Introduction

Finite element analysis has now become an integral part of Computer Aided Engineering (CAE)
and is being extensively used in the analysis and design of many complex real-life systems.
While it started off as an extension of matrix methods of structural analysis and was initially
perceived as a tool for structural analysis alone, its applications now range from structures to
bio-mechanics to electromagnetic field problems. Simple linear static problems as well as highly
complex nonlinear transient dynamic problems are effectively solved using the finite element
method. The field of finite element analysis has matured and now rests on rigorous
mathematical foundation. Many powerful commercial software packages are now available,
enabling its widespread use in several industries.

Classical analytical methods consider a differential element and develop the governing
equations, usually in the form of partial differential equations. When applied to real-life problem
situations, it is often difficult to obtain an exact solution to these equations in view of complex
geometry and boundary conditiens. The finite element method (FEM) can be viewed simply as
a method of finding approximate solutions for partial differential equations or as a tool to
transform partial differential equations into algebraic equations, which are then easily solved.
Some of the key ideas used in finite element formulation are now summarised:

> Since the solution for the field variable satisfying both the boundary conditions and
the differential equation is unknown, we begin with an assumed trial solution. The
trial solution is chosen such that the boundary conditions are satisfied.

» The trial solution assumed, in general, does not satisfy the differential equation exactly
and leaves a domain residual defined as the error in satisfying the differential
equation.

» 1In general, the domain residual varies from point to point within the domain and
cannot be exactly reduced to zero everywhere. We can choose to make it vanish at
select points within the domain, but we prefer to render the residual very small, in
some measure, over the entire domain. Thus, the weighted sum of the domain
residual computed over the entire domain is rendered zero.
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» The accuracy of the assumed trial solution ¢

an be improved by taking additiona],

higher order terms, but the computations become tedious and do not readily render

themselves for automation. Also, for complex real-life problems, choosing a single
continuous trial function valid over the entire domain satisfying the boundary

conditions is not a trivial task. We therefore prefer to discretise the domain into
several segments (called finite elements) and use several piece-wise continuous
trial functions, each valid within a segment (finite element).

Trial functions used in each segment (finite element) are known as element leve]
shape functions. These are defined in the form of interpolation functions used to
interpolate the value of the field variable at an interior point within the element from
its value at certain key points (called the nodes) in the element. Typical elements
commonly used in finite element analysis are shown in Figure 1.1.

(a) General frame element (Six d.o.f. Per node)

(b) Common 2-d elements

.‘ﬂw
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(d) Plate and shell elements

&

(e) Common 3-d elements

Fig. 1.1 Typical finite elements

> With these shape functions, the weighted sum of the domain residual is computed
for each element and then summed up over all the elements to obtain the
weighted sum for the entire domain.

» For all elements using the same shape functions, the computations will be identical
and, thus, for each type of element we have element level characteristic matrices.
These characteristic matrices for several types of elements are derived a priori and
programmed into a finite element software such as ANSYS, NASTRAN, IDEAS, etc.
The user can choose to discretise (model) his domain with a variety of different finite
elements. The computer program sets up the characteristic matrices for each element
and then sums them all up for the entire finite element mesh to set up and solve the
system level equations.

The basic steps of finite element analysis, as outlined above, are quite generic and can
be applied to any problem—be it from the field of structural mechanics or heat transfer, or fluid
flow or electromagnetic fields, given the appropriate differential equation and boundary
conditions. In view of the similarity in the form of governing differential equations, the finite
element formulation for a particular rype of differential equation can be used to solve a class
of problems. For example, a differential equation of the type
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. i t f represents the axia

describes axial deformation of a rod when we 1us~e' tl:jc ;Onll(::;'lstslf’sr;(:gzn{: | aF;ea b Young's]
deformation, ¢ represents the load, and 4, 5 i ,Oxrd ith the connotation that f stands
modulus, respectively. The same equation, when interpreted wi _
g ' bt aT T e and A. C stand for cross-sectional area and
for temperature, ¢ represents internal heat source and 7, e nation tore
coefficient of thermal conductivity, respectively will .hc the SOYErning o4 5 e ab i
dimensional heat conduction. Thus, a finite clcmgnl lm'!nulutl()n QCVCIOPEd or the above
differential equation can be readily used to solve either of lh(? phySICf]l prob!ems. ’

Sometimes, the governing equations are more readily ‘aVﬂ"ab]C in the OFHINES
minimization of a functional. For example, in problems of Slfuctural mcchamcs,. tbe
equilibrium configuration is the one that minimizes the total potgntlal of the system. Finite
element formulation can be developed readily for a problem described by a functional, rather
than a differential equation. When both the forms are available for a given problem, the
differential equation and functional forms are equivalent and can be derived from each oth.cr.

