Chapter 3

SECOND-ORDER
DIFFERENTIAL EQUATIONS
IN ONE DIMENSION: FINITE

ELEMENT MODELS

3.1 BACKGROUND

The traditional variational methods (e.g., the Ritz, Galerkin, and least-squares) described
in Chapter 2 cease to be effective because of a serious shortcoming, namely, the diffi-
culty in constructing the approximation functions. The approximation functions, apart from
satisfying continuity, linear independence, completeness, and essential boundary condi-
tions, are arbitrary; the selection becomes even more difficult when the given domain is
geometrically complex. Since the quality of the approximation is directly affected by the
choice of the approximation functions, itis discomforting to know that there exists no sys-
tematic procedure to construct them. Because of this shortcoming, despite the simplicity

in obtaining approximate solutions, the traditional variational methods of approximation
tationally when compared with traditional finite

were never regarded as competitive compu
difference schemes. The finite element method overcomes the shortcomings of the tradi-
tional variational methods by providing a systematic way of constructing the approximation

functions.
Ideally speaking,

features:

1. Tt should have a sound mathematical as well as
solutions and be applicable to practical problems).

2. Tt should not have limitations with regard to the geometry,
the domain, or the nature of the “loading.”

3. The formulative procedure should be independent of th
specific form of the boundary conditions.

4. Tt should be flexible enough to allow different degrees O

“mulating the entire problem.
5. It should involve a systematic procedure that can be

computers.

T ——— ..

an effective computational method should have the following
physical basis (i.e., yield convergent
the physical composition of
e shape of the domain and the
f approximation without refor-

automated for use on digital

Scanned by CamScanner



L EMENT METHOD

lNTRODUCTlON TO THE FINITE E
a given domain is representeg X

ents, so that it is possible to SyStematicy)
2 variational or weighted-residual appr, )’
nt. Thus, the finite element meth:(i
5. collocation, and other Weighteq.
functions are constructed. By
features of the finite elemepy

104 AN
s a technique in which

ement method i

domains, called finite elerln
imation functions needed 1n
f a problem OVeT each eleme
|| Ritz, Galerkin, least-squares,
hich the approximation
lowing three basic

The finite el
collection of simple
construct the approx
imation of the solution O

differs from the tradition: .
residual methods in the manner 11 wl
this difference 1 responsible for the fol

method:

1. Division of whole
approximation functions as W

2. Derivation of approximationﬁ
are often algebraic polynomia
approximation functions need not be p
element method).

3. Assembly of elements is based on continuity of the solution and balance of internal fluxes;
the assemblage of elements results in a numerical analog of the mathematical mode] of

the problem being analyzed.

domain into subdomains that enable a systematic derivation of g,
ation of complex domains.

ell as represent
ctions over each element. The approximation functiopg
using interpolation theory. However

ke in meshless form of the finjte

in
Is that are derived
olynomials (Li

These three features, which constitute three major steps of the finite element formulation
are closely related. The geometry of the elements used to represent the domain of a problem

shou{d be such that the approximation functions can be uniquely derived. The approximation
functions depend not only on the geometry but also on the number and location of points
calle.d nodf:s, in the element and the quantities to be interpolated (e.g., solution, or so]utior;
and its denvatiyes). ane the approximation functions have been derived, the I;rocedure to
ZZtilrllldaelgtebra.lcbfelauOns among the unknown coefficients (which give the values of the
- S;i)d 4 nt variable at the nodes) is exactly the same as that used in the Ritz and weighted-

ual methods. Hence, a study of Chapter 2, especially the weak-form development and

the ';Rl‘}'ltz me.thod, makes the present study easier.
e finite element method not only overcomes the shortcomings of the traditional

variati : £ \
n h?ltil:::l ’lrfllazﬂlx:? btut it is al]so endowed with the features of an effective computational
. c steps involved in the fini :
e e finite element analysis of a problem are given in
In the sections that follow, o jective i
,our objective is to introd

the basis of the fini 0 introduce many fundargental i
and theoreticl:f f(r)untle lele.m ent method. In doing so, we postpone some issui:dsezoli“ e ftor:ll
hasiostars of . fini plexity to later sections of this chapter and to Ch practic

. a finite element analysis are introduced vi ARLES 4—14' T.h -
equation. via a model second-order differential

32 B
¥ ASIC STEPS OF FINITE ELEMENT ANALYSIS
2.1 Model Boundary Value Problem
Consider the prob i
problem of finding the function u(x) that satisfies the differential equation

__‘L(adu
gt Skt = =0 for O<x <L a2l

' k
‘
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CHAPTER 3. SECOND-ORDER DIFFERENTIAL EQUATIONS IN ONE DIMENSION FINITE ELEMENT MODELS 105

Table 3.1.1 Steps involved in the finite element analysis of a typical problem.

1. Discretization (or representation) of the given domain into a collection of preselected finite elements. (This
step can be postponed until the finite element formulation of the equation is completed.)

(@) Construct the finite element mesh of preselected elements.

(0 Number the nodes and the clements.

(¢) Generate the geometric properties (e.g., coordinates and cross-sectional areas) needed for the problem.
Derivation of element equations for all typical elements in the mesh.

(@) Construct the varational formulation of the given differential equation over the typical element.

(&) Assume that a typical dependent variable u is of the form

n
= Z i i
i=1
and substitute it into Step 2a to obtain element equations in the form
(K {u}={F¢}

(¢) Select, if already available in the literature, or derive element interpolation functions ¥; and compute the
element matrices.

3. Assembly of element equations to obtain the equations of the whole problem.
(@) Identify the interelement continuity conditions among the primary variables (relationship between the local
degrees of freedom and the global degrees of freedom—connectivity of elements) by relating element nodes
to global nodes.
(b) Identify the “equilibrium™ conditions among the secondary variables (relationship between the local source
or force components and the globally specified source components).
(¢) Assemble element equations using Steps 3a and 3b.
4. Imposition of the boundary conditions of the problem.

(a) Identify the specified global primary degrees of freedom.

(b) Identify the specified global secondary degrees of freedom (if not already done in Step 3b).
5. Solution of the assembled equations.
6. Postprocessing of the results.

(a) Compute the gradient of the solution or other desired quantities from the primary degrees of freedom
computed in Step 5.

(b) Represent the results in tabular.and/or graphical form.

ro

S 2

% &

and the boundary conditions
=0 (322

W d
L\ 40 =, ( —E)
dx ) |-

where a = a(x), ¢ = c(x), f = f(x), and uo, and Q are the data (i.e., known quantities) of
the problem. Equation (3.2.1) arises in connection with the analytical description of many
physical processes. For example, conduction and convection heat transfer in a plane wall
or fin [see Fig. 3.2.1(a)], flow through channels and pipes, transverse deflection of cables,
axial deformation of bars [see Fig. 3.2.1(b)], and many other physical processes are de-
scribed by Eq. (3.2.1). A list of field problems described by Eq. (3.2.1) when ¢(x) =0 are
presented in Table 3.2.1 [see Reddy (2004)]. Thus, if we can develop a numerical procedure
by which Eq. (3.2.1) can be solved for all possible boundary conditions, the procedure
can be used to solve all field problems listed in Table 3.2.1, as well as many others. This
act provi s ns.iikh fhe 1 otivation to use (3.2.1) as the model second-order equation in

' jure for the formulation and solution of (3.2.1) by the

Scanned by CamScanner



{ EMENT METHOD
106 AN INTRODUCTION TO THE FINITE ELEMENT ME

Convection from latera]

[nternal heat generation, /(¥) surface, c(x) u(x)

intained at N
:\::\"Trl::;:c. Wy - Exposed to ambient
P I_____’ \ temperature, y_
[ - >
()
Subjected to axial
Body force, f(x) I(;d, P
Specified
displacement, 1 — e — | e—l——p- N
< L ~
(b)
/x)
—_— e — du
u(0) = uy S (G_J =0,
P B > dx =1

(c)

Figure 3.2.1 (@) Heat transferin a fin. (b) Axial deformation of a b

ar. (¢) Mathematical idealization
of the problem in (a) or (b).

finite element method is summarized in Ta
of solving the differential equation (3.2.1)
to a suitable set of specified boundary con

ble 3.1.1. The mathematical problem consists
in one-dimensional domain Q — (0, L) subject
ditions at the boundary points x =0 and x =L,

ordinates x, and x, (i.e., of length
in a domain is called the Jinite element
.2.2(b)).

i.e., finite elements, is two-
ystems, by design, are a composite of geometrically and/or
- Scanned by CamScanner




CHAPTER 3: SECOND-ORDER DIFFERENTIAL EQUATIONS IN ONE DIMENSION: FINITE ELEMENT MoDELs 107

Table 3.2.1 Some examples of engineering problems governed by the second-order equation (3.2.1)
(see the footnote for the meaning of some parameters®).

i l’ru.nary Problem data Scco‘ndary
Field variable variable
of study u a ¢ / 0
Heat Temperature Thermal Surface Heat Heat

transfer T -Ts conductance convection generation 0
kA APB if
Flow through Fluid head Permeability 0 Infiltraction Point source
porous medium ¢ w f (0]
Flow through Pressure Pipe resistance 0 Point source
pipes P 1/R 0 [0
Flow of Velocity Viscosity 0 Pressure gradient  Shear stress
viscous fluids Ok i —dP/dx Oxz
Elastic cables Displacement  Tension 0 Transverse force Point force
u i f P
Elastic bars Displacement  Axial stiffness 0 Axial force Point force
U EA f P
Torsion of Angle of Shear 0 07 Torque
bars twist stiffness r
o GJ
Electrostatics Electrical Dielectric 0 Charge Electric
potential constant density flux
() € p E

*k = thermal conductance; B = convective film conductance; p = perimeter; P = pressure or force; Too = ambient temperature
of the surrounding fluid medium; R = 1281k /(wd*) with p being the viscosity, h the length, and d the diameter of the pipe;
E = Young’s modulus; A = area of cross section; J = polar moment of inertia.

materially different parts, and the solution on these subdomains is represented by different
functions that are continuous at the interfaces of these subdomains. Therefore, it is appro-
priate to seek approximation of the solution over each subdomain. Second, approximation
of the solution over each element of the mesh is simpler than its approximation over the
entire domain. Approxir;mtﬁion,_gf_ the geometry of the domain in the present case is not a

S LY
gy ) -!.,A !‘f L >
4 |—_—x
4 (a)
. End points of an interval  Element  Qe=(x,, x,)

xX1= 0 X3 X3 X4 he

()
Figure 3.2.2 (a) Whole domain. (b) Finite element discretization (mesh).

‘
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CHAPTER 3

One-Dimensional Problems

3.1 INTRODUCTION

The total potential energy and the stress-strain

aTr; nt?\\"used in develgpmg the finite element method for a @ne-dimensional problem.
¢ Dasic procedure is the same for two- and three-dimensional problems discussed

later.m the book. For the one-di‘mensional problem,the Stress, strain, displacement, and
loading depend only on the variable x. That is, the veetors u, o, €, T, and f in Chapter 1
now reduce to

and strain-displacement relationships

U=ux) o=ox) €=u)
T=Px) f=f(x) @&
Furthermore, the stress-strain and strain—displacement relations are

c=Ee ¢= ge (3.2)

dx
For one-dimensional problems. the differential volume dV can be written as

dV = Adx 33)

nsists of three types: the body force /. the traction force T, and the point
orces are shown acting on a body in Fig. 3.1. A body force is a distributed

foroe. i veryelementalvolumeofthebodyandhastheunitsotfomeperunit
volume.

self-weight due to gravity is an example of a body force. A traction force is
a distributed load acting on the surface of the body. In Chapter 1, the traction force
is defined as force per unit area. For the one-dimensional problem considered here,
however, the traction force is defined as force per unit length, This is done by taking the
traction force to be the product of the force per unit area with the perimeter of the cross
~ section. Frictional resistance, viscous drag, and surface shear are examples of traction
forces in one-dimensional problems. Finally, P, is a force acting at a point i and «, is the

is considered in Section
lacement field in terms
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FIGURE 3.1 One-dimensional bar loaded by traction, body, and point loads.

of values at discrete points. Linear elements are introduced first. Stiffness and load con-

cepts are developed using potential energy and Galerkin approaches. Boundary condi-

tions are then considered. Temperature effects and quadratic elements are discussed
later in this chapter.

