). The coefficients

a1 through g, an be obtained by substituting the coordinates into « and v as follows:

ruﬂ 1 X1 N x12 X1 J’f 00 0 0 0 0 ral ]
Uy L'x y2 o xp 3 0 0 0 0 0 0 @
fl 11 sy L L A [ D
1 100 0 0 0 0 1 x » X oxn M@
| —_ £ . ! Pl . 4 i .
T shodv ' b nk e 5 s g8 -l ‘
|vs 1 x5 s x} XsPs yj :n
W, 0 1w w A v ) (o)
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svation of the Linear-Strain Triangluar g
g1 Der lement Stiffness Matrix
and

Equations 4 an
where [M'] is the first marix on the g

for the @;’s into Eq. (8.1.12), we have ﬁl} in t of Eq. &.1.1) Snbmhmng Eq. (8.1.6)

{e} = |B){q)
where [B] is a function of the v

$1.13
anables
(¥e, ¥s) given by S X

where Eq. (8.1.7) has been yseq 10 eXpress; A
matrix of order 3 x 12. pressing Eq. (8.1.14) Note that B 15 now a
The stresses are again given by

Oy &,
Oy } = iD]{ & } = |D|Bl{d
Ty Yo 1

where [D] is given by Eq. (6.1.8) for ane stress
These stresses are now linear functionls)l of x:md ¥ -

Step 4 Derive the Element Stiffness Matrix and Equations
We determine the stif Iness matrix ip a w similar to that used ; Section 62

: t t & | >
using Eq. (6.2.50) repeated here - -

"ID\[BlaV (8.1.16)

However, the [B] m of x and » as given b |

ow,avfunct Yy Eq. (3.1.14). There
tf‘ore, We must perfi ton i Eq. (R.1.16). Finally, the |Bl matnx is of the
orm

Br 0 B 0 B 0 B 0 B o

= no0 »m 0 » 0 5 o B 0 ¥ (81.17)
" ﬂl)’zﬁzkﬁzh,ﬂt)’sﬂs e Bs

Where the sandy’sarenowfuncﬁonsofxandyaswellasofthenodnlmdham
:E::l!lnwated for a specific linear-strain

triangle in Section 8.2 by Eq. (8.2.8).
1€ stffness matrix is then seen to be a 12 x 12 matrix on multiniv the matrices
=4 (8.1.16). The stiffness matrix, Eq. (8.1.16), is very cumbersome to obtain in
0, 50 it will not be given here. However, if the origin of the coordinates is con-
: se of area usually involves

™
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The element body forces and surface forces should not be automag;
at the nodes, but for a consistent formulation (one that is formulateg ftrn'n“ \
shape functions used to formulate the stiffness matnx), Egs. (6.3.1) ang 6““ ‘h\
tively, should be used. (Problems 8.3 and 8.4 illustrate this concept. Ttn-i.l)- Ly
be added to any concentrated nodal forces to obtain the element fbroe f%Q
the element force matrix is of order 12 x | because, in general, there Wn““-'helg.

and a y component of force at each of the six nodes associated with the @,
element equations are then given by ehlhl.m
( flx 1
fl_‘
R
: Sy
[ foy )
(12x 1)
Steps 5 through 7
Steps 5 through 7, which involve assembli e global stiffness matrix and equag

determining the unknown global nodal displacements, and calculating the stresses o
dentical to those in Sectign 6.2 fagfthe CST. However, instead of constant stresesa
each element, we now have a linear variation of the stresses in each element. Commeg
practice was to use t troidal element stresses. Current practice is 10 use the

average of the n

[

A

i

A 8.2 Example S‘ ffness Determination

some of the procedures outlined in Section 8.1 for deriving an LST
atrix, consider the following example. Figure 8—3 shows a speclﬁCI.ST
coordinates. The triangle is of base dimension b and height A, with midude

lu
st

o
Figure 8-3 LST triangle for evelusti®

a stiffness matrix
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A

in Stiffness Equation
| t of the Plané stress and plane Strain Sti q .
6 Developmen