The finite element method essentially grew up as a tool for structural mechanics
problems, as an extension of the matrix methods of structural analysis. While such an approach
towards the study of finite element formulation enables easy visualisation in the form of lumped
springs, masses, etc., the approach outlined above highlights the generic nature of the method,
applicable for a variety of problems belonging to widely varying physical domains. It is felt that
this approach gives a proper perspective on the entire field of finite element analysis. In the
chapters that follow, we elaborate on the various basic steps outlined above for one- and two-
dimensional, static and dynamic problems.

We now present several examples of application of finite element analysis to real-life
problems, to give an overview of the capabilities of the method. Our application examples
are drawn from the fields of structural mechanics, aerospace, manufacturing processes,
electromagnetics, etc.

1.1 Typical Application Examples

1.1.1 Automotive Applications

In a vehicle having monocoque construction, the body itself is connected to the suspension.
Therefore, the body panels are subjected to road loads. Hence, stresses and strains in these
body panels are of interest. Figure 1.2 shows a FE mesh of a floor panel from the rear end
of the vehicle. Provision for spare wheel as well as the various depressions used as stiffeners
can be seen in the figure. A total of about 13,000 quadrilateral and triangular shell elements have
been used to perform modal analysis, torsional stiffness analysis, and service load analysis. The
same finite element mesh is also used for crash analysis using LS-DYNA software.

‘An automotive engine cylinder block experiences severe pressures and temperature
gradients and other transient loads. It is essential to predict accurately the stresses and the
vibration levels for further correlation with noise predictions. Figure 1.3 shows a typical finite
element (shell element) model of a four cylinder in-line diesel engine cylinder block. Such a

model is used to predict the system natural frequencies and mode shapes, response to
combustion gas pressure, etc.

-
B ———————
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Typical Application Examples 5

Fig. 1.2 Finite element model (MSC/NASTRAN) of the floor panel of an automobile.
(Courtesy: TELCO, Pune.)

Fig. 1.3 Finite element model of an automotive engine cylinder block.
(Courtesy: Mahindra & Mahindra Lid., Nasik.)

Figures 1.4-1.7 show representative finite element models of various components of a
driveline where the gears have been modelled as fnctnon wheels. Such a model can be used
for studying the dynamic response of the enti
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Fig. 1.4 3-d Finite element model of a crankshaft. Fig. 1.5 3-d Finite elemept model of a gea_lrbox.
(C?).zm;sy: Mahindra & Mahindra Ltd., Mumbai.) (Courtesy@ilahiigggf Mahindra Lid,, Mumbai)

Fig. 1.6 3-d Finite element model of a differential.
(Courtesy: Mahindra & Mahindra Lid., Mumbai.)

Fig. 1.7 3.9 Finite element model of a rear axle.

dra & Mahindra Lid,, Mumbai,)
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Figure 4.2.5 Flow of viscous fuids through pipes.

s through circular pipes 18 given by

1 dP o’ 4
i e 124 — (4.2.13a)
*T 4udx d

ure gradient, d is the diameter of the pipe, and 2 is the Yiscosity of
)]. The volume rate of flow, O, 18 obtained by integrating v, over
relationship between Q and the pressure gradient dP/dx

flow of viscous fluid

where dP/dx is the press
the fluid [see Fig. 4.2.5(a
the pipe cross section. Thus, the rel
is given by the equation
dp
e (4.2.13b)

—_— . ——

128 dx

 that the flow is in the direction of negative pressure gradient.
a relationship between the nodal values of

P%), of a pipe element of length
1 is given by [see Fig. 4.2.5(b)]

The negative sign indicate
Equation (4.2.13b) can be used to develop

the volume rate of flow, (25, 03) and thé‘\pzéssugg,“ (Pf,

h, and diameter d,. The volume rate of flow entering node
. wd?

f” e __% ay e Pe i pe

V%p_ TZS m h, ( 2 & 1 )

Similarly, the volume rate of ﬂav}iering node 2 is

S i e
Oi==s T —T1)
Thus, we ha
nd* 1 -1 P¢ e
1 0
128uh, [—1 1] [ P,_f]""IQé] (4.2.14)

The constant, R, = 128yh, /d* is cal ’ ;
resistance [see Eq. (4.2ﬁ i;]/.”dt is called the pipe resistance, in analogy with the electrical
4.3 HEAT TRANSFER
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qv) is relate the temperature
direction of x)

aw for one-dime

radient 4 nsional sys(e
gradient 9 T/ nal systems states that the heat flow

(')‘ h ”“\' ! s
Y the relation (with heat flow in the positive

q=<kA "”
is " 4.3.1)
where & is the thermal conductivity of (he

srature. The \ _ materi .
the temperature. I'he negative sign in (4.3.1 aterial, A the cross-sectional area and T