3.2 FINITE ELEMENT MODELING
The steps of element division and node numbering are discussed here.

Element Division

Consider the bar in Fig. 3.1. The first step is to model the bar as a stepped shaft, consis
ing of a discrete number of elements, each having a uniform cross section. Specificaly
let )

model the bar using four finite elements. A simple scheme for doing this is t0 4"
vide the bar into four regions, as shown in Fig. 3.2a. The average cross-sectional ar¢?
within each region is evaluated and then used to define an element with uniform ¢ro*
section. The resulting four-element, five-node finite element model is shown in Fig: 3.25.
In the finite element model, every element connects to two nodes. In Fig. 3.2b, the ele-
ment mm:‘abers are circled to distinguish them from node numbers. In addition t0 the
Cross section, traction and body forces are also (normally) treated as ¢

onstant Wi
- However, cross-sectional area, traction, and bod: -tomeescandiff“mmaf
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(a) (b)
FIGURE 3.2  Finite element modeling of a bar.

Numbering Scheme

We have shown how a rather complicated looking bar has been modeled using a discrete
number of elements, each element having a simple geometry. The similarity of the var-
ious elements is one reason why the finite element method is easily amenable to com-
puter implementation. For easy implementation, an orderly numbering scheme for the
model has to be adopted.

In a one-dimensional problem, every node is permitted to displace only in the +x
direction. Thus, each node has only one degree of freedom (dof). The five-node finite
element model in Fig. 3.2b has five dofs. The displacements along each dof are denoted
by 0,0, ...,Qs. In fact, the column vector Q = [Q,,0,, ..., Q5]  is called the global
displacement vector. The global load vector is denoted by F = [F,, F,, ..., F5]". The vec-
tors Q and F are shown in Fig. 3.3. The sign convention used is that a displacement or
load has a positive value if acting along the +x direction. At this stage, conditions at the
boundary are not imposed. For example, node 1 in Fig. 3.3 is fixed, which implies Q, = 0.
These conditions are discussed later.

Each element has two nodes; therefore, the element connectivity information can
be conveniently represented as shown in Fig. 3.4. Further, the element connectivity table
is also given. In the connectivity table, the headings 1 and 2 refer to local node numbers
of an element, and the corresponding node numbers on the body are called global num-
bers. Connectivity thus establishes the local-global correspondence. In this simple ex-
ample, the connectivity can be easily generated since local node 1 is the same as the
element number ¢, and local node 2 is e + 1. Other ways of numbering nodes or more
complex geometries suggest the need for a connectivity table. The connectivity is intro-
duced in the program using the array NOC.

e ———
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FIGURE 3.3 Q and F vectors.

O 66 6
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Ql Qz Q3 Q4 Qs
Global numbering

Elements Nodes
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Section 3.3 Coordinates and Shape Functions 49

Fed

(a) (b)
FIGURE 3.5 Typical element in x- and &-coordinates,

g -t (e =1x) =1 (3.4)

X2 — X

From Fig. 3.5b, we see that £ = —1 at node 1 and ¢ = 1 at node 2. The length of an
element is covered when ¢ changes from —1 to 1. We use this system of coordinates in
defining shape functions, which are used in interpolating the displacement field.

Now the unknown displacement field within an element will be interpolated by a
linear distribution (Fig. 3.6). This approximation becomes increasingly accurate as more

elements are considered in the model. To implement this linear interpolation, linear
shape functions will be introduced as

M(§) = —— (3.5)
1

=
vy

S L)
"y

Ny(§) = (3.6)

2
The shape functions N, and N, are shown in Figs. 3.7a and b, respectively. The graph of
the shape function N, in Fig. 3.7a is obtained from Eq. 3.5 by noting that N, = 1 at
&€= —1,N, = 0at{ = 1,and MV, is a straight line between the two points. Similarly, the
graph of N, in Fig. 3.7b is obtained from Eq. 3.6. Once the shape functions are defined,
the linear displacement field within the element can be written in terms of the nodal
displacements ¢, and g, as

u=Ng + Ng, (3.7a)
UUnknown Ul inear
i
A
)

e 92

1 U A
u

: 91

@ 2

nt field within an element.
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u = Niqi T Nogz
9
1 2 >3
(c)
g
FIGURE 3.7 (@) Shape function Ny (b) shape function Ny, and (c) lineari

M and Nz.

or, in matrix notation, as
u = Nq i

where
N=[N.,N,] and q= [q1, %]

ent displacement vecor. Itisrad
that #

¢ 8 > 4
In these equations, q is referred to as the elem
fied froglﬁq. 3.7a that u = q, at node 1, u = @ at node 2, an

(Fig. 3.7¢).
n from x to £ in EQ 34"“

It may be noted that the transformatio

._%Imsoleanszas |

X = lel + 1V2x2

Comparing Egs. 3.7a and 3.9, we see that both the displ
are interpolated within the element using the same s hape
referred to as the isoparametric formulation in the literature:
- Though linear shape functions have been used Pfe"‘o
Q“admtl@ shape functions are discussed in Section -

Scanned by CamScanner



48 Chapter3 One-Dimensional Problems

S (/S
J, QA

J O, F

Jv O\ F

Jv Q4 Fy

v

| 2-10 0 0n 0 O
X F=[FIDF3F3-F4,F5]'

FIGURE 3.3 Q and F vectors.

® @ 260 O

1= &3 N . > X
%9 & g 0. 0.
Global numbering
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1 @ 3 1 2
= — == =5 =
s — 5=
Xy —
&= -1 £=+1

(a) (b)

FIGURE 3.5 Typical element in x- and £-coordinates,

2
§=‘x2_xl(x—xl)‘1 (3.4)
From Fig. 3.5b, we see that ¢ = —1 at node 1 and ¢
element is covered when ¢ changes from —1 to 1. We
defining shape functions, which are used in interpolat

Now the unknown displacement field within an
linear distribution (Fig, 3.6). This approximation beco

elements are considered in the model. To impleme
shape functions will be introduced as

= 1 at node 2. The length of an
use this system of coordinates in
ing the displacement field.

element will be interpolated by a
mes increasingly accurate as more
nt this linear interpolation, linear

e
Ni(g) = "2 (35)

1+¢
> (3.6)
The shape functions N, and N, are shown in Figs. 3.7a and b, respectively. The graph of
the shape function N, in Fig. 3.7a is obtained from Eq. 3.5 by noting that N, = 1 at
€ = —1,N, = 0at ¢ = 1,and M, is a straight line between the two points. Similarly, the
graph of N, in Fig. 3.7b is obtained from Eq. 3.6. Once the shape functions are defined,

the linear displacement field within the element can be written in terms of the nodal
displacements g, and g, as

Ny () =

u=Mqg + Nq, (3.7a)

UUnknown

U] inear
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Chapter 3 One-Dimensional Problems

*'g

FIGURE 3.7  (a) Shape function N}, (b) shape function N;, and (c) linear interpolation using
Nl and Nz.

Or, in matrix notation, as

u = Nq (3.70)
where

N [leNz] and q = [41,‘12]T (38)

Inthese equations, q is referred to as the element displacement vector. It is readily ver-
fied from Eq. 3.7a that u = g, at node 1, u = ¢, at node 2, and that u varies linearly
(Fig. 3.7c).

It may be noted that the transformation from x to

¢ in Eq. 3.4 can be written il
terms of N, and N, as

X = lel + N2x2 (3.9)

Comparing Eqs. 3.7a and 3.9, we see that both the displacement u and the coordinate*

are interpolated within the element using the same shape functions N; and Nj. This®
referred to as the isoparametric formulation in the literature.

_ Though linear shape functions have been used previously, other choices aré pos
sible. Quadratic shape functi

: ictions are discussed in Section 3.9. In general, shape functio®
need to satisfy the following:

L. First derivatives must be finite within an element.
2. Displacements must be continuous across the element boundary.
Rugid body motion should not introduce any stress

il
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Section 3.3 Coordinates and Shape Functions 51
Example 3,1

Referring to Fig. E3.1, do the following;

(a) Evaluate & Ny, and N, at point p.
() If g, = 0.003 in. and

9 = =0.005 in., determine the value of the displacement q at
point P,
P 2
’ X
] |
) =20in. x = 24 in, X, =36 in.
FIGURE E3.1

Solution

(a) Using Eq.3.4, the ¢ coordinate of point P is given bQ
§P=723'(24—20)— )
='S05
Now Egs. 3.5 and 2.6 yield

N, =075 and N, =025
(b) Using Eq.3.7a, we get V4

75(0.003) + 0.25(~0.005)
4

du d¢

- -1;[.* '-J:i ;
= ———

3 € ! (3.10)
il &0 wdfegde 4 o 3 S0 A 39ge
= { Lo v ’ b, ”-h B TL
B0 0l 2oy 3.4, we Rave " L e
the a4 1B 4 e

"T!‘_[‘[ Amn “*I‘W' 'vll[’ ‘JT‘HH‘T
7 g

bt Lo phR R 1)
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2 Chapter 3 One-Dimensional Problems
5

Thus, Eq. 3.10 yields

€7 % o X" 9 + 4>) B{
The Eq. 3.13 can be written as
€ = Bq

where the (1 X 2) matrix B, called the element strain—displacemen; Matriy isgiqu‘
' 5
1 ) )

B = [—1 lJ‘
Xz r xl nu

Note: Use of linear shape functions results in a constant B matrix and, heg
constant strain within the element. The stress, from Hooke’s law, is .
The stress given by this equation is also constant within the element. For interpolag
purposes, however, the stress obtained from Eq.3.16 can be considered to be the vale
at the centroid of the element.

The expressions u = Ng, € = Bq, and o = EBq relate the displacement, st
and stress, respectively, in terms of nodal values. These expressions will now be subs

tuted into the potential-energy expression for the bar to obtain the element stiffnes
and load matrices.