e : iangular elements, eilC,h with nOd?lb -Sucg ;Z:j’lé; ECl:llg ’:e “ g ma“&u
Hissind animether < boundaries of irregularly shape . ; CIOSely Ppros
lar elements bccnuS.C 1( because the expr essions related to the triangular eleme -
mated In FIus way, ‘:'3‘1."“ discretization s called a ('()flrb'c”me-s'h generatioy, if 3 e
comparatively su.l‘lp L‘.-d l:‘ilch node has tWo dcilrcc.s Ql freedom—an x and 5 Ew
l;:rgc clcnlw,\;s ‘:;]l;:‘l. u.z .,‘nd p, represent the node i displacement COMponenyg 0 th.
placement. We i ¢

s ‘dlrulil;rr:nllrljll:ltgsv tlllye based on this counlclrclockwisc system of labeli,
3des}1;;tchccl>lxgh a formulation based ona clockwlsz sy.:ltemhof labCqug COUIdg of
used. | ber that a consistent labeling procedure for the whole body jg Neces
uaeld. Remeﬂ:)] in the calculations such as‘negatwe eleme‘nt' areas. Here (,
e 1 n nodal coordinates of Imgss i, j,and m, reSpecti"y'J,

Xis Vi)s and (x, a."’rn) are the know T s VCIY,
v jThe nodar] displacement matrix 1s given bY . “
N\ *
$ 'v 1J
g \ i
{d"§‘ WA
4= {47 ('\§ \ v; ( (6.2.1)
wni) o
, ' Ly
Step 2 Select Displacement Functions
We select a linear displacement function for each element as
u(x,y) = a1 + arxx + asy
(6.22)
v(x,y) = a4 + asx + agy
here nd v(x, y) describe displacements at any interior point (x;, y;) of the

The linear function ensures that compatibility will be satisfied. A linear function
with specified endpoints has only one path through which to pass—that is, through
the two points. Hence, the linear function ensures that the displacements along the
edge and at the nodes shared by adjacent elements, such as edge i-j of the two ele-
ments shown in Figure 6-6(b), are equal. Using Egs. (6.2.2), the general displacement
function {y}, which stores the functions & and v, can be expressed as

(a
, a

{¢}={“‘+“2x+a3y}= l'x » 0.0 0 ] (623)
a4 + asx + agy 080071, x y a4?

as
dag ]

\
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A 327
To obtain the a’s in Eqs, (6.2.2),

we i o
nodal points into Eqgs. (6.2, 2) to yield begin by substltutmg the coordinates of the

= ML) = a4 4 ayx, + ayy,

Wy - u(x]»yj)

Uy = u(

= da) + arx; + axy;
Xm; Ym) = ay + asyx,, + ay,,
vV = U(xi,}’i) = a4+ asx; + agy; (6.2'4)

vp = v(xj,yj) = a4 + asx; + agy;
U = 0(Xm, Ym) = a4 + dsx,n + agyy,

We can solve for the a’s beginning with the fir
ke st three of Egs. (6.2.4) sed in ma-

LIRS

or, solving for the a’s, we have

{a} = 7 {af (6.2.6)

where [x]. is the. 35043 mat.rix on thedight side of Eq. (6.2.5). The method of cofactors
(Appendix A) is one possible me g the inverse of [x]. Thus,

L
B (6.2.7)
Vm
where (6.2.8)
is the determinant of [x], which on evaluation is
24 = xi(y; — Yym) + % (Vm — Vi) +Xm(¥i =) - (6.2.9)
Here A is the area of the triangle, and
% = Xj¥m — Vj%Xm o = YiXm — Xi¥m Om = Xiyj — ViXj
L L -lﬂz‘:ﬁ‘yﬁ'f)lw"! ) Byt S0 5t P =l ) (6.2.10)
"T'.u‘. Y fyy 1 nk ]

3yj=xi—xm 7m=xj—x"
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Gx +dx is the heat conducted UEE T
X

x + dx.

is time, in h or §- g Ll
tls. t1 d o] heat source (heat generated per 3? o 50]um elt _volllme
4 tl'lt? lr;teir:kW/m3 (a heat sink, heat drawn O B
is positive),
negative). | i o

' eat flow ¢, In m~,

A is the cross-sectional area perpendlculdr to q.

's law of heat conduction,

By Fourier ’ AT
gx = Pxx dx (131‘3‘ .
where Ay ‘
in the x direction, 11 kW/(m - °C).