) indicates h;
remperature scale. The balance of energy re quirchl'; lllu. that heat flows downhill on the
s tha
) T
— | kA— - aT
ox ( ox ) T A8=r s (4.3.2)

where ¢ is the heat energy generated per uni
< ) e C I Unl 1¢ 4 " 72
heat of the material, and 7 is time Equlzltion (i \%/021;|me’ hh e o,
gy g ¥ ) i .9.2) governs the transient heat conduction
in sldl? or.fln (1.e., @ one-dimensional system) when the heat flow in the normal to the
-direction is zero. For a plane wall, we take A = |

‘ In Lhefcase %fraqi;llly Symmetri.c problems with cylindrical geometries, (4.3.2) takes a
dlfferezt‘ 01"m. 10281 er a long cyhnder of inner radius Rj, outer radius R, and length L.
V‘Vhen‘ is very a.rce 'Comparfed with the diameter, it is assumed that heat flows in the radial
direction r. The transient radially symmetric heat flow in a cylinder is governed by

li(kraT 3 oT
o) TESP (43.3)

A cylindrical fuel element of a nuclear reactor, a current-carrying electrical wire, and a
thick-walled circular tube provide examples of one-dimensional radial systems.
The boundary conditions for heat conduction involve specifying either the temperature

T or the heat flow Q at a point:

aT
T @d¥ Or =—kA— =00 (4.3.4)
0x
urface is exposed to a cooling medium, such as air or lig-
y that the heat is convected away. The convection heat

dium in contact is given by Newton'’s law of cooling:
: 4.3.5)

N
Itis known t|l1at when a heated s
uid, the surface will cool faster. We sa
transfer between the surface and the me

0 = BA(T; — To)
ature of the surrounding medium,

ture, T is the temper !
A at transfer coefficient Or film

where T, is the surface tempera |
and B is the convection he

called the ambient temperature; : .
conductance (or film cZefﬁcient). The heat flow due to conduction and convection at a
boundary point must be in balance with the 31"P113d ﬂow Qo:

;l:kA%T- + BA(T = To) + Qo=0 (4.3.6)

kL g
3

e *-

qow is from the fluid at T tO
hen t flow is from the

e heal
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Convection of heat from a surface to the surrounding fluid can be increaseq by attagp.:
thin strips of conducting metal to the surface. The metal strips are Cf'”'ifd‘/ins. For 5 Ch'P
heat flow along its length, heat can convect across the lateral surface of the fin lscc?th
4.3.1(a)]. To account for the convection of heat through the surface, we myg; add the
of heat loss by convection to the right-hand side of (4.3.2): ale

164 AN INTRODUCTION TO THE FINITE ELEMENT METHOD

9 [  oT aT -
— | Ak— |+ Aqg=pcA— + PB(T - T)
dx ( dx ) . (4'3.7(,)

where P is the perimeter and B is the film coefficient. Equation (4.3.7a) can be €XPresseq
in the alternative form

PCA— — — kA—) + PBT =Ag+ PATy (4.3.7p,

8T 9 oT
ar  ox 0x

The units of various quantities (in metric system)are as‘follows:
T °C (celsius) ko W/(m~-°C)
g Wm’ p kgim’
¢ Jikg-°C) B Wim?-°C)

For a stea_dy state, we set the time derivatives in (4.3.2), (4.3.3), (4.3.7a), and (4.3.7p)
equal to zero. The steady-state equations for various one-dimensional systems are summa-
rized below [see Fig. 4.3.1(b) and (c); see Egs. (1.2.14) and (1.2.17)].

Plane Wall [Q = k(dT/dx)]

ik ( Py
\dx E) = g (4.3.8)
Fin [Q=kA(dT/a'x)]
d dT
- kAE +cT=Ag+cTy, c=PB 439
Cylindrical System [Q = k(dT /dr)] |
1.4 dT

: g‘he essential and natural boundary conditions associated with these equations are of
the form

T=To, Q+BAT —Tyx)+ Qo=0

Equations §4.3.8)-(4.3. 10) are a special case of the model equation (3.2.1) discussed in
Section 3.2, with a =kA, ¢ = P, and f — Ag + PBT,. We immediately have the finite
element model of Egs. (4.3.8) and (4.3.9) from (3.2.31a) and (3.2.31b):

[KUT} =} + (Q°) (4.3.11a)
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Lateral surface and right end are
exposed to ambient temperature, 7,
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Figure 4.3.1 Heat transfer in () fins, (b) plane wall, and (c) radially symmetric system.

i
Here

" Xb ed e Xp
ko= [ (Al powis) dx = [ picag poTo a

dx dx
dT : dT)
=(-kA=— =(kA=—
i ( "_Adx) 2% 03 ( dx
where Q¢ and Q¢ denote heat flow info the element at the nodes.
Equation (4.3.10) is also a special case of the model boundary value problen.l. However,
in developing the weak forms of (4.3.10), integration must be carried over a typical volume
element of each system, as discussed in Section 3.4 [see Eq. (3.4.2)].