3.4 THE POTENTIAL-ENERGY APPROACH
The general expression for the potential energy given in Chapter 1 is

H=—1—/aTeAdx— fquAdx — /uTde_ S uPp (341
29 ; i '_

The quantities o, €, u, f, and T in Eq. 3.17 are discussed at the beginning of tH*
chapter. In the last term, P represents a force acting at point 7, and u; is the x displace
ment a_t that point. The summation on ; gives the potential energy due to all pOiﬂtM
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Section 3.4 The Potential-Energy Approach 53

where

U, - ; /rrlf/l dx
is the element strain energy.
Element Stiffness Matrix
Consider the strain energy term
1
U, = E/UTeAdx (3.19)
Substituting for o = EBq and e = Bq into Eq. 3.19 yields
1
U, = 5 / q'B"EBqA dx (3.20a)
or
1 T
U, = Eq [(B'EBA dx|q (3.20b)

In the finite element model (Section 3.2), the cross-sectional area of element e, denot-

ed by A,, is constant. Also, B is a constant matrix. Further, the transformation from x
to £ in Eq. 3.4 yields

m=“;xw§ (321a)

or

¢
& , dx = - dé (321b)

where —1 < £ =1, and €, = |x, — x| is the length of the element.
The element gtrﬁn energy U, is now written as

y ‘! = l T ﬂ T / ! ] 3.22
where E, is Young’s modulus of element e. Noting that f_ll dé = 2 and substituting for
B from Eq. 3.15, we get _

= -.l- T 3 1 {-1} e 323
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This equation is of the form
1 7o e
- k'
i ol (325)

where the element stiffness matrix k is given by

(,_E“A‘.[ 1 —1}
L8 ¢, |1-1 1

We note here the similarity of the strain energy ?xpr?ssion in Eq. 3.26 with the
energy in a simple spring, which is given as U = ;kO". Also, observe that ke s Jj
proportional to the product A, E, and inversely proportional to the length ¢,

(3.26)

Straip
nearly

Force Terms

The element body force term fe u'fA dx appearing in the total potential energy is cop.
sidered first. Substituting u = N,q; + N>q,, we have

/quAdx = A.f / (Mg, + Nags) dx (3.27)

(

Recall that the body force f has units of force per unit volume. In the Eq.3.27, 4, anq
f are constant within the element and were consequently brought outside the integral,
This equation can be written as

Aef/Nld.x
/quAdx =q' ¢
g Aef/dex

The integrals of the shape functions described earlier can be readily evaluated by mak-
ing the substitution dx = (€,/2) d¢. Thus,

ee 11—§ €

Ndx =— | —24d¢ ==
/e : 2[1 2 a4 2
¢

€ f'1—¢
N, = — il 57 i
[2 2[1 Foathimag . (329)

Alternatively, /. N; dx is simply the area under the N, curve as shown in Fig. 3.8, which

Lig g W &, '
:gduf:e:tge 1= £/2.Similarly,  N,dx =3 +£,+1 = €,/2. The body force term in Eq.328

(3.28)
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Section 3.4 The Potential-Energy Approach 55

/ u'fAdx = q'~ : (le} (3.30a)

which is of the form

/u'fA dx = q'f (3.30b)

The right side of this equation is of the form Dis
body force vector, f°, is identified as

e Afa_f{l} -
- T, 1 (3.31)

The element body force vector above has a sim
volume of the element and f is the body force
the total body force acting on the element. The
body force is equally dlstnbuted to the two no

The element traction force term [ u
is now considered. We have

/ #'Tdx = / (Mg, + Nog,)Tdx (

Since the traction force T is constant within the element. we have

placement X Force. Thus, the element

ple physical explanation. Since AL, is the
per unit volume!we see that A, ¢, f gives
factor 5 in Eq.3.31 tells us that [hlS total
des of the element.

'T dx appearing injthe total potential energy

32)

(9%]

/Nldx
/Tde q"

(3.33)
T / N:v_ dx
We have already shown that f Nydx = [ N,dx = €,/2. Thus, Eq.3.33 is of the form
"l. - 4
'Y ) L Q /uTde - qTTC (3.34)
. - e
where the element traction-force vector is given by
n‘{l} (3.35)
2 1
We can provide a physical explanation for this equation as was given for the clement
body force vector.
At this stage, element matrices k°, f*, and T* have been « Q ]t_?fgrl’wfamm;t
for the elcmcnt con in 3.3, fm- q=[0.0: element
Vecnwty( v stal pote **inﬂq 3.18b can be written as
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(0]
Chapter 3 . et i o T 1ad
| Fare each (5 % [) vectors. K 1s Uhl‘“m‘]d a8 IIO.HO;S' Using the cle
. are ¢ : " each k are placed 1n the appropri
matrix, “",d R4 nation, the elements of each k are plé b pg Opriate logy,
connectivity mIm:K. atrix, and overlapping elements are then summed. The Fy

tions in the large!
is similarly assemd .
force matrices 18 discu

‘ 5 1) z of
bled. This process of assembling K and F from element stlffnc!lﬂ ang
)] (SN v

| in detail in Section 3.6.

3.5 THE GALERKIN APPROACH

Following the concepls introduced in Chapter 1, we introduce a virtual displacemeng fielg
ollo

b = b(x) o
and associated virtual strain
d¢
60) - dx (3.38)

where ¢ is an arbitrary or virtual displacement consistent w%th thq boundary conditigng
Galerkin's variational form, given in Eq. 1.43, for the one-dimensional problem consg.

ered here, is

/ o'e(¢p)Adx - f G fA dx — / ¢'Tdx — > ¢P, =0 (3.39)
i L L i

This equation should hold for every ¢ consistent with the boundary conditions. The first
term represents the internal virtual work, while the load terms represent the external
virtual work.

On the discretized region, Eq.3.39a becomes

2 f €' Ee(¢p)Adx — E f ¢'fAdx - 2 f ¢ Tdx = 3 ¢P =0 (3.39)

Not.e th{lt € is the strain due to the actual loads in the problem, while €(¢) is a virtual
strain. Similar to the interpolation steps in Eqs. 3.7b, 3.14, and 3.16, we express

¢ = Ny

where ¢ = [y, ¢, ]" represents the arbitr nodal di
global virtual displacements at the nodestt:rye isplacements of element e. Also, the

represented by

‘I’ e [¢]1¢2$"'sz]T (3.41)
Element Stiffness
Consider the first term, re S

3 y Tépresentin 3 . el
Eq.3.40 into Eq.3.39b, and noting thgatu:t:m;il,wau::twork’ ERA 38 Supatitity
T
R P S S SN ——
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Section 3.5 The Galerkin Approach 57

In the finite element mod

: el (Section 3.2), the cross-sectional area of element ¢, denot-
ed by A,, is constant, Als

0, B is a constant matrix. Further, dx = (€,/2) dé¢. Thus,

‘(, .
_/eTEe(d,)Adx = q'|:I£,A, 2’3'3/ dg}p (3.43a)
e |
= q'k‘yP (3.43b)
= ¢'k'q
where k° is the (symmetric) element stiffness matrix given by
k= E,A,(B"B (3.44)
Substituting B from Eq. 3.15, we have
EA, [ 1 -1
ke = A4
- [_1 1] (3.45)

Force Terms

Consider the second term in Eq.3.39a, representing the virtual work done by the body

force in an element. Using ¢ = Ny and dx = ¢./2 d,, and noting that the body force in
the element is assumed constant, we have

1
/e ¢"fA dx = [ 1 .pTNTfA,%dg (3.46a)

= Y (3.46b)
where

( 1 3
/ N, de
aef)
1

N, d¢

\ J-1 y
is called the element body force vector. Substituting for N, = (1—¢)/2 and
N, = (1 + £)/2, we obtain f_ll N, d¢ = 1. Alternatively, f_ll N; d£ is the area under the
N, curve =%X 2X1=1and f__lldef = 1. Thus,

= AT”{i} (3.47b)

The element traction term then reduces to

> (3.47a)

[ #7ax = yrre (348)
where the element traction-force vector is given by
T [1
g BT RE 349
= Te{1) (3.49)
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58 Chapter 3 One-Dimensional problems
ement matrices k‘. f*. and T* have been obtained. After 4

ectivity (in Fig. 3.3. for example, & = [, ¥,]" for b
etc.), the vanational form

At this stage. the el “
m
°"L

r the element conn

fo 4
T for element =

ul =[‘P:‘y::
Se'T - 2V¥P=0

Sekq- 2 ¥

can be written as
v (KQ - F) =0
‘ (35

which should hold for every ¥ consistent with the boundary conditions. Methods oy
dling boundary conditions are discussed shortly. The global stiffness matrix K is

bledvfrom ¢lement matrices k° using clement connectivity information. Likewise_ p;
assembled trom element matrices f* and T¢. This assembly is discussed in detail inu:

pext section.

ASSEMBLY OF THE GLOBAL 5 TIFFNESS MATRIX AND LOAD VECTOR

We noted earlier that the total potential energy written 1

N=3igkq- Xar-TaT - 2F0

¢ < N e
- io'Ke - Q'F

v into account. This step involves asse
- matrices. The assembly of the structur

§>- atrices k° will first be shown here.

3.6
n the form

can be written in the fo

mbling K and F from
al stiffness matrixK

) th = finite element model in Fig. 3.2b, let us consider the strain ener
3. We have
U =3q'Kq (3.52a)
AL rEsAs[ 1 “l]q 3.52b)
=29 ¢ |2 1 (

u3= %[leQ?vQ’-Q‘:Qj] ‘0 ‘p bl o 0
¢ ol e et
0

i - [ .
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Section 3.6 Assembly of the Global Stiffness Matrix and Load Vector 59

From the previous equations, we see that elements of the matrix k’ occupy the third and
fourth rows and columns of the K matrix. Consequently, when adding element-strain
energies, the elements of k° are placed in the appropriate locations of the global K ma-

trix, baseq on the element connectivity; overlapping elements are simply added. We can
denote this assembly symbolically as

K S K (3.54a)

Similarly, the global load vector F is assembled from element-force vectors and
point loads as

Fee> (24T + P (3.54b)

The Galerkin approach also gives us the same assembly procedure. An example is now
given to illustrate this assembly procedure in detail. In actual computation, K is stored

in banded or skyline form to take advantage of symmetry and sparsity. This aspect is
discussed in Section 3.7 and in greater detail in Chapter 4.

Example 3.2

Consider the bar as shown in Fig. E3.2. For each element i, A; and ¢; are the cross-sectional
area and length, respectively. Each element i is subjected to a traction force 7; per unit
length and a body force f per unit volume. The units of T;, f, A;, and so on are assumed to
be consistent. The Young’s modulus of the material is E. A concentrated load P, is applied
at node 2. The structural stiffness matrix and nodal load vector will now be assembled.

i’
Ay Ly
‘ 4‘:?
1 | Ay L
~ T, I' 4y 22
\/ \ 13
\ gL
T3{ AS’LS
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lement stiffness matrix for each element / 1s obtained from
The ele Eq.326 4
‘ EA [ 1 -1]
o o ded 1]

The element connectivity table is the following:

Element | 2
1 1 2
2 2 3
3 3 4
4 4 S

The element stiffness matrices can be “expanded” using the connectivity table and they
summed (or assembled) to obtain the structural stiffness matrix as follows:*

—

[ 1 -1 0 0 0] [0 0 00 0
-1 100 0 0 1 -1 00
EA
x=—~100000+5;3-0—1100
'[<0 50 0 0 0 o 0o 00 0
kU, 0 0 0] (0 0 0 0 0
(00 0 o0 0] [0 00 0 o]
+_Eéooooo Mooooo
00 -1 10 ‘looo 1 -1
00 0 o0 0 000 -1 1]
which gives
rﬁ r L
o e[ fl 0 0 0
—-Al(Aliz. AZ
6. -\ & & 0 0
K=E| 0o 4 (ﬁgﬁ _ A,
& & b, A 0
0 0 o4 (ﬁﬁ_ﬁ
¢3 ea e4 {‘
\ 0 0 A A
F L eaJ

_*This “expansion” of element !
; ‘ t stiffness 3

oses and is never i e mﬂﬂominﬂnmphlz' merely for illustratio®
m‘m&u ¥ usin lm“ mh“;'@“ﬂ.ms&m‘“m i,“i”md;“ Inlstead Kis

PR S p——— -5
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Section 3.7 properties of K 61

The global load vector is assembled as

Al f €T,
A4 &% 0
2 2
A T
( \ [f e 9 1) 5 (AI(II * (,T]) P,
2 2 A 2
At LT, T
F = (¥‘Lf + _Il) 4 (A]().{ 4 E‘,[.l r + 4 0 7
2 2 2 2
A€ 2 A
2 2 2 2
AlS €T,
4+ Sl 0
2z 2 J | y

3.7 PROPERTIES OF K

Several important comments will now be made regarding the global stiffness matrix for
the linear one-dimensional problem discussed earlier:

L. The dimension of the global stiffness Kis (N X N), where N is the number of
nodes. This follows from the fact that each node has only one degree of freedom.