K., is the thermal conductivity

T'is the temperature, in °C.

dT /dx is the temperature gradient, in °C/m. e \

states that the heat flux in the x direc.tion 1S proportional to
ture in the x direction. The minus sign in Eq. (13.1.3) impiy
tive in the direction opposite the direction of
is analogous to the one-dimensional stress-stua
= E(du/dx). Similarly,

Equation (13.1.3)
gradient of tempera
that, by convention, heat flow is posi
perature increase. Equation (13.1 3)
law for the stress analysis problem—that is, t0'@x

V B (1314
dx x+dx

j qx+dx

is'evaluated at x + dx. By Taylor series expanst
we have

where the gradient in Eq.
for any general function f(x

e df d*f dx*
Sras =Syt pdrt o=t
Therefore, term Taylor series, Eq. (13.1.4) becomes
- dT d (., dT 131
dx+dx = — | K. Tt o ;o :
X+ [ X, + (Kxx ) dx]

The change in stored energy can be expressed by
AU = speci
U = specific heat x mass x change in temperature
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13.1 Derivati
atio
N of the Basic Differential Equation A 57
ki 7
4= +g¥

X

T=TB7’—— T == p
L : q4:=0 !
Si —, (insulated) ol it

— S L

: 13-3 Exampl ry [ \
Figure ples of boundary conditions in one-dimensional h
nal heat conduction

For steady state, any differentiation wit .
Eq. (13.1.7) becomes 'th respect to time is equal to zero, so

d k9T
de\" @) +2=0 (13.1.8)
For constant thermal conductivity and steady state, Eq. (13.1 es

diT

Ka—z+0=0 \ (13.1.9)
The boundary conditions are of the form \

I =Tpg on Sj (13.1.10)

where T'p represents a known boundary tempery.lre and S; is a surface where the
temperature is known, and

gy ==Ky nstant  on S, (13.1.11)

heat flux ¢} or temperature gradient is
— 0. These different boundary conditions are
nvention, positive g; occurs when heat is flow-

where S, is a surface where ¢
known. On an insulated
shown in Figure 13-3, wher

wo-dithensional heat conduction problem in Figure 13—4. In a manner
- dimensional case, for steady-state conditions, we can show that for

A ies coinciding with the global X and y directions,

9 (k QZ)+£(KWE)+Q=0 (13.1.12)
ox \ Tox
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gn=tan

Figure 13-5 Unit vector normal to surface s,

with boundary conditions

oT o . 1
qdn = 9; = K\‘xa Cy + Kv)’)’ E C} = constant .. SZ (13-“4.

where C, and C, are the direction cosines of thé unil?“vector‘ 7 normal to the syrfy,
shown in Figure 13-5. Again, g, is by sign gonvention, positive if heat is flowing i
the edge of the body.

A
@

A

For a conducting solid in contact wfﬁ a fluid, there will be a heat transfer taking plac
between the ﬂuid_and solid surface when a temperature difference occurs.
The fluid will be in motion€ither through external pumping action (forced cor

vection) or through'tt yancy forces created within the fluid by the temperatur
differences within i ]

A 13.2 Heat Transfer with Convection

dli]mension 2 nduction with convection. Again we assume the temperafi

ghz\?v%eth 1er in thedx direction than ip the y and z directions. Figure 13-4
olume used in t g 5

tio B In the derivation, Again, by Eq. (13.1.1) for conser

A dt + Q4 dy gr — c(pAdx) dT + B ot o P vk (1321)

< (15
by conzv.}c);i:f porms have the same meaning as in Section 13.1, except the I
cat transfer s given by Newton’s law of cooling

% =h(T - T,) (1327
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[nsulated boundary

37 Model illustrating convective he

ure 1 . at transfer
-':.i,gicate heat transfer by convection) (arrows on surface s,
i

where

jis the peat-transfer or convection coefficient, in kW/(m? . °C)
Tis the temperature of the solid surface at the solid/fluid interfa e \

7., is the temperature of the fluid (here the free-stream fluid te
pin Eq (13,2,1) denotes the perimeter around the constant . X

area A.
Again, using Eqs.. (1_3.1.3) throu_gh (13.1.6) and (13.2%. (13.2.1), dividing b
Adxdt, and simplifying, we obtain the differential equation one-dimensional hea};

conduction with convection as

/,
G, oT q 9
( ) ;@/ > E(T_Too) (13.2.3)