(4.3.11b)

Xb

Scanned by CamScanner



Scanned by CamScanner



CHAPTER 4: SECOND.-(
oL -ORDE FE T
LR DI} ERENTIAL EQUATIONS IN ONE DIMENSION: APPLICATIONS 181

4.4 FLUID MECHANICS
4.4.1 Governing Equations

All bulk matter in nature exists in one of (wo forms:

acterized by the relative immobility of j(g molecule

by relative mobility of its molecules. Fluids can exist either as gases or liquids. The field
Ll . - .I.

of fluid mechanics is concerned with the motion of fluids a o G
~ . K n(.l l by s 30"
motion (see Reddy and Gartling, 2001) he conditions affecting the

The basic equations of fluid mech
of mass, momentum, and energy. Co
the conservation of momentum res
energy, considered in the last sectio
Egs. (4.3.8)—(4.3.10) for one-dimen

solid or fluid. A solid body is char-
§ whereas a fluid state is characterized

anics z}re derived from the global laws of conservation
nSCl‘Yi\llOﬂ of mass gives the continuity equation, while
ult§ in the equations of motion, The conservation of
n, 18 the first law of thermodynamics, and it results in

sional systems when thermal-fluid coupling i i
" ; ey pling is omitted.
For additional details, see Schlichting (1979), Bird et al, ( 1960), and Reddy and Gartling

(2001). More d.etalls are providpd in Chapter 10, which is dedicated to finite elément models
of two-dimensional flows of viscous incompressible fluids.

Here, we con .31de.r so-called parallel flow, where only one velocity component is different
from zero resulting in all the fluid particles moving in one direction, i.e., u =u(x, y, ),
where u is the velocity component along the x coordinate. We assume that there are no body

forces. The z-momentum equation requires that u = u(x, y). The conservation of mass in
this case reduces to

Bu_
i

0

which implies that u = u(y). The y-momentum equation simplifies to

oP oy
ay X

which implies that P = P (x), where P is the pressure. The x-momentum equation simplifies
to

d’u _-dP @41
Mdyz e A
The energy equation for this problem reduces to
T 9T 82T) (du)z
—=k|—+—=)+ul|— (4.4.2)
g (8x2 ¥ ay? H\ay

Here we are primarily interested in the finite element analysis of Eq. (4.4.1).

44.2 Finite Element Model

Equation (4.4.1) is a special case of the model equation (3.2.1) with the following corre-
Spondence:

u=constant, ¢=0, x=y 4.4.3)
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;1 INTRODUCTION

ere WE consider the finite elemeny formulay
ferential equation that arises in the "
dimensional second-order equationg

\ )l‘
Euler Berm
: associated
Supel—posmon of the beam and bar elements give
analyze plane frame structures. The f ' 1S€ to frq

52 EULER-BERNOULLI BEAM ELEMENT

5.2.1 Governing Equation

fn the Euler-Bernoulli beam theory,

it is assumed that plane cross secti '
: : \ ections perpendicular to
the axis of the beam remain plane and perpendicular to the axis after deformation. In this

theory, the transverse deflection w of the beam is governed by the fourth-order differential
equation |

dr d*w '
I EIE;E' +ecrw=gq(x) for O0<x<L (5.2.1)

where EI = E(x)1 (x), ¢ =cf(x), ¢ = q(x) are given functions of x (i.e., data), and w 1s
the dependent variable; E denotes the modulus of elasticity, I the second moment of area
about the y axis of the beam, ¢ is the distributed transverse load, ¢ the elastic founda-
tion modulus (if any),.and w is the transverse deflection of the beam. The s.ign .conventi(.)n
used in the dcrivati(;n of (5.2.1) is shown in Fig. 5.2.1. In addition to sag#ymg _the dif-
ferential equation (5.2.1), w must also satisfy appropriate boundary conditions; since tt;c(
equation is of fourth order, four boundary conditions are needed to solve 1t '(Ii'l}:ie we E
formulation of the equation will provide the form of_ these four b9undaryni:2 ne:(::ls('see
step-by-step procedure for the finite element analysis of (5.2.1) 15 prese
Example 2.4.2).
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INITE ELEMENT METHOD
main £2, then u is

s). Similarly; if uis
9%u/0x”. 9%u/dy’,

' is of class —dimensional do

. < £ C \ )

d econtinuousm _Thus, if # 18 0L &% € may 10

and : ie du/0x and du/dy exist bU y né

ey 3 > _— o lﬂ

I !, then 'u/a,r.;md Ju /oy exist and are cont

of class & b ; dpony. WS
2. /ydx exist but may not be mn.tmm' ), A

Wh the dependcnt variables arc functions of on¢ :
n : . [ ‘ » »

: c'g a line segment @.e. unc—dlmcnsmnal) and the end pol
S ors sints. When the dependent variables arc functions © ’
BomdhTE o S twu-dimcnsional and the boundary 15 the ciose

nt variables ar€ functions of
dimensional surface.