2. Kis symmetric.

3. Kis a banded matrix. That is, all elements outside of the band are zero. This can
be seen in Example 3.2, just considered. In this example, K can be compactly

represented in banded form as
a " J [+ A4, _ﬂﬁ
4 4
?& ~“ ﬁ + ﬁ _iz_
- \ & & 6
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> o ——°
NBW =4

' 4 5 3 2
(a)
——o—————o—¢—* NBW=2
3 4 5

(b)
FIGURE 3.9 Node numbering and its effect on the half-bandwidth

form from the element matrices involves some bookkeeping. This is discussed ;
at the end of Chapter 4. The reader should verify the following general formulz;nfdﬂai
or fh

half-bandwidth:
\

Difference between dof numbers
NBW = max ; + 1
connecting an element

r that is numbered as shown g

(355

For example, consider a four-element model of a ba

Fig. 3.9a. Using Eq. 3.55, we have
NBW=max(4—1,5—4,5—3.3—2) +1=4

3.9a is bad since K is almost “filled up” and consequenth

The numbering scheme in Fig.
tion. Figure 3.9b shows the optimun

requires more computer storage and computa
numbering for minimum NBW.

Now the potential energy or Galerkin’s approach has to be applied, noting th

'boundary conditions of the problem, to yield the finite element (equilibrium) equa
tions. Solution of these equations yields the global displacement vector Q. The stresse
and reaction forces can then be recovered. These steps will now be discussed in the

next section.
THE FINITE ELEMENT EQUATIONS; TREATMENT OF BOUNDARY

CONDITIONS
Finite element equations are now developed after a consistent treatment of the bound

ary conditions.

3.8

Types of Boundary Conditions

After u_sing a discretization scheme to model the continuum,
expression for the total potential energy in the body as

we have obtained &

=;Q'KQ - Q'F -

where K is the structural stiffness matrix, F is the global Joad vector, and Q 1 the glfiiﬁ'

' . A dp TOUS1Y, Is nad i:u S melement's' ‘_
: o : I‘l._ dethbﬂ
—asses, and Sl'ﬂpaﬁ
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Section 3.8 The Finite Element Equations; Treatment of Boundary Conditions 63

The minimum Potential-energy theorem (Chapter 1) is now invoked. This theorem

1S stated as follows: Of all possible displacements that satisfy the boundary conditions of
a structural system, those corres

. ponding to equilibrium configurations make the total po-
tential energy assume a minimi

Bo OB tainat By b ateiie tum value. Consequently, the equations of equilibrium can
e obtained by minimizing, with respect to Q, the potential energy Il = ' Q'KQ - Q'F
subject to boundary conditions. Boundary conditions are usually of the type

Qp =a,,Q,, = ay:..,Q, = a, (3.56)

That 1s, the displ.ucemcnts along dofs p,, p,,..., p, are specified to be equal to a,,
@ .- @, respectively. In other words, there are r number of supports in the structure,
with each support node given a specified displacement. For example, consider the bar
in Fig. 3.2b. There is only one beundary condition in this problem, @ = 0.

Itis noted here that the treatment of boundary conditions in this section is applicable
to two- and three-dimensional problems as weli. For this rcasonythe term dof is used
here instead of node, since a two-dimensional stress problem will have two degrees of
freedom per node. The steps described in this section will be used.in all subsequent chap-

ters. Furlhermqr'e, a Galerkin-based argument leads to the same steps for handling
boundary conditions as the energy approach used subsequently.
There are multipoint constraints of the type

B\Qp, + B0, = By (3.57)
where B, B, and B, are known constants. These types of boundary conditions are used
in modeling inclined roller supports; rigid connections, or shrink fits.

It should be emphasized that improper specification of boundary conditions can
lead to erroneous results. Boundary conditions eliminate the possibility of the structure
moving as a rigid body. Further, boundary conditions should accurately model the phys-
ical system. Two approaches will now be discussed for handling specified displacement
boundary conditions of the type given in Eq. 3.56: the elimination approach and the

penalty approach. For multipoint constraints in Eq. 3.57, only the penalty approach will
be given, because it is simpler to implement.

Elimination Approach

To illustrate the basic idea, consider the single boundary condition Q, = a,. The equi-
librium equations are obtained by minimizing [T with respect to Q, subject to the boundary
condition @; = a,. For an N — dof structure, we have

Q= [QI’QZ--'-’QN]T
F E [FI,FZV-WFN]T

The global stiffness matrix is of the form
P K Wi ‘ KN

K= K.Zl K T KN (3.58)
T
Kyi Ky Kyn
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¥ . . - 1 T :
at K is a symmetric matrix. The potential energy IT=;Q'KQ - Q'p caly
anded form as
n=3QKnu@ * QK0+t QK nOn
+ @ KnQi * 0,K,0, + 1 + QKonQn
------------------------------------------------------- ~ (3.59

+ OvKni@1 OnKn2Qy + 0t OnvKnnv@n) i
_ (Q.F, + Qo + -+ OnEN)

= g, into this expression for I1, we obtgjy

written in €xXp

If we now substitute the boundary condition Q

I = %(alKllal + a K0t t a, K\ vOn
+ O, K4, t 0,K;,0; + T O, Ky nOn

.....................................
...................................

+ OnKyiar + OvKn:0a T ¥ N OnvKnvOn)
—(aF, + OB+ + OnFy)

has been eliminated in the potential-energy expression.
ake on a minimum value implies that

(30)

Note that the displacement O,
Consequently, the requirement that ITt

dIl
g— = = s 3.61
40, 0 b8y valN (3.61)
We thus obtain, from Egs. 3,60 and 3.61,

KyyQy + Kp3Qs + 0 t K,nOn = F — K34

K33Q; + K33Qs + - + KanQn = 5 — Kza (3.62)

em i mimg R SssssSESEmeReeeme..

m————

\ Ky:Q; + Ky3Qs + -+ + KyvQn = Fy — Kyia

These finite element equations can be expressed in matrix form as

K, Ky 0 Kow (Qz‘ F, — K5 a
Ky Ky o Kow |, Qs = F = K34, (3.63)

| Kny Kys o+ Kwnv 1 Qn) Fy — Knia

We now observe thatthe (N — 1 X N — 1)sti ‘s I3 L 4 delet”
i o ot o 15 sow nd column i T 2 a3 o th o™
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Section 3.8 The Finite Element Equations; Treatment of Boundary Conditions 65

where K is a reduced stiffness matrix obt
corresponding to the s
displacement v
nonsingular, pr

ained by eliminating the row and column
pecified or “support” dof. Equation 3.64 can be solved for the
ector Q using Gaussian elimination. Note that the reduced K matrix is
ovided the boundary conditions have been specified properly; the orig-
mal K matrix, on the other hand. is a singular matrix. Once Q has been determined, the
element stress can be evaluated using Eq. 3.16: ¢ = EBq, where q for each element is
extracted from Q using element connectivity information.

Assume that displacements and stresses have been determined. It is NOw necessary
to calculate the reaction force R, at the support. This reaction force can be obtained
from the finite element equation (or equilibrium equation) for node 1:

KinQ + K50, + - + K 8Oy = F, + R, (3.65)

Here, Q,, O,,-.., Qy are known. F,, which equals the load applied at the support

(if any). is also known. Consequently, the reaction force at the node that maintains
equilibrium, is

Ry = K10, + K50, + -+ + KixOv — F (3.66)

Note that the elements K|, K,,,..., K, 5, which form the first row of K, need to be

stored separately. This is because K in Eq. 3.64 is obtained by deleting this row and col-
umn from the original K.

The modifications to K and F discussed earlier are also derivable using Galerkin’s
variational formulation. We have Eq. 3.51 in which

YI(KQ-F)=0 (3.67)

for every ¥ consistent with the boundary conditions of the problem. Specifically, con-
sider the constraint

Then, we TBT

Choosing virtual displacements ¥ = [0,1,0,...,0], ¥ = [0,0,1:0,...,.0]“,...,
¥ = [0,0,...,0,1]", and substituting each of these into Eq.3.67, we obtain precisely the
equilibrium equations given in Egs. 3.63. . - I

'Ih -5 i e ,’nuw ‘l a&‘- | ] ﬁl Ql =.l§.m ]
JUTC ' ST _u,‘,-.,l supscgucecnuy Mmﬁ%wmtomand

O =a (3.68)

¥, =0 (3.69)

A

e iy g
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66 Chapter3 One-Dimensional Problems

summary: Elimination Approach \

Consider the boundary conditions

Q= 31,05, = 3.1, Qp = 3,

Step 1. Store the p,th, p,th,..., and p,th. rows of the global stiffness matr |
and force vector F. These rows will be used subsequently, K

Step 2. Lelete the p,th row and column, the p,th row and column, .. adedl
p:th row and column from the K matrix. The resulting stiffness

K is of dimension (N — r, N — r). Similarly, the corresponding load ve.
tor F is of dimension (N — r, 1). Modify each load component as

F,‘= F,—' (K,;p1a, 1 K,"pzaz +R: - + K,-,pra,) B'm
for each dof i that is not a support. Solve
KQ=F

for the displacement vector Q.

Step 3. For each element, extract the element displacement vector q from
the Q vector, using element connectivity, and determine element

stresses.
Step 4. Using the information stored in step 1, evaluate the reaction forces at
each support dof from
Rp, -3 Kp,1Q‘I + Kp,ZQZ A KPJVQN = FP1
R, = KojiQi + Kp2Q, + -+ + KonQn — F, 3B.7)
h RP,-=KPr1OI +Kp,202+”'+KpJVQN_FPr
Example 3.3

Consider the thin (steel) plate in Fig. E3.3a. The plate has a uniform thickness ¢ = 1%
Young's modulus £ = 30 X 10° psi, and weight density p = 0.2836 Ib)/in.". In addition 015
self-weight, the plate is subjected to a point load P = 100 Ib at its midpoint.

(a) Model the plate with two finite elements,

: (b) Write down expressions for the element stiffness matrices and element bod

N

bt -} G pallle

ns okl _c'! 7 1] \,'Wsmssmﬁixxandg!oballoadvectorﬂ

_ ' -_ﬂ'jhj'
X . .
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Section 3.8 The Finite Element Equations; Treatment of Boundary Conditions 67

f——s in———| |+ 525 in.—]

. I 111114 477777797 77777777

p— L
[ T 1 ij’o.
I 12in, 12in. - ©)
! l 1}3
24 in. v ] T
2|le
P l E
i 124, ’ @

" 3 qu
X X
3 in.- —3.75 in.—
(a)

FIGURE E3.3

Solution

(a) Using two elements, each of 12 in. in length, we obtain the finite element model in
Fig. E3.3b. Nodes and elements are numbered as shown. Note that the area at the
midpoint of the plate in Fig. E3.3a is 4.5in.2. Consequently, the average area of
element 1is A; = (6 + 4.5)/2 = 5.25in2, and the average area of element 2 is
A, = (45 + 3)/2 = 3.75in? The boundary condition for this model is O, = 0.