Ew Kxx_ =
0x o) T4 .@—,— A
P
with possible boundary condition temperature, given by Eq. (13.1.10), and/or

son(?
(2) temperature gradient, given by, Eq. (13.1.1 1), and/or (3) loss of heat by convection
from the ends of the one-dimension y, as shown in Figure 13-7. Equating the heat
flow in the solid wall to.thevheat flow in the fluid at the solid/fluid interface, we have

L\ W
N K‘_‘%xx‘_’z —WT-To) onS (13.24)
. dx |
as a bounda n for the problem of heat conduction with convection.

i — Yy
;z's Typical Units; Thermal Conductivities, K;
Heat-Transfer Coefficients, h

Table 131 Jists some typical units used for the heat-transfer prcﬁ'blveaﬁous solids and
Table 13-2 lists some typical thermal conductivities amount of heat e0-

liquids The th P . oC meas res 1l 5
e ermal conductivity K, in W/(m - °C), 1 - a given substance 1 2
zﬁf SZC h) that will flow through a unit length (ft Qt"_m‘")" ofd'l st
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580 A
at transfer

Table 13-1 Typical units for he
ot

Variable

kW/(m - °C)
Thermal conductivily, K O e
Temperature, T KW/m 3
[nternal heat source, @ kW/m2
Heat flux, ¢ W
Heat flow, 4 ! oW 2.0)
Convection coefficient, h kw/. (h

Energy, E (kW - h)/(kg - °C)

Speciﬁc heat, ¢ 3
Mass density, p kg/m

ical thermal conductivities of sgme ¢

Table 13-2 Typ ,
Material k (m - °C)]

/""‘—i
Solids

Aluminum, 0°C (32°F)
Steel (1% carbon), 0° Y 4 35
Fiberglass, 20°C (68 °F) 0.035

) Concrete, 0°C 0.81-1.40
Earth, coarse gravelly, 202 0.520
Wood, oak, radial direction, 20 0.17

Fluids

Dry air, a ressure, 20°C 0.0243

s w;gnvectnon occurs when, for instance, a heated plate is expﬂ!d”
out an external source of motion. This movement of the &

as a result of the density gradients near the plate, is called natural ot

| nced, l P

A :: 2;4 Olne‘-DimepsionaI Finite Element e
mulation Using a Variational Method
The temper. il i -
body ang a;?i;ﬂmmon influences the amount of heat moving iﬁto or out of#
e, that experience a -temﬁe:f;:mss?s in a body. Thermal stresses occur i all e
AP s bl o © gradient from some equilibrium state but &
r

il

bod®
°ctions. To evaluate thermal stresses, we need to know 1 %0
4 ) \. A ) '|. #
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10.3

TORSION

0“6 3’0
o g t2=0 ina (10.73)
9=0  ons (10.74)
where A is interior and S is the bound

ary of the cross section. Again, we note that
Eq. 10.73 1s a special case of Helmholty

's equations given in Eq,10.1. In Eq.1074,0 s
called the stress function, since once g j5 known, then shearingN are obtained as

36 5
"oy _GQQ (1075)
with & determined from \\
M = 2Gqa ] j 0dA
A

where G is the shear modulus of th, aterial. The finite element method for solving
Egs. 10.73 and 10.74 will now be give

(10.76)

X

10 i ! a torque.
FIGURE 10.13 A rod of arbitrary cross section subjected to a torq
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FIGURE 10.14 Shearing strcsscsVQrsnm
Triangular Element \
me

The stress function @ within a triangular ele is interpolated as

0/'—'-' N6° (107.’)

where N = [£, 71, 1 — £ — 4] are the usual shape functions, and §° = 6;, 6
are the nodal values of 6. Fufthermore, we have the isoparametric relations (Cha’pt::]g
: lel ~+ Nzxz S N3X3
B Iyu’l + Noy, + Nay,
€ 06 o9& |) ox
Y =
ﬁ a0 0x a_y ; a6 : (1078

(m )  Lam o ||ay)
orv

[ao ao]’f [ao ao]T

i A =J_ A

0§ an ox dy

where the Jacobian matrix is given by

J= [xls )’13] (1079)
ith | X23 Y23
With x;; = x; — -’f}»m T y,,andl‘detll = 2A,.The preoedingequaﬁonﬁm'd
| e 30 291" ‘
LMY £ 5 bod e e 3 [.a—x. 'b-y" " = Bo‘ . ' v (1w
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Section 10.3
or