- and ), the domain1
.c-dimcnsional domain, depende
-) and the boun - al surface |
' jal equation 15 said to describe a boundary
ent variable and possibly its derivatives
ified values on t dary T of €2. An initial value problem
L1y its derivatives aré specified initially

ally time-dependent problems. Exam-

discussed in Seetion 1.2. A problem
ent variable is sub-

¢ variable (say, X ), the
nts of the domain are called
f two independent variables
d curve enclosing
three coordinates

ndependen

0). Initial valu

(i.e., at time /=
and initial v

ples of boundary
can be both a boun

alue problems Were
dary value and initial value problem if the depend

ject to both poundary and initial conditions. Another type of problem W€ encounter 1s
n governing the dependent unknown also contains an

one in which a differential equatio

unknown parameter and we are required to find both the dependent variable and the pa-

rameter such that the differential equation and associated boundary conditions are satisfied.
les of various types of problems

Such problems are called eigenvalue problems. Examp
we encounter in science and engineering are given below (the mathematical classification

of differential equations into elliptic, parabolic, and hyperbolic is of no interest at the

moment).

Boundary .Value Problems. Steady State Heat Transfer in a Fin and Axial Deformation
of a Bar [Fig. 2.2.3(a)]: Find u(x) that satisfies the second-order differential equation and

boundary conditions:

Nyl
AW +ceu=f for O<x<L (2.2.13a)
: du
Sy v u(O) = Up, ( — —
. dX)x=L qo (2.2.13b)

Bending of Eldstzc Beams
" ) under Transverse Load: Fi .
differential equation and boundary conditionS'ad' RN sk oot -octlos

> ([ dPu

) (baﬁ)+cu=f for O<x<lL (2.2.140)

i u(0) = uy, (d_u) o

' ‘ dx v

[i bdzu‘ x=0 »

dx \"dx? ] =m, ( .‘.1_2)
x=l ——

ast) " (22.14b)

Jm a" m -Di :
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Finite Element Formu_lation
Starting from Governing
Differential Equations

As discussed in Chapter 1, the finite element method has been applied to a wide variety of
problems in various fields of application. This has been possible because of the common
features in the mathematical formulation of these seemingly different problems, e.g. many
problems of engineering analysis can be represented by partial differential equations. In some
cases, the same type of partial differential equation (e.g. the two-dimensional Laplace/Poisson
equation) can represent a large number of physical problems (e.g. ground water seepage,
torsion of bars, and heat flow). Thus, to gain a proper perspective of the method of finite
elements, we would like to present itin this chapter as a method for finding an approximate
solution to differential equations.

The Weighted Residual (WR) method is a powerful way of finding approximate solutions
to differential equations. In particular, The Galerkin Weighted Residual formulation is the most
popular from the finite element point of view. Piece-wise trial function approximation of the
weak form of the Galerkin weighted residual technique forms the basis of the finite element
method. In what follows, we will first introduce the general weighted residual technique and
the Galerkin form of the weighted residual technique, using a set of trial functions, each of
which is valid over the entire solution domain. We will then introduce the weak form of the
same. Finally, we will present the piece-wise trial function approximation concept, wherein
each of the trial functions used is valid only over a small part of the domain. This leads us to
the formulation of the finite element method.

2.1 Weighted Residual Method—Use of a Single Continuous
Trial Function
Let us consider a general problem of engineering analysis described in the form of a differential

equatif)n (to be valid within a particular domain Q)
conditions on the boundary T". Our scheme of fi

m—_ﬂ-— e, 16
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Weighted Residual Method—Use of a Single Continuous Trial Function 17

> Assume ial) soluti
# a guess (or trial) solution to the problem. For example, for a one-dimensional
problem, we may choose a trial solution as

f(x) = cp + cpx + (‘212 P @.1)

> In general, the function so assumed will satisfy neither the differential equation within
t‘he d.omuin (Q) nor the boundary conditions (on I'). By substituting the assumed
function in the differential equation and the boundary conditions of the problem, find
the error in satisfying these (we will call these “domain residual” and “boundary
residual ™).

» Determine the unknown parameters (co, ¢}, ¢, ...) in the assumed trial function in
such a way as to make these residuals as low as possible.

In the process, if we can make the domain and boundary residuals identical to zero
everywhere, we will get the exact solution to the problem itself. In general, we expect to get
a reasonably accurate solution to the problem at hand. In the context of the finite element
method, we will limit our discussion to trial solutions that satisfy the applicable
boundary conditions and hence, only domain residual remains. The choice of trial
solutions that implicitly satisfy the differential equation but not the boundary conditions (thus
resulting in nonzero boundary residual) leads to the “boundary element method”. As a detailed
discussion on the boundary element method is beyond the scope of this text, the interested
reader may refer to standard texts for details of this technique.