(b) From Eq. 3.26, we can write down expressions for the element stiffness matrices of
the two elements as

1 2 | Global dof

L _30%x10°x525[ 1 -1]1
g 12 -1 12
and A ©
Y W
N e N3
k2_30,><10“><3.75 1 -1|2
n. 12 -1 1|3
Using Eq. 3.31, the element body force vectors are
Globzl dof
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lobal stiffness matrix K is assembled from k' and k% as

1 2 3

[ 525 -525 0 1
_30x10°) 595 900 -3.75|2
0 -375 3753

(c) The g

12

The externally applied global load vector F is assembled from f' 12, and the mh&

P = 100 Ib; as

8.9334

F = { 15.3144 + 100
6.3810
(d) In the elimjnation approach, the stiffness matrix K'is obtained by deleting rows s

columns corresponding to fixed dofs. In this problem, dof 1 is fixed. Thus, K is ¢
tained by deleting the first row and column of the original K. Also, F is obtained b
deleting the first component of the original F. The resulting equations are

2 3
30 X 106[ 9.00 —3.75] {Qz} _ { 115.3144}
12 |.-375 _375|1@s 6.3810
Solution of these equations yields
Q, = 0.9272 X 107 in.
0, = 0.9953 X 10°in

Thus,Q = [0,0.9272 X 107%,0.9953 X 10~°]"in
(e) Using Egs. 3.15 and 3.16, we obtain the stress in each element:

0
=30X10° X 5[—-1 1
[ ]{0.9272 96 10’5}
. .
p = 23.18 psi
and "

0.9272 X 10-5}

o, =30 X 10° X 5[-1 1
il 1 0.9953 x 10~

= 1.70 psi
requires

(f) The reaction force R, at node 1
the ﬁm row of K ..,. art (c). obtamd fmmEq 371 mscalm M’”‘
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Hear TRANSFER AND
Mass TRANSPORT A

cHAPTER OBJECTIVES

o To derive the one-dimensional fini
conduction and convection.

e To introduce the steps for solvin
method.

e To illustrate by examples how to solve one-dimensional heat transfer problems.

e To develop the two-dimensional heat transfer finite element formulation and
illustrate an example of a two-dimensional solution.

To describe how to deal with point or line sources of heat generation.

To demonstrate when three-dimensional finite element models must be used.

To introduce the one-dimensional heat transfer with mass transport of the fluid.
To derive the finite element formulation of heat transfer with mass transport by
using Galerkin's method.

To present a flowchart of two- and three-dimensional heat transfer process.

® To show examples of two- and three-dimensional problems that have been solved

using a computer program.

g a heat transfer problem by the finite element

Introduction

In this chapter, we present the first use in this text of the finite element method for

i 2 blem,
%olution of nonstructural problems. We first consider the heat-transfer problem

. & f
Although many similar problems, such as seepage through poroﬁ?rfnmgf :(:]l::l(t)lri)gs
shafts, and magnetostatics [3], can also be treated by the sam

(but with different physical characteristics) as that for heat transfer.
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A

13. Heat Transfer and Mass Transport ‘

Figure 13-1 Finite element results of cylinder head showing temperatyre
distribution (brick elements were used in the model) (Courtesy of Algor, Inc)
(See the full-color insert for a color version of this figure.)

Familiarity with the heat-transfer problem makes possible determinatio
temperature distribution within a body. We can then determine the amount of,
moving into or out of the body and the thermal stresses. Figure 13- isan ilhustryy
of a three-dimensional model of a cylinder head with the temperature distriby,
shown throughout the head. The cylinder head is made of stainless steel AISIy)
and is part of a diesel engine that would provide reduced heat rejection and inore
power density. The resulting temperature distribution reveals the high temperate
815°C'in red color at the interface between the two exhaust ports. These temperie
were then fed into the linear stress analyzer to obtain the thermal stresses g
from 585 MPa to 1380 MPa. The linear stress analysis confirmed the behavior
the engineers saw in the initial prototype tests. The highest thermal stresses coini
with the part of the cylinder head that had been leaking in the preliminary protof®

We begin with a derivation of the basic differential equation for heat condu®*
in one dimension and then extend this derivation to the two-dimensional case. W
then review the units used for the physical quantities involved in heat fral'ﬁf“&”.

In preceding chapters dealing with stress analysis, we used the principle¢
mum potential energy to derive the element equations, where an ass i
o o o P i
fine an assumed temperat f P porlls o t. Instead of m,mmﬂ“
potential energy f; Pe s uncFlc?n )mthm. ea.ch elemep ‘ obtain WM
skt EY functional, we minimize a similar functional t'0 ¢ M

ons. Matrices analogous to the stiffness and force matrices ©
problem resylt, " m“hﬁol‘

» tWo-, and three-dimensional finite element M

We will consider one.
heat-trangfer Problem and pro amples of the &

of the
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13 Deriy
atlo
N of the Basic Different|al Equat)
ation

of the temperature distribution a
dimensional body and show some y
Next, we will consider the contribyt;
dimensmnal.nmss-tmnspo.rt Phenomenop jg ilm; of ﬂ}lid Mass
ential equation. Because it is not readily aplr)l; uded in the basj

ible for this problem, we wi rent that
possni'l] equation to obtai: tv;:l" apply Ulerkin's residual\;n hod di
ferer c, g the finite element cetiot Yet od directly to the dif-
mass tl'ﬁdl?sp l tnesi matrlx 1S asymmetric.) We will C(;n( s n,Ote WISt fhe
10 the finite element solution for a heat exchanger design/ pare an analytical solution
oxcellent agreement. gn/analysis problem to show the
Finally, we will present some
: ’ Computer
gimensional heat transfer. puter program results for both two- and three-

A 575

a two-
8 as well,

transport, The one-
sic heat-transfer differ-
ariational formulation is

13.1 Derivation of the Basic Differential A
Equation

One-Dimensional Heat Conduction (without Convection)

We now consider the derivation of the basic differential equation for the one-
dimensional problem of heat conduction without convection. The purpose of this
derivation is to present a physical insight into the heat-transfer phenomena, which
must be understood so that the finite element formulation of the problem can be
fully understood. (For additional information on heat transfer, consult texts such
as References [1] and [2].) We begin with the control volume shown in Figure 13-2.
By conservation of energy, we have

Ein 4 Egencrated = AU + Eout (13.1.1)

or gxA dt+QAdxdt=AU+qx+dxAdt 2 (13.1:2)

where
E;, is the energy entering the control volume, in units of joules (J) or
kW - h.

AU is the change in stored encrgy in units of kW - h (kWh).

gx 1s the heat conducted (heat flux) into the control volume at surface

edge x, in units of KW/m?.

Insulated boundary

|
: olume for
i A Ry e Contfotl :onduction

—p '. —— Gerdr one.dimensional hea

q, | Q
/)_ 5
y & Insulated boundary
T S

dx

4-4
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13 Heat Transfer and Mass Transport
' f the control volume ¢
+dx 18 the heat conductcd out o e - ol

q
x +dx.
¢ is time, in h or's:
Q is the internal heat source (hgut gcncmlt.:d per unit time per unit
in kW/m” (a heat sink, heat drawn out of the voldh i‘:ol“me

is positivc),

negutive).

cross-sectional ared perpendicul'dr to heat flow ¢, in m?2

A is the
By Fourier’s law of heat conduction,
dT
X —Kx -
¢ dx (
3,
where i,
in the x direction, in kW/(m«°C),

K. is the thermal conductivity

T'is the temperature, in °C:

dT /dx is the temperature gradient, in °C/m.
states that the heat flux in the x direction is proportiong|
o

ature in the x direction. The minus sign in Eq. (13.1.3);
heat flow is positive in the direction opposite the dlrecuoznm

uation (13.1.3) is analogous to the one-dimensional stress-sir;
lysis problem—that is, to ox = E(du/dx). Similarly,

dT
Sl Oxey ——
@-+dx = o | (1314

Equation (13.1.3)
gradient of temper
that, by convention,
perature increase. Eq
law for the stress ana

where the gradient in Eq. (13.1.4) is evaluated at x + dx. By Taylor series expansos
for any general function £ (x), we have e

| _ df d>f dx?
f;c+dx = fx +dxdx+—52__2_+

Therefore, using a two-term Taylor series, Eq. (13.1.4) becomes

dar d dT
qx =—|Ky—+— PR ‘13.15)
+dx [ ko (Kxx dx) dx] (

The change in stored energy can be expreésed by

AU = specific heat x mass x change in temperature f

= c(pAdx)dT . ﬂ?t)n |

where c is the specific heat in kW - h/(kg - °C), and p is the mass anSit.y A Kﬁim |
(13.1.2), aiiding B¢ s

substituting Egs. (13.1.3), (13 ‘ uction

| n" l. . : ,\ - -1.5), and (13|1l6) into Eq.

by A dxdt, and simplifying, we have the one-dimensional heat conductio™
oT -. rﬂ% 1)
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*

Qe +q.t

o

X ‘]T =0

(insulated) R T'=Ty

[p— ——

—_———— S

A RN

Figuré 13-3 Examples of boundary conditions in one-dimensional heat cond
eat conduction

For steady state, any differentiation with res ime i
3 (13.1‘7) — pect to time is equal to zero, so

d dT
T Sl H O =0 (13.1.8)
For constant thermal conductivity and steady state, Eq. (13.1.7) becomes
da’T
Kxxzx?'FQ:O | (13.1.9)
The boundary conditions are of the form
T="Cr on S (13110)

where Tp represents a known boundary temperature and S; is a surface where the

temperature is known, and
dT

—;-—:constant on S> (13.1.11)

q : = —AfDxx
bed heat flux ¢ or temperature gradient is
known. On an insulated boundary, gx = 0. These different boundary conditions are

shown in Figure 13-3, where by sign convention, positive gy occurs when heat is flow-
ing into the body, and negative ¢; when heat is flowing out of the body.

where S, is a surface where the preseri

onvection)

in Figure 13—4. In a manner
n show that for

Two-Dimensional Heat Conduction (Without C

Consider the two-dim
similar to the one-dimensional

material properties coinciding wi

ensional heat conduction problem
case, for steady-state conditions, we ca

th the global x and y directions,

0 oT 0 5T) o ‘
o &L, % (k,—)+0= 0 (13.1.12)
ox (K"" 5x) +3y( Y oy 4

wo—dimensional

1 q]+dy
" Figure 13-4 Control volume for
0 b= da heat conduction
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Figure 13-5 Unit vector normal to syrf
ace S
2

T=1p on S

) oT oT By

an =0 = K gr Gt Kngy O 7PN 8,
“3.I_u

cosines of theunit vector n normg] t

. : ; 7 NOrmal to

is by sign convention, positive ifheati:}mm.ﬁqi
&

where C, and C, aré the direction
shown in Figure 13-5. Again, 4,
the edge of the body.

A 13.2 Heat Transfer with Convection ﬁ
tact-with a fluid, there will be a heat transfer taip
face when a temperature difference oceurs. o
on either through external pumping action (forge]
ncy forces created within the fluid by the temm;;

free convection).

rivation of the basic differential equation f;m&
convection. Again we assume the temperatur
tion than in the y and z directions. Figure [34

erivation. Again, by Eq. (13.1.1) for consere:

For a conducting solid in.con
between the fluid and solid su
The fluid will be in moti
vection) or through the buoya
differences within it (natural or
We will'now:consider the de

onal heat conduction with
ter in the x direc
Jume used in the d

dimensi
change is much grea
shows the eontrol vo
tion of energy, we have

geAdt+ QA dx dr = c(pAdx)dT + GrrdxA dt+ qpPdxdt (1321
In Eq. (13.2.1), all terms have the same meaning as in Section 13.1, except the be
flow by convective heat transfer is given by Newton’s law of cooling
: gn = h(T — To) et
n h , T‘.
i
S E 0 fontid Figure 13-6 Control volume.f’Or one-di
I 4x+dx  heat conduction with convection

o= W
i

s
T dx i
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a3 Typical Units; Thermal Conductivities K;and 4
A eat

-Transfer Coefﬁcients, h

A 579
, :""—__’_31
h ~——™ 1 —
T [:: 3 -_: (Slrcumlincs)

7

Insulated boy ndary

Figure 13-7  Model illustrating Convective heat

tra
indicate heat transfer by convection) nsfer (arrows on surface S,

where

h is the heat-transfer or convection coefficient, in kW
Tis the temperature of the solid surface at the solid/fluid interface
T, is the temperature of the fluid (

here the free-stream fluid temperature).
Pin Eq. (13.2.1) denotes the perimeter around the constant cross-sectional
area A.