Torsion 333
[“Tyz sz]T = Ga Boe
i (10.80b)
B=_ 1 Ky“ I UP)

: : . detd ¥ Xy x,, (10.81)
The fact that 1dent1ca! rc.lau.ons also apply to he heat-condyct;
ous section show the similarity of treating all fie]q pProblemg b:mtmn e o i fhe i

Y

) he finite element method,
Galerkin Approac

The problem i_n Egs. 10.73-10.74 wil now be sol ‘ :
problem is to find the approximate solution ¢ sucl‘:e:lcllaltlsmg Calerkigs RO e

4
A ox! gy T2]dA=0 (10.82)
for every ¢(x, y) constructed from the same basis as 9 and'satis

: fyingd = 0on s Since
¢6_2 = a_((b%) 99,96

ax®  ax\" ax —3;3;,
we have
9 ( 90 o ( . 96 A 0090  adap
S el e
A/[ax ox ay ¢ay 4 y 0x ox i dy dy "
4 s ¥V o+ / [ 2¢0dA =0 (10.83)
] A

Using the divergence théor

JJI

where the right side is equated to zero owing to the boundary condition ¢ = 0 on .
Equation 10.83 becomes

\ /[[ﬁﬁJr%ﬁ]dA_/[Wpo (1085)
; A dx ox 4y dy A

Now, we introduce the isoparametric relations 6 = N@°, etc.,as given in E‘,qs\ 10..77—10.8a11;
Further, we denote the global virtual-stress function vector as ¥ whose d{memfo;izqu i
number of nodes in the finite element model. The virtual-stress function within ea

>m, the'first term in the previous expression reduces to

N LN e [ 420 38 N
jﬁtﬁ(‘g)ay)]dfl— ﬁd) axn,‘%- ayny)dS—O (10.84)

0
0x

element is interpolated as - (10.86)
"The functional approach would be based on minimizing
1 aO)‘ N (22)2.} - 20} da
7 = Go? L / {E[(g; ay :

Scanned by CamScanner



W T

——

=\

==t

o

“>

334 Chapter 10 Scalar Field Problems

Moreover, we have

[ A f’d’r - Bib
ox ady (10-87)
Substituting these into Eq. 10.85 and noting that
00
(fnpay A aa) N (r‘n/; m/)) 0x
dx dx  dy dy dx ady/| a6
Ay
we gel
S ke - S u't=0 (10
where
k = A',BTB (10.89)
24, ;
f=—[L 1] (10.90)
Equation 10.88 can be written as
y(K6 - F) =0 (10.91)
which should hold for all satisfying¥; = 0 ut nodes i on the boundary. We thus have
" KO =F (10.92)

where rows and _ebhimns ofKdnd F that correspond to boundary nodes have been deleted.

Example 105 \ §
Consider the shaft with a rectangular cross section shown in Fig. E10.5a. Determine, in

terms of M and G, the angle of twist per unit length.

‘,' y

_

/4

.

(b)

FIGURE E10.5
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(8.9

10 Isoparametric Formulation

Recall that the function x can be expressed in terms of the shape function ..
have from Eq. (10.5.7) atrig g

the axial coordinates, W€
+1 ss— 1) s+ 1) X
{(x}=[M M N;I{.\; } K 5 ) 5 (1 -.vz)] %
X3 X3 058)

Therefore the shape functions are

=2 ) =t Nywm- (1) (19
2 59)

lacement matrix [B] as follows:

(b) We now determine the strain—disp
strain we have

From our basic definition of axial

du duds “N

_ Using an isopa}rametrig formulation means the displacement function is of the
form as the axial coordinate function. Therefore, using Eq. (10.5.6), we have i+

A U Ul U uz 2u3
u=4+5—=55T%5 —§ ——
3 s s+—=5+ > 5> > s (10.5.11)

Differentiating » with res'pect to’s, we obtain
% S

v wys + uxs — 2uzs = (s — -2—) 1+ (s + 5) uy + (=2s)uz  (105.12)

oreviously proven that dx/ds = L/2 = |[J]| (see E is relati
& . _ /2= q. (10.1.9b). This relation-
) BN i nt};;aah1g1her—or§1er c;ne—dlmensxonal elements as well as for) the two-noded
Stant, strain r element as long as node 3 is at the geometry center of the bar
& this relationship and Eq. (10.5.12) in Eq. (10.5.10), we obtayin

du duds (2
z‘=a;a=(z)((s—l)“l+ s+ )i+ (=29
: = (282 l)ul + (Zsljrzl)uz +((£—%Z | u3) (10513