We will use the following simple example to illustrate the above method of finding

approximate solutions to differential equations.

form rod subjected to a uniform axial load as illustrated in

Example 2.1. Consider a uni
own that the deformation of the bar is governed by the

Figure 2.1. It can be readily sh
differential equation

Fig. 2.1 Rod subjected to axial load.

72
AEZ—x; +gp =0 (22)

with the boundary conditions u(0) = 0, e = 0.
s AX\x=L

il
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18  Finite Element Formulation Starting "[g)’lz‘{A(li}Vf’CniIng—‘I{l.[fé’fflﬂ’l(ll Equations

Let us now find an approximate solution to this problem using the method just discuyg,

Step 1: Assume a trial or guess solution.  Let
7
ulx) = f(x) = ¢y + cix + X (2'3,

re yet to be determined. In order to satisfy the first bou

where the constants cg, ¢, €2 a -
: T cond boundary condition, we have

condition that 4(0) = 0, we have ¢y = 0. To satisfy’ the se
¢; = —2¢,L. Thus we now have, for our trial solution,

i(x) = c)(6* - 2Lx) (24)

Since the trial solution contains only one free parameter ¢z, it is often referred to as a “ope.

parameter solution”.
Step 2: Find the domain residual. ~Substituting in the governing differential equation

2 A
P AEZ—;‘ + g0 = AEQe) + o 25)
X
Step 3: Minimise the residual. Since there is one residual to be minimised and one
parameter to be determined, we can readily solve for the undetermined coefficient by setting

the residual to zero, i.e., R; = 0, yielding

i)
ol 2.6
2 = QAE (2.6)
Thus our final solution is
A 9o 2
=Y —2_ |(2xL — 2.7)
i) (ZAE)( e *)

For this simple example, since we could make the residual identically zero everywhere,
our final solution tallies with the exact solution.

Example 2.2. The governing equation for a fully developed steady laminar flow of a
Newtonian viscous fluid on an inclined flat surface (see Figure 2.2) is given by

l L
Gravity
8

Fig. 2.2 Laminar flow on an inclined surface.
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e Weighted Residual Method—Use of a Single Continuous Trial Function 19

d*v
/.IF + pg cos =0 (2.8)

where
M = coefficient of viscosity,
v = fluid velocity,
p = density,
g = acceleration due to gravity,
@ = angle between the inclined surface and the vertical.

The boundary conditions are given by

dv
dx x=0
wiL)y =0 (no slip)

Let us find the velocity distribution v(x) using the weighted residual method.

=0 (zero shear stress) (2.9)

Step 1:  Assume a trial solution. Let

v(x) = $(x) = ¢cg + c1x + c2)c2 (2.10)
Hence, '
Q = ¢ + 2c,x | 2.11
i 2 (2.11)
From the boundary conditions, ¢; = 0, ¢y = —c,L?. Therefore,
o) (A L) (2.12)
Step 2: Find the domain residual '
R; = 1(2c;) + pg cos @ (2.13)
Step 3: Minimise the residual. R, is a constant and can therefore be set to zero. Hence,
¢, = —pgcosd (2.14)
2u
Therefore, :
P o 0
, gl g8 906 [2 2R
il i ( ) (2.15)

It is readily verified that our solution matches the exact solution as we can make the
domain residual identically zero.

Example 2.3. Consider the problem of a cantilever beam under uniformly distributed load
qo as shown in Figure 2.3. The governing differential equation is given by
d*v ‘
EI?J? = ggv= 0 (2.16)

and the boundary conditions are‘givgri by

W0) = 0, %@) -0

L._-.u
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Pryan Do .
2 ' dx
i acement and slope at the fixeq

nditions enforce zero displ

1ding moment and shear force at the free enq.

where the first two boundary condit i
end and the last two conditions prescribe zero be

o

e -

Fig. 2.3 Cantilever beam under load.

Step 1: Assume a trial or guess solution. We observe that it is not easy to seleg:t a trial functii)n
that satisfies all the boundary conditions. Let us choose v(X) = cp + X + CX + e 4+ .£25

From the boundary conditions that #(0) = 0 and dv/dx (0) = 0, we have ¢y = 0 = ¢,.
In order to satisfy the boundary conditions at x = L, we should have

¢y = =3¢;L — 6c4l%, ¢z = —deyL (2.18)

Substituting and rearranging the terms in the trial solution, we get
P(x) = eq@® — 4LX° + 6x°L7) (2.19)
We thus observe that finding trial solution functions that satisfy all the boundary
conditions could, in general, be cumbersome.