(m2 _ OC).

Again, using Egs. (13.1.3) through (13.1.6
Adxdt, and simplifying, we obtaip th
conduction with convection ag

.6) anq (13.2.2) in Eq. (13.2.1), dividing by
e differential equation for one-dimensional heat

0 oT OT hP
a_)E(KWE) +Q:,OC—(3?+7(T— ) (13.2.3)

with possible boundary conditions on (1) temperature, given by Eq. (13.1.10), and/or
(2) temperature gradient, given by Eq. (13.1.11), and/or (3) loss of heat by convection
from the ends of the one-dimensional body, as shown in Figure 13-7. Equating the heat
flow in the solid wall to the heat flow in the fluid at the solid/fluid interface, we have

dT

=Ko ==l —T1.) on S3 (13.2.4)
dx

as a boundary condition for the problem of heat conduction with convection.

[ FYE

3.3 Typical Units; Thermal Conductivities, K; A
and Heat-Transfer Coefficients, h

T ~1 i i its used for the heat-transfer problem. |

ab]e'I!:blle hls.'t’:s-SZOIlril:t:yspc:ﬁcl: li;gical thermal conductivities of various solids and
liquids. The thermal conductivity K, in W/(m - °C), measures the amount of heat en-
ergy (W - h) that will flow through a unitdlength( Sg)or m) of a given substance in a
unit time i temperature one degree ;

The(ltllgz;;otrlz::‘eiefﬁg:nt h,in W/(m? - °C), measures the momt of }?at et(l;)rgtg

(W - h) that will flow across a unit area (m?) of a given substance in a unit time
raise the temperature one degree (C).
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13 Heat Transfer and Mass Transport

580 A
Table 13-1 Typical units for heat transfer
Variable SI
Thermal conductivity, K kW/(m -°C)
Temperature, T° ’( or l‘(
Internal heat source, O l\W/mz
Heat flux, ¢ kW/m
Heat flow, ¢ kW o
Convection coefficient, / kW/(m* - °C)
Energy, £ kW - h '
Specific heat, ¢ (kW 'Bh)/(kg .°C)
Mass density, p kg/m
Table 13-2 Typical thermal conductivities of some solids and fluids
Material K [W/(m - °C)]
Solids
Aluminum, 0°C (32°F) 202
Steel (1% carbon), 0°C 35
Fiberglass, 20°C (68 °F) 0.035
i _ Concrete, 0°C 0.81-1.40
Al "‘ ] Earth, coarse gravelly, 20°C 0.520
| Wood, oak, radial direction, 20°C 0.17
' i Fluids
g Engine oil, 20°C 0.145
i :{ Dry air; atmospheric pressure, 20°C 0.0243
R
4) J ‘ !
o
it " Natural or free convection occurs when, for instance, a heated plate is exposed to
Wil ambient room air without an external source of motion. This movement of the air,
> experienced as a result of the density gradients near the plate, is called natural o free
convection. Forced convection is experienced, for instance, in the case of a fan blowing

air over a plate.

A 13.4 One-Dimensional Finite Element A
Formulation Using a Variational Method
0 or Out Ofa

The temperature distribution influences the amount of heat moving int .
body and also influences the stresses in a body. Thermal stresses occur in all bodies
that experience a temperature gradient from some equilibrium state but are not fﬂ‘ﬂ_e
to expand in all directions. To evaluate thermal stresses, we need t0 know the tefm :
perature distribution in the body. The finite element method is a realistic xpeth%‘(i)d"
predicting quantities such as temperature distribution and thermal stresses 10 & y
| In this section, we formulate the one-dimensional heat-transfer equations using 2 v;u;li
tional method. Examples are included to illustrate the solution of this type of probl®
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One_Dimensional Finite Element Formulation Using a Variational Method A 581
134 :

step 1 select Element Type

The basic element with nodes 1 and 2 is shown in Figure 13-8(a).

P T= 4\’5'; .7 ,\.211

Figure 13-8 (a) Basic one-dimensional temperature element and (b) temperature
vgiation along length of element .

4

step 2 Choosea Temperature Function o 2

) F .. SEaa
We choose the temperature function T [Figure 13-8(b)] within each element similar
the displacement function of Chapter 3, as v

T(x) = Myt + bt (13.4.1)
where 1; and 1> are the nodal temperatures to be determined, and

X X

1% M=7 (1342)
~18gf M
gain the same shapefml;cﬁons as used for the bar element. The [N] matrix is then
are a :
given by
N\ = e (13.4.3)
N\~ =[5 3
and the nodal temperature matrix is
' o Ay, (13.4.4)
- = { fz}
In matrix form, we express Eq. (134.1) as :
| A
{1} =INl{1} (134.5)

' ' Temperature
Step 3 Define the Temperature Gra_dient( : .
i and Heat Flux/ Temperature Gradient Relationships

: the strain matrix {}, is given by
WWWW{y},wb

| il il LA B (13.46)
w={%} =m0
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where [B] is obtained by substituting Eq. (13.4.1) for T'(x) into Eq, (1346
entiating with respect to x, that is, *6) ang diff,
ble (lNg
18] ’ dx  dx J
Using Eqs. (13.4.2) in the definition for [B], we have
11
[ §
L L “3,4_7)
The heat flux/temperature gradient relationship is given by
9 = —[Dl{g} (1345
where the material property matrix is now given by .
[D] = [er}
(l3.4.9)

Step 4 Derive the Element Conduction Matrix and Equations

Equations (13.1.9) through (13.1.11) and (13.2.3) can be shown to be derivable (5
shown, for instance, in References [4—6]) by the minimization of the following fyp,.
tional (analogous to the potential energy functional 7,):

m=U+Qp+Q, +Q, (13.4.10)

where o=3]]] [K(ZI)J av

QQ=_”JQTdV qu—”q*Ta’S Q;,:%“h(T—TOC)ZdS (134.11)
V S Si

and where S, and S; are separate surface areas over which heat flow (flux) ¢* (¢" is
positive into the surface) and convection loss (T — T,) are specified. We cannot
specify ¢* and 4 on the same surface because they cannot occur simultaneously on
the same surface, as indicated by Egs. (13.4.1 1).

Using Egs. (13.4.5), (13.4.6), and (13.4.9) in Eq. (13.4.11) and then using
Eq. (13.4.10), we can write 7, in matrix form as

=3[ o wranar - [[[ w7 wrmoar

4

J “ (Mg ds + 5 f f W TINT = Tp)Yds (13410
) . Scanned by CamScanner



4 One-Dimensional Finj m m
. Ite Ele ent For ulation Usi
ng a Variationa|
Method

On substituting Eq. (13-4.6) A 583
peratures {t} are independe

be taken outside the integral

nto Bq. (13 4,) |
nt of the gene'ra%) and using he f,

y ct that the
co nodal tem-
s, e have ordinates x ap 5

d y and can therefore

T
Ty = 2_{'}] [B]I[D”Bldl/{r} - {7 I
v

AT [ AT 1 :
B We s 42 it gy

% - J j j 1Bl IDI[B|a {1} - “j "0y

v 4

. ” INVZar s + {[ Wi ) s

S S3

4 ” (N Tha, as =0 (13.4.14)
s,

where the last term A72 in Eq. (i3.4.13) is a constant that drops out while minimizing
. Simplifying Eq. (13.4.14), we obtain

J” 18] (D)(B dV+” WV TN ds| {0} = Ul + U4+ U} (13415
)

}
A 3

4

where the force matrices have been defined by

{fo) = “J NToav  {f}= ]S! IN]"q" ds o

U} = || 7T ds

S5

itive, si ive) is of the same
In Eq. (13.4.16), the first term {fp} (heat source p({)}srlt;v(c;; es;?li; ig:(t:s‘{:i)vlesiz 5 t; igee
Py e ) are similar to surface tractions

face) and third term {f;} (heat transfer or convection
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134 One-Dimensional Finite Element Formulation Using a Varlational Method A 585

and P is the perimeter of the element (assumed to be constant), Therefore, adding
Egs. (13.4.20) and (13.4.21), we find that the [k] matrix is

[k]:fl_r\}\; 1 -1 hPL[2 |
S P T ol (13.4.22)

When £ 15 zero O lhe_ boundary of an element, the second term on the right side of
£ (13'4'22) (convection portion of [k]) is zero. This corresponds, for instance, to an
insulated boundary.

The force matrix terms, on simplifying Eq. (13.4.16) and assuming Q, ¢*, and
product hT,. to be constant are

{fg}=JI“ [N]TQdeQALL 1;%}dx—Q‘;L{ll} (13.4.23)
L
and  {f} = LJQ*[N]TdS=q*PJ: lxi}dx_"';’l‘{ll} (13.4.24)
i L
and EAp= Lj KT, [N)F dS = hT‘;P 5 11 } (13.4.25)

Therefore, adding Egs. (13.4.23) through (13.4.25), we obtain
QAL+ q*PL+ hTPL { 1 }

W > ) (13.4.26)
Equation (13.4.26) indicates that one-half of the assumed uniform heat source Q goes
to each node, one-half of the prescribed uniform heat flux g* (positive g* enters the
body) goes to each node, and one-half of the convection from the perimeter surface
hT,, goes to each node of an element.

Finally, we must consider the convection from the free end of an element. For
simplicity’s sake, we will assume convection occurs only from the right end of the
element, as shown in Figure 13-9. The additional convection term contribution to the

stiffness matrix is given by

ilsa = | [ AV ) d (13.427)
Send
N h
§ \~|;.,::—": )
\Y | 2

Figure 13-9 Convection force from the end of an element
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Now N; =0 and N, = 1 at the right end of the element. Substituting the N’
Eq. (13.4.27), we obtain

[kh)end = ”/,{?}[n 1]dS /1/]{8 ﬂ (13-4-28)

3
’Scml

into

The convection force from the free end of the element is obtained from the applicatj

of Eq. (13.4.25) with the shape functions now evaluated at the right end (where c:)on
vection occurs) and with S (the surface over which convection occurs) now sl n-
the cross-sectional area A of the rod. Hence, to

Nilx=3 0
i bonq = hTOC,A{ N;EX o L; } & hTmA{ ) } (13.4.29)

represents the convective force from the right end of an-element where N, (x= L rep-
resents N, evaluated at x = L, and so on.

Step 5 Assemble the Element Equations to Obtain
the Global Equations and Introduce Boundary Conditions

We obtain the global or total structure conduction matrix using the same pro-
cedure as for the structural problem (called the direct stiffness method as described
in Section 2.4); that is,

' N

K] =) k@] (13430

e=1

typically in units.of kW/°C or Btw/(h-°F). The global force matrix is the sum of all ele-
ment heat sources and is given by :

{F}= ZN: {r} (13431)
e=1

tjypically in units of kW or Btwh. The global equations are then
{(F} = [KI{1 (50

with the prescribed nodal temperature boundary conditions given by Eq. (13.1..13)-
Note that the boundary conditions on heat flux, Eq. (13.1.11), and convectio®
Eq. (13.2.4), are actually accounted for in the same manner as distributed loading
was accounted for in the stress analysis problem; that is, they are included in the c0
umn of force matrices through a consistent approach (using the same shape functior®
used to derive [k]), as given by Egs. (13.4.2).