In matrix form, Eq. (10.5.13) becomes

du [2s—1 254+1 - u

s 4s 1

dx [ L L ' ] U (10'5'l4)
U3
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As Eq. (10.5.14) represents the axia| Strain, we haye
oy =B _ 21 g5y —4s] | ™ 9
: dx B B ‘Z] W ¢ =B u, (10.5.15)
iy Uy
Therefore the gradient matrix | B) jg given by |
8] = 25—1 294 ~4
N Sl o T] (10.5.16)
-
—
gxample 10.7

_ _ ent shown previously in Fj
ness matrix analytically, Uge the [B] from Example 10.&
From Example 10.6, Eq. (10.5.16), we have

[B]:{zs\—l 2541 ——4s:|’ 7]

For the three-noded bar elem: e@valuate the stiff-

L L T
Substituting the €Xpression for [B

— g/ (see Eq. (10.1.9b)) (10.5.17)

10Eq. (10.1.15) for the stiffness matrix, we obtain

2s—-1)2s+1) (25— 1)(—4s)
I2 I2
(25+1)? (25 + 1)(—4s)
L2 E? 2
(—45)(2s + 1) (—ds)?
Iz I2 ‘
(10.5.18)
Simpli s in Eq. (10.5.18) for easjer integration, we have
4’ —4s+1 421 _gg + 45
k] J 4% —1 4244541 _g2 _ 4s | ds (10.5.19)
2L
-1l 82 +4s g2 _ 44 1652
Upon explicit integration of Eq. (10.5.19), we obtain
= 1
o2y, 29— 38422
AE 4 4 . 8
Kl=—| Zg_ s —=5 - 5
k] | 355 38 +28 +s S5 = (10520)_
8 2 16
[t 4 2P —§s3 —2¢ s

L . . | i
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510 A 10 Isoparametric Formulation

two-one element equals the one-two element, etc.
By symmetry, the ¥ he final stiffness matri Therefor,
the evaluations of the terms above, the final stifiness matrix 1s :

[ 467 0667 -533
(k] ;”' 0.667 4.67 5.33

§33 - 5.13% 1067 ”0.5.3,

Equation (10.5.26) is identical to Eq. (10.5.22) obtained analytically by direy
integration of each term in the stiffness matrix. X pheyy

.
————

To further illustrate the concept of higher-order e]ewc will consid

dratic and cubic element shape functions as described erence [3), ~.‘

Quadratic Rectangle (QB and Q9) \

Figure 10-15 shows a quadratic isoparametric element with four corner Nodes g4
four additional midside nodes. This eightsnoded element is often called 4 “oF
element.

Figure 10-15 Quadratic (Q8) isoparametric element

The shape functions of the quadratic element are based on the incomplete 9%
polynomial such that coordinates x and y are

X =d) + a8 + ayt + ayst + ass2 + agz e a-;.s'zt + asstz (ms,ﬂ)
Y =ay +a|oa+ant+aust+a.3sz +a|¢tz +alsszt+al°“z

- These functions have been chosen so that the number of ized degrees of 1
- dom (2 per nodetmes § odes equal 16) ave idential b he total number 94"

: mmmmmm dementasa“sercndiPitY”w
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gher-Order Sh
b : ape F
it 1sdpase%v On an incomplete gy PeFunctions A 511
bending. We are also rern; . iel
lation, diSplacementseLnlsgzd that beCaUSe);ve (;ieg;;d,:ies}lhs in such cases as beam
as x and y, respectively, in