Step 2:  Find the domain residual. Substituting in the differential equation, we get the domain

residual as
Rd(X) = 24EIC4 = 90 (220)

Step 3: Minimise the residual. Since there is one residual to be minimised and one parameter
to 'be determined, we can readily solve for the undetermined coefficient cy4 by setting the
residual to zero, i.e., R, = 0, yielding thereby
‘ ¢4 = qo/(24ED) (2.21)
Thus our trial solution is
V) = g(24ED [x* - 4L + 6x°17)

which can be readily verified to be the exact solution itself
were able to make the residua] identically zero within the e;l

This is to be expected since we
tire domain.
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q0

L

g
e

>
Fig. 2.4 Beam on simple supports.
El% - q =0
v(0) = 0, %(0) = (2.22)
v(L) = 0, z—:(L) =0

Step 1: . Ass.ume a trial solution. We can use the approach of Example 2.3 and find a
polynomial trial solution satisfying all boundary conditions. However, in view of the special

boundary conditions of simple supports, we can make the process simple by choosing
trigonometric functions. Let

v(x) = v(x) = ¢; sin (zmx/L) (2.23)
This one-parameter trial solution satisfies all boundary conditions.

Step 2: Find the domain residual. Substituting the trial solution $(x) in the governing
differential equation, the domain residual is obtained as

R, = c(m/IL*ED) sin (7mx/L) — qq (2.24)

Step 3: Minimise the residual. We observe that, unlike in the previous examples, the domain

residual is now varying from point to point within the domain (0 < x < L). Since we have only

one coefficient to be determined, we can set the residual zero only at any one point of our

choice within the domain if we follow the approach of previous examples. This technique is

called the point collocation technique, wherein we set the residual (in general, a function
of x) to zero at chosen points within the domain—the number of points being equal to the
number of coefficients in the trial function that need to be determined. We will illustrate this
procedure now. In this procedure, however, there is a danger that the residual might be unduly
large at some other points within the domain. We may thus want to “minimise” the residual
in an overall sense over the entire domain rather than setting it identically zero at only few
selected points. This will be discussed in the next section.

Solution by point collocation. Let us make R, = 0 at x = L/4, ie.

cy(z/L)* (EI) sin (7/4) — qo = 0 (2.25)
yielding thereby

I
V2 g (2.26)

XL
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and the resulting trial solution is
4
JZ_ Lie, X%
\;(Y) = -—-—0'— sin — (227)
' El L
We may repeat this process by setting the domain residual zero at other axial locationg.
Figure 2.5 compares the solutions V(x) obtained in this manner against the classical exagy
i ——R,(LI4) =0
4T —&—R,(L/3) =0
+R1/(L/2) =0
__S_ 12
S 10 ¢
(]
o 8
2
g 6
(2]
»
=
2 -
2 ’ * ! : — N— ;

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalised axial location on the beam 14
Fig. 2.5 Simply supported beam deflection. ( ql‘fn =1000J

solution. Figure 2.6 shows a plot of the domain residual in each case. In this way, we are able
to generate different approximate solutions to the problem but each of these solutions deviates
appreciably from the exact solution. We can improve our trial solution by adding one more term
to the Sine series. Since the problem at hand is symmetric about x = L/2, we modify our trial
solution as follows:

v(x) = ¥(x) = ¢; sin (mxIL) + ¢ sin (3zx/L) (2.28)
0.6
—®—Residual R,(L/4) =0
04 + —m—Residual R, (L/3) =0
Residual R,(L/2) =0
0.2 1
- O 1)
E
9
@ -0.2
(a7
-0.4
-0.6
-0.8
-1
\

Normalised x-location

Fig. 2.6 p i i
lot of resndual-snmply Supported beam (Example 2 4)
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With this two-term trial function, we obtain the domain residual as
R, = i
d = (ILY(ED) sin (mx/L) + cy3n/L)YED sin Bzx/L) - qo (2.29)

Since we have two cons
. stants to be determined, we can s '
ctposed paiatBiLSE aeen i can set the residual zero at two
L L,
R‘,(4) . R,,( 3) oy (2.30)

4

C‘(,LE)A EI(—\/%) " c-3(37”) 51(71_5) -go =0 (2.31)

’ 3
Cl(%) El[iz——) + c3(3ﬂ EI(0) - q5.= 0 (2.32)

Solving these equations, we obtain

i.e.,

‘IoL4
\/—”4 El (2.33)

L4

¢ = 0. 00003289 2 (2.34)

EIl

Figure 2.7 compares the solution #(x) obtained in this manner against the classical exact
solution. Figure 2.8 shows a plot of the domain residual. We observe that this approximates
the solution perhaps better than the earlier one-parameter solution, but it still deviates

appreciably from the exact solution.

14 —e—TWO TERM
12 1

10 -

Transverse deflection

0 T T T T T 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised axial location
Fig. 2.7 Simply supported beam deflection—Two-parameter solution.
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— "/‘,_—____’____—___/"_P«_,—I—/__’_——————'——ﬁ
02 _e—Residual R, (L4 and L/3) =0
O P
0 0.1 0 03 0 0.5 , 0.7 0.9

-0.2
=g
-
9
O
& 04

-0.6

0.8

il \

Normalised axial location

Fig. 2.8 Domain residual—Two-parameter solution R;(L/4 and L/3) = 0.