B
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step 6 Solve for the Nodal Temperatures

We now solve for the global nodal tem

‘ ratu :
erature boun dary conditions, Bg, ( perature, {1}, where the appropriate nodal tem-

13.1.13), are specified,

step 7 Solve for the Element Temperat |
and Heat Fluxes g

Finally, we calculate the element temperature i
, - d ’
heat fluxes, typically from Eq. (13. 4.8)'Pe gradients fromEq. (13.4.6), and the

To illl.lstrate' the use of the equations developed in'this seetion, we will now solve
some one-dimensional heat-transfer problems.

—

gxample 13.1

Determine the temperature distribution along the length of the rod shown n
Figure 13-10 with an insulated perimeter. The temperature at the left end is a con-
stant 40°C and the free-stream temperature is —10°C. Let h = 55 W/(m” - °C) and
K., = 35 W/(m-°C). The value of 1 is typical for forced air convection and the value
of K., is a typical conduetivity for carbon steel (Tables 13-2 and 13-3).

Insulated perimeter
\ 25 mm radius

Figure 13-10 One-dimensional rod subjected to temperature variation

SOLUTION: -
The finite element discretization is shown in Figure 13711. For S:I;‘:Il:,:z ; . OZ;
we will use four elements, each 0.25 m long. There will b; ec::w e Y e
only over the right end of the rod because we consider the le

AL
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4 one-Dimensional Finite ¢
3 Element Formulation Usi
Ng a Variation
al Method

A 589

In general, we would yse Eqs

. : 1342
tain the element force matrices (13.4.23) through (13
g = (no heat flux), and the  However, in this eXarg1 1.4'25)’ and (13.4.29) to ob-
I€ 1S no convection ¢ Ple, O =0 (no heat source)
Xcept from the right end Therefore’
(1) ' ’
(13.4.38)
and AN hTwA{ (1) }
=5 2 o
155 W/(m® - °C))(~10°C)n(0.025 m)z{o}
1
0
- —1.8{ } w/°C
1 (13.4.39)

The assembly of the element stiffne i

. ss matrices [Eqs. (13.4.35) through (13.4.37
and the element force matrlcgs [Eqgs. (13.4.38) and (13.4.39)] usin; the diilci stiffnes)i
method, produces the following system of equations: ,

P75 —Z0375, D 0 i i

_0275 055 —0275 0 0 b .
0 0275 0554-025 0 [{mp=4 0 r (13.4.40)
0 0 —0275 +055 —0275| |1 0

0 0 o o —0275 o0383] ) (-18)

an unknown rate of heat flow at node 1 (analogous to an un-

known support force in the stress analysis problem). We have a known nodal temper-
ature boundary condition of t; = 40°C. This nonhomogeneous boundary condition
must be treated'in the same manner as was described for the stress analysis problem
(see Section 2.5 and Appendix B.4). We modify the stiffness (conduction) matrix and

force matrix as follows:

where F corresponds to

F1 <'0 0 0 o e o (40 )
o 055 —0275 0 0 7 _ 11
0 —0275 055 —0.275... 8 &1 0= Q.3 (13.4.41)
0 0 0275 055 —0275| | % 0
(0 0 0 _0.275 03831 \fs) (—1.8 )
i f the stiffness matrix corresponding to
where the terms in the first TOW and column of the i A o

first row of the force matrix

the known temperature condition, 1 = 40°C, have bee
1. Also, the term

main diagonal, which has been set equal to 1, and the

t node
has b t equal to the known nodal temperature at 1t
(212;;;1 xs 6(4(;3 °q(131) _ _11 on the left side of the second equaﬁonfoEf Eq.l(; ii:)()) 11“11%11:
been transposed to the right side in the second row (as fH 1) oth ;10 vf/ : c;f. e
second throﬁgh fifth édﬁatioﬁs of Eq. (13:4.41) corresponding to the unkn
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nodal temperatures can now be solved (typically by Gaussian elimination). T
ing solution is given by eresult
h=3236°C 1©=2472°C 4= 17.09°C 5 =9.45°C

For this elementary problem, the closed-form solution of the differemi

tion for conduction, Eq. (13.1.9), with the Icﬂ.—c'nd boundary °°nditioa'°‘]0a‘
by Eq. (13.1.10) and the right-end boundary condition given by Eq. (13 24) Bivg,
- Y

a linear temperature distribution through the length of the rod. The evaly Yielg,
this linear temperature function at 10-in. intervals (corresponding to the nod E;tlon ¢
used in the finite element model) yields the same temperatures as Oblaine: Poipg
example by the finite element method. Bccuusc.lhc t.gmpcrature function s aslsn thi
to be linear in each finite element, this comparison is as expected. Note that p

be determined by the first of Egs. (13.4.40). Icom.d

i

—

Example 13.2

SOLUTION:

To illustrate more fully the use of the equations developed in Section 134, e
now solve the heat-transfer problem shown in Figure 13-12. For the one-dimepg
rod, determine the temperatures at 75 mm increments along the length of the roq
the rate of heat flow through element 1. Let Ky, = 60 W/(m - °C), h = 800 W/(m? .-
and T,, = 10°C. The temperature at the left end of the rod is constant at 100°C

will

50 mm radius
= h, Tm

100°C ¢ =h, T,

225 mm

Figure 13-12 One-dimensional rod subjected to temperature variation

The finite element discretization is shown in Figure 13-13. Three elements are suff-
cient to enable us to determine temperatures at the four points along the f0¢
although more elements would yield answers more closely approximating the analyt-
cal solution obtained by solving the differential equation such as Eq. (13.2.3) with the
partial derivative with respect to time equal to zero. There will be convective heat Io%
over the perimeter and the right end of the rod. The left end will not have convect¥

'S

vloooc 31 @+ ) @* 3 O

75 mm 75 mm 75 mm

Figure 13-13 Finite element discretized rod of Figure 13-12
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13.4 One-Dimensional Finite |
ement Formulatlon Using a Var
arlational Method A
591

heat loss. Using Eqs. (13.4.22) ang (

> vl v e L 13.
elements as follows: 4.28), we calculate the stiffness matrices for th
L atrices lor the

AK,, (n x 0.05%)(60)
I 0.075 nW/iC

hPL
,(1 (800)(27 x 0.05)(0.075)
: a— “nW/'C (13.4.43)

hA = (800)(n x 0.05%) = 22 W/°C

Substituting the results of Eqs. (13,4 43) into E (13.4.2
A, q. 4.22

rix for element 1 as ), we obtain the stiffness ma-

kD] = 2| ! —I]H[z 1]

e 1 3
Lo 2 -4
=2n 1 w/°C (13.4.44)

Because there 1s no convection across the ends of element 1 (its left end has a known
tf:mperature anFl its right end is inside the whole rod and thus not exposed to fluid mo-
tion), the contribution to the stiffness matrix owing to convection from an end of the
element, such as given by Eq. (13.:4.28), is zero. Similarly,

[k?) = [eV] =-2n[_21 _ﬂ w/°C (13.4.45)
2

\ h

However, element 3 has an additional (
exposed surface at its right end. Therefore, Eq.
element 3 stiffness matrix, which is then given by

00 3 mdY 0B
[k<3>]=[k“)]+hA[o 1]”’{—5 3]”"[0 1]

convection) term owing to heat loss from the
(13.4.28) yields a contribution to the

2 -4 .
:21:[_1 | 32] w/°C (13.4.46)
2
In general, we calculate the force matrices by using Eqs. (13.4.26) and (13{).4.2E9).
Because Q =0 and ¢ = 0, we only have force terms from hT as given by EQ.

(13.4.25). Therefore, | P x :
T ynPL (Y (600 Wy(m? -°C) (10°C) (2 < 005) (00 {i}
p) Pl s =
{f(')}={f_(”)} . r,t{rl} W)aLezo : e
, (13.4.47a)

).Gﬁ"l'ilml ot Jasd PRl

i W

— -

. i
——

R { .‘f’u,'t sl o) =2rn Jg
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13 Heat Transfer and Mass Transport

592 A
Element 3 has convection from both the perimeter and the Tight eng.
3 0 _,. I 4 00w M“t
{0} = {(fV} + T« 4{]} M'R{IS} ! m*-°C) (10 )"(0-051;,)20
e { 5 } {IJ
“ 25 (13.4‘%)
The assembly of the element stiffness matrices, Eqgs. (13.4.44) throug ( 3
and the force matrices, Egs. (13.4.47a) and (13.4.47b), using the dipaey %)
method, produces the following system of equations (where the 27 term has been
ided out of both sides of Eg. (13.4.48)):
2 -1 0 0]fn= 100 F+15
-1 4 -1 0 t2 _J15+15
0o -1 4 -} % T ) 15415 (B4g
0 0 -1 3 Ig 25
Where F| = F,/2x.
Expressing the second through fourth of Egs. (13.4.48) in explicit form, we haye
4z, — 0.513 + 014 = 50 + 30
i oo =0.55+ 413 — 0.5 = 30 (13449)
' 0r, — 0.51; + 314 = 25
fin Solving for the nodal temperatures 7, — 74 we obtain
_';;" b =2143°C 1,=1146°C t,=10.24°C (1340)
i Next, we determine the heat flux for element 1 by using Eqs. (13.4.6) and (1349
| in Eq: (134.8) as
it | gV = —K[B{1} (13.451)
[ Using Eq. (13.4.7) in Eq. (13.4.51), we have
= —K,. [_% %] { Z } (1345)

Substituting the numerical values for #; and 1, into Eq. (13.4.52), we obtain

11 ][ 100
M = _60]-
£ 60[ 0075 0.075} {21 .43}

or ¢V = 62856 W/m?
We then determine the rate of heat flow g by multlplymg Eq. (13.4.53) by
sectional area over which ¢ acts. Therefore,

gV = 62856(n x 0.05%2) =493.7 W

Here positive heat flow indicates heatﬂowfromnodel tonodeZ (tothjlsii/

N
s < - o - —_ Ch e —— e ——— —

(134.53)
the cross”
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OLUTION:

i sional Fini
4 one-Dimen te Element Formulation Usingay
ethod

A 593

The P
(r = 0) 1S

C_L=1m) is insulated. The therma]

¢ plane wall shown in Figure 13-4 is

| .
Pera:rlllrtehlocfl‘( ﬁ(;l;)hoe left surface of the wall
condy C, and the right surface

niform generation of heat inside s ctivity is K., = 25 Wi(m - °C) and

maintained at a constant tem

pere is a U Lk X
:he  perature distribution through the wa] thic‘l:;?e]l:f Q =400 W/m?. Determine
A /171177 A/ /AP V I AV .
l 2 N
°C . ! S 3¢ 4 SN
200 we OO @] ®RK
7777/
- I m
Figure 1 _3—14 CO”‘%UCt'On in a plane Figure 13-15 Discretized model
wall subjected to uniform heat of Figure 13-14
generation

This problem is assumed to be approximated as a one-dimensional heat-transfer prob-
lem. The discretized model of the wall is shown in Figure 13-15. For simplicity, we
use four equal-length elements all with unit cross-sectional area (4 = 1 m?). The unit
area represents a typical cross section of the wall. The perimeter of the wall model is

then insulated to obtain the correct conditions.
Using Eqs. (13.4.22) and (13.4.28), we calculate the element stiffness matrices as

follows:

AR & (Tm?)[25 W/m ") _ 199 wc
2 025m

For each identical element, we have

Because no convection occurs, /1 1s €qua
tribution to [k].
The element force matri

g=0, and

Evaluating Eq. (13.4.55) for a typical element

= 100[_1 'i] w/°C (13.4.54)

 to zero; therefore, there is no convection con-

1 3
ces are given by Eq. (13.4.26). With Q = 400 W/m~,

h = 0, Eq. (13.4.26) becomes
QAL |1 (13.4.59)
yy=220

such as element 1, we obtain

{;u} i {:} L {:g} W (13.4.56)
»