C, but it

* ¥ pe functj
a_nd one for midside nodes, a:“;is;é:o 'orms are required one for corner nodes
(i=1,2,3,4), In Reference {3). For the corner modes
1
Ny ==
'= =91 = gy 1)
1
M= 490~y
i (10.5.28)
Ny —1(1 +8)(1+ ) (s+ 1 - 1)
| N
Ny = 71(1 =)+ (=s+t—1
or, in compact index notation, we express Egs. (10.5.28)as '
1
Ni = 2(1+s5;)(1 + 11;)( ﬁ (10.5.29)
where 7 is the number of the shape function and
si=-1,1,1,-1  =1,23,4)
gl (10.5.30)
(l = 112’ 334) K
L (1- 01 +s)(1—s)
A ,
Ne==-(1+s)(1+0)(1-1)
2 (10.5.31)
1
o i(l +1)(1+5)(1 =)
1 1 =)
Ny =5(1 - )1+
or, in index notation, :
Nyl rosbiihek T (10.5.32)

g 0 e | o] ' [ = 6, 8)
N-=%(1+Ssi)(r:ﬂ P ions . displ nt) can
i / 1 &
{ ‘ v edge (and Sp acem
We can observe from Egs. (10:5:28) and {1322 7 © | <tant). Furthermore, N; = 1
n bszerva] —— constant) or Wlt«h 1&%&% ;;a scording to our usual definition

-~
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512 A 10 Isoparametric Formulation

The displacement functions are given by

8

u Ny 0 N O N3
{u}z[o N, O Nop 0 N3 0 No O Ns 0 No 0"y ONO
u ) s
U]
Jl(g
X uzf (10,5.33)
\Usj

and the strain matrix 1S now N

(e} = (D] {4}
with 8= %) NN

We can develop the matrix [B] using Eq. (10"‘.2"1’7) with [D'] from Egq. (10.2.16) and
with [N] now the 2 x 16 matrix given in Eq. (10.5.33), where the N’s are defined inel;
plicit form by Eq. (10.5.28) and (10.5.31). 4 :
. To evaluate the matrix [BJfand thé matrix [k] for the eight-noded quadratic
1soparametric element, we n@w usé the nine-point Gauss rule (often described as
a 3 x 3 rule). Results using,2 X2 and’3 x 3 rules have shown significant differen-
ces, and the 3 x 3 rule ig recommended by Bathe and Wilson [7]. Table 102 indi
oints and the associated weights. The 3 x 3 rule is shown

in Figure 10-16.
By adding a ni
ment called a

deats =0, 7= 0in Figure 10-15, we can create an ck-
1S an internal node that is not connected to any other

des.
II;)}. ?;O ?’z the aps’ and ajg?? terms to x and y, respectively in
shape Yo an blé znd' . The. element is then called a Lagrange element as the
erived using Lagr ange interpolation formulas. For more o8

this su consult [§],

1=0.7745,..
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figure 10-17 Cubic isoparametric element

Cubic Rectangle (Q12)

The cubic (Q12) element in Figure 10-17 has four corner nod ddiuBnal nodes
taken to be at Ol}e—thlrd and two-thirds of the length along ez .%’ ::ush‘;;enfunc-
tions of the cubl_c element (as derived in Reference (3]) A% basStheft the incomplete
quartic polynomial such that

X = ay + @5 + ast + ass® + asst + astr + agst®

+ ags’ + ajt’ +aus3t+a,2st3 (10.5.34)
come‘odes (i=1,2,3,4),
N; = M+ 16)9(s* + 1) = 10) (10.5.35)

with a similar polynomial for y. For

he nodes on sides s = +1 (i = 7,8,11,12),

+ss)(1 +91)(1 = %) (10.5.36)
"For the nodes on sides t = +1 (i = 5,6,9,10),
Ni= %(l + ;) (1 + 9ss3) (} o (10.5.37)
-3 ti'I;vi ape fl%l,;lctions for the quadratic element given by Egs. (10.5.28)

S.37), we
and (10.5.31)or for the cubic element given by EQs. (10‘5‘325;.;;){2‘:? l&:)()[k\ fo)r iy
can aga:ir; use Eq. (10.2.17) to obtain [B] and then v (llgt;lt;nt requires a 3 x 3 rule
merical integration for the plane element. The cubic ¢

nclude that what is really
(nine points) to evaluate the matrix k] exactly. We thei;ct;e general equations devel-

bt ﬁmcnontsettih::a'?na:lbody force and can be applied not
oped for stiffness matrices, distribu B vl

: ) 1 , ; to nodal
s s e B T o 11
' Sinoeinthlsd are of the me f &ﬂﬁpmwformlatm For
coordinates x; and )i e e caid To bo AR

i - . .nlacement function ¥ =
i= N'x‘ud ﬂ;c q. (‘1‘0.2.5)‘ If instead the
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