L e ————— . i
Scanned by CamScanner
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A 13 Heat Transfer and Mass Transport

The force matrices for all other elements are equal to/Eq. (13.4.56)_
The assemblage of the element matrices, Egs. (13.4.54) and “3-4-56j P
other force matrices similar to Eq. (13.4.56), yields

e

3

1 -1 0 0 01(n) [FR+s0
. 2. ~1"a ¢ J 5! J 100
100] 0 -1 2 -1 0 I3

=il 2 =l ur 100 )
o 0o o -1 1)) U, 1504

Substituting the known temperature #; = 2.00:C into Eq. ( 13.4.57) 4.
both sides of Eq. (13.4.57) by 100, and transposing knownterms to the right side

we have

1 0 0 0 07w 200°C |

002 -1 0. N |2 201

0 -1 2 -1 oWry={ 4y r (1345
0 0 -1 2 —1|]g 1

0 0 o o 1]ls 0.5

The second through fifth equations of Eq. (13.4.58) can now be solved simultaneowy
to yield

=23C B=206C 1 =2075C" 1= 2%a (134.59)
Using the first of Eqs.'( 13.4.57) yields the rate of heat flow out the left end:
Fi =100(z; — 1) — 50
Fi =100(200 — 203.5) — 50
Fi=—-400wW

parabolic temperature distribution through the wall Evaluating the expression for

the temperature function given in Reference [2] for values of x corresponding to the
node points of the finite element model, we obtain

p=2035°C  4=206°C t4=2075°C  1=208°C (13.4.60)

Figure 13-16 is a plot of the closed-form solution and the finite element solution
fﬂfﬁemmrevaﬁaﬁonthmﬂgbﬁhewaﬂ. The finite element nodal Vahﬁ““d

has been used. (This was also discussed in Sections 3.10 and 3,11 for the axial bar sib-
Jected to distributed loading, and in Section 4.5 fo. the beam subjected to distributed
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135
Tw°~DimensionaI Fi

nite Element Formulation a

here #;. 1;, and t,, are th ol |
whe SR m € nodal t
by Egs. (6.2.18); that is, STPeratures, and the shape functions are again gi E
given f
Ni<=
i 2A(1| +ﬁp\'+~lv..\') (13 5.2) ‘

with similar expressions for N;and N
(6.2.10). .
Unlike the CST element of Ch

- H :
ere the o's, s, and ¥'s are defined by Eqgs.

only a single scalar value (nodal temperat : .
Y : ) ure) 1s th

as shown by Eq. (13.5.1). This holds tru for)the i1 ormary unknown at each node.

as shown in Section 13.7. Hence, the dimensional elements as well,

heat- . :
scalar-valued boundary value problem. transfer problem is sometimes known as a

step 3 Define the Temperature Gradient/ Temperature
and Heat Flux/ Temperature Gradient Relationships

We define the gradient matrix analogous to the strain matrix used in the stress analysis

problem as
B_T
Pt R \ (13.5.3)
cT '
1
cy )
Using Eq. (13.5.1) in Eq. (13.5.3), wethave
f ? ox !
4 (13.5.4)
Ny N, N\
d oy i
The gradient matrix {, itten in compact matrix form analogously to the strain
matrix {&} of ysis problem, is given by 5
{g} = [Bl{} | (13.5.5)

where the | is obtained by substituting the three equations suggested by
Eq. (13.5.2) in the rectangular matrix on the right side of Eq. (13.5.4) as
y < 14 [Bj _ 1 |Bi B bn (13.5.6)
g g j 24 | ¥ 7]’ m

1 _- -, e *{::}_2;[1,1@ ,-'_‘ E (13.5.7)
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602 A 13 HeatTransfer and Mass Transport

Step 4 Derive the Element Conduction Matrix and Equationg
The element stiffness matrix from Eq. (13.4.17) is

W =[] 1817 s av < [[#m7 v as
v 55 ‘13_5_,

where [kl = [[[ 187 IDI1B 2V

Ml 2% e OHA 4 8,
A 0 B NG

Assuming constant thickness in the element and noting that 5 terms
integrand of Eq. (13.5.10) are constant, we have a

] = j j ] (8] [D](B}dV = t4[B)7[D][B] (135

Equation (13.5.11) is the true conduction portion of the total stiffness ma
Eq. (13.5.9). The second integral of Eg. (13.5.9) (the convection portion of the tog
stiffness matrix) is defined by

= j j H[V]T (V] dS 15

We can explicitly ;nil‘lﬁply the matrices in Eq. (13.5.12) to obtain

- NiN; N;N; N,N,,
_ (] = h j J N;N; N;N; N;N,, |ds (355
XN\ S | NuNi NuN; N,N,,

-

ate the use of Eq. (13.5.13), consider the side between nodes i andj o
r element to be subjected to convection (Figure 13-21). Then Nn = 0 alot
side i/, and we obtain

Zos @

) ! .hLi-' .]‘

SRA R ' \ [klc] =% g 20 (13.5 )
: " 0 00

whergL;._,lsthemm‘ddag.  Sa3ilnTy T
el X e e R

T TR R ke RL
|‘ ) I:'I';I _; i / lc", :(}% o 4

\
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13.5 Two Di
-Dimen
sional Finite Element Formulati
ation A 603

The evaluation of the for, iX i
C€ matrix integrals in Eq. (134 16) i
<113.4.16) 1s as follows:

Uob = [ oy - o[ w7 av

tant heat f (13.5.15)
cons at source Q. Thus i 4
fgi;al is equal to Q. Thus it can be shown (left to your discretion) that this in
ov | !
- (13.5.16)

1

= At is the vol
where ume of the element. Equation (13.5.16) indicates that heat is

generated by the body in three equal parts t : i
ity problem). The second force matriI): in Eg. t(tg?fg)s 1(shk s e clastie

N;
= * o =
{f} ”q [N]"dSs = ”q N; bds (13.5.17)
S, $ Nm
This reduces to
@GSt : ,
—2—{ '} onside i-j (13.5.18)
\ 0 J
: ( 3
0
*Lj-mt .
1 2’ 1 \  onsidej-m (13.5.19)
1
\ v,
*Lm 't ’ 1
1 3 = &0 on side m-i (13.5.20)
L
. i the el t, and the heat flux
where Li-j, Lj-m, and L,,-; are the lengths of the sides of the e e}x\ﬁe}ndsaga e

q* is assumed constant over each edge. The integral IIS;{'TO?[
a manner similar to Eq. (13.5.17) by simply replacing ¢ with AT

through (13.5.20).

in Eqs. (13.5.18)

Steps 5 through 7

Steps 5 through 7 are identical to those
To illustrate the use of the equations
some two-dimensional heat-transier problems.

described in Section 13.4.

presented in Section 13.5, we will now solve
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o WX, 1) = W (x)e ot
; requency of natur
o is the quency of natural transye (6.1.37)

bet® ‘ rse
. stituti - S¢ maoj ‘
B e Sllh\ll‘tmmn of Eq. (6.1 1) inl()“()('v1 l““‘t(l W.(" ) 15 the mode shape of the
dx? dyt ) H (pAW = ﬂl‘L‘Z
dat | =9 (6.1.38)

"

where A =@ .
The weak form of Eq. (6.1.38) is given by

w ( d*vd*W
= El— 4 d
0 [. ( dx2 dx? APAVW — Apl_v‘i_w) o

dx dx

d d2W d Xp
+iv|— | EI w dv\ _d*w]"

g x

the weight function. Note that the rotary inertia term centributes to the shear

where v 18
giving rise to an effective shear force that must be known ata boundary point

force term,
when the deflection 18 unknown at the point.

To obtain the finite element model of Eq. (6.1.39), assume finite element approximation

of the form
4
W(x) =) AseS(x) (6.1.40)

where ¢§ are the Hermite cubic pglynorﬁials [see Eqs. (5.2.11) and (5.2.12)], and obtain

the finite element model

KM (8 =120 (6.1.410)
where \ | -
, ) 2 ¢ dd)e'
X % % 2h° : e e @-’--——L) d
K& = Efd ¢ d’—__¢2] dx, ij =f (pAd)i ¢; 04 dx dx #
ij g 3 % dx ke (6.1.41b)

» d*W
b Ay 1’2;'2_ "

Xa

' de) \ (6.1410)
dW] ¥ ig—-(El ) |

&*W 1‘1]

a*w sl
Q (EI -a;i‘) + Ml . | |
| matrix [K€] and mass matnx [(M*]

alues of El and pA, the stiffness

For constant V
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AN INTRODUCTION TO THE FINITE ELEMENT METHOD

[ 156 —22h, 54 13,
p°Ach, | =225, 4h3 —13h, —3h?
420 54 —13h, 156  22h,
13h -3k 22k,  4k?

36 -3h, -36 -3h,

p’le | —=3h 4k  3h, —h?

30h, | =36 3h, 36 3h, (6.1.42)
—3h, —h: 3h, 4h?

[M€] =

When rotary inertia is neglected, we omit the second part of the mass matri i (6.1,42)

Timoshenko Beam T, heory

The equations of motion of the Timoshenko beam theory are [see Reddy (2002), Pp. 193,
196]

9%w 0 aw o
pA-F = 5‘:‘ [GAKS (ax ¢ ‘I’)] =0 (6143¢l)
REA\] d o ow
e i (55 E (o) =0 e

where G is the shear modulus (G = E /[2(1 +v)]) and K is the shear correction factor
(K; =5/6). Note that Eq. (6.1 .43b) contains the rotary inertia term. Once again, we assume
periodic motion and write

W DSWEeT™,  W(x, 1) = S(x)e—i" (6.1.44)
and obtain the eigenvall._;fe probiem from Egs. (6.1.434) and (6.1.43ph)
™ N ¢ dw
—AZ; [GAKS (E; s S)] = a)szW =0 (6.1.450)
def dS dw '
- = Sl 2 s
\\7 (Eldx) + GAK, (dx + S) w’pl § =0 (6.1.45b)
For equal interpolation of W (x) and S(x)
‘w}r L4 L . e e -
v W)= "w Yix), S(x)= DSy ) (6.140)
where 7 are the (n — 1) order Lagrange polynomials, the finite element model is given by
[K'] [k 2 [IMY] 1
([[K”] (k) |~ [ [0] [M2]2] D { ‘{‘;’f } = { {{,fz i } 618

where [K“] is the stiffness matrix anq [Me] is the mass matrix

dx 'Tx"‘d-x

Xp %
Kj' = | Gax, LV d¥]
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B At diss
2 — E[—L_J &
K'j »[ca ( dx dx i GAK‘WI ij) dx

X}

o e e - O e
M” _/;a pAlﬁ, Vf] dxy MU =/x p[lﬁf‘//jdx
F} = Qx-1. F=Qy

g dw ] ds
05 = [GAK; (5+ 5 )] o= ()

dw ds
£ = GAKS(S+ )] \ es(E- )
03 [ dx - o Idx

he choice of linear interpolation functions, Eq. (6.1.47) has the
For

(6.1.48a)

Xa

(6.1.48b)

Xp

licit form (after

) dal variables)
-anglng the no
6 -3h, -6 -3h,
2E. I, —3h, h§(1.5+6Ae) 3h, h:( 6A,)
(KV1=\"on2 ) | -6 3h, 6
—3h, h*(1.5—6A,) 13h, h;(.5+6A.)
2
. P*Ac |0 _ L (6.1.49a)
U= |4 y e
0
i SIS (6.1.49b)

i imation of S(x)
; o Ay +) and related quadratic approxima
For Hermite cubic 1nt l!’w ] l;)ment( (I)IE)], the resulting mass matrix 1S cumbersome

ters (E and G) We will not consider it here [see Reddy
aramete "
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