Rather than trying to set the residual exactly zero at a few selected points and having no

control over the residual at all the other points in the domain, we will now try to minimise the

residual in an overall sense. This technique is called the weighted residual technique.

Solution by weighted residual technique. For the problem at hand, we will formulate this technique

as

li: W, (x)R;y(x) dx = 0 (2.35)

where W;(x) are appropriately chosen weighting functions, helping us o achieve the task of
minimising the residual over the entire domain. We choose as many weighting functions as
necessary to generate the required number of equations for the solution of the undetermined
coefficients in the trial function. For example, for a two-term trial solution, we would take two
different weighting functions to generate two equations necessary (o solve for the two
coefficients. While the choice of weighting functions W(x) is entirely arbitrary (as long as they
are nonzero and integrable), Galerkin (1915) introduced the idea of letting W(x) to be same
as the trial functions themselves. Thus, in this example, we take the weighting function to
be sin (7x/L), sin (37x/L), etc. Let us illustrate the procedure of the Galerkin weighted residual
technique for the one-term trial function, i.e., let

v(x) = ¥(x) = ¢y sin (7x/L) (2.36)
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weighted residual approach is that, if we are able to satisfy this criterion for a sufficiently large
number of independent weighting functions, then it is likely that the assumed solution will be
reasonably close to the exact solution. More strongly, if we have taken a series representation
(e.g. polynomial, trigonometric) for the trial function (and, therefore, W), we expect that our

result will get better as we include more terms in the series. Thus we expect good convergence
properties.

Example 2.7. To show the application of the Galerkin technique to a more complex
situation, consider the simply supported rectangular plate subjected to uniform load as shown
in Figure 2.11. The governing differential equation is given by

Eh’ o*w * 3 o*w 1% 9*w LR
12(1—v*)| ox* dx* dy* oy* . o)

All edges simply

supported
|
Fig. 2.11 A simply supported plate.
and the boundary conditions by
w(0,y) = 0 = w(a, ), 9*wlox* = 0 for x = 0 and a
w(x, 0) = 0 = w(x, b) 0*w/dy* = 0 for y = 0 and b

Step 1: Assume a trial or guess solution. In view of the boundary conditions for simple
supports, we will choose a trigonometric function for trial solution.
Let us choose a one-term trial function given by

w(x,y) = w(x,y) = ¢y sin(zx/a) sin (7wy/b) (2.60)

R ——————— .
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- e ————— ‘\
It is easy to see that our trial function satisfies all the boundary conditions of the probley,

Step 2:  Find the domain residual. The domain residual is obtained by substituting Ww(x, y) i
the differential equation as follows: |

2

R ——ﬂ—c [£2 + £2 sinﬂsinﬂ—(
7 120-v%) "\ a b a Ber 1O (261

Step 3:  Minimise the residual. The weighting function is W(x, ) = sin (7zx/a) sin (7y/b). The
weighted residual statement will now be

beal  7mx . my ER® 2 SR . X Ty
Sin —sin rla)” + (x/b sin—sin— — dxdy =0 (2.6
"-0 '[0( o b ){12(1—v2)ql[( 4 e ] a b 4 y=0(2.62

Solving for ¢;;, we get

2
_ (16g, [ 120-1%) 1 |
= ( e )( ER J[(:r/a)2 + (fr/b)zJ (4

If a = b, i.e., for a square plate, we have the deflection at the centre of the plate as giver
by @/z%) [12(1 - v)(ER)] (g0a")-

Example 2.8. Consider a 1 mm diameter, 50 mm long aluminium pin-fin (as shown ir
Figure 2.12) used to enhance the heat transfer from a surface wall maintained at 300°C. The
governing differential equation and the boundary conditions are given by

Fig. 2.12 A pin-fin.

2

gl i Zp womy |
dx A.
T(0) = T, = 300°C

dT ; - ‘

_d_(L) 2% (insulated tip) (2.64)
X
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where

k = coefficient of thermal conductivity,
P = perimeter,

A, = cross-sectional area,

convective heat transfer coefficient,
wall temperature,

ambient temperature.

-~

I
Too
Let k = 200 W/m/°C for aluminium, h = 20 W/m’°C, T., = 30°C. Estimate the temperature
distribution in the fin using the Galerkin weighted residual method.
With the given numerical values, we have
d*T

—- = 400(T - 30) (2.65)
dx

with T(0) = 300°C, d—T(L) =110
dx
Step 1: Assume a trial solution. Let
T(x) = T(x) = ¢y + c1x + Cox’
From the boundary conditions, ¢y = 300, ¢; = —2¢,L. Therefore,
T(x) = 300 + c,(x* — 2Lx) (2.66)
Step 2: Compute the residual. Substituting T'(x) in the differential equation, we get
R, (x) = 2¢, — 400[270 + cy(x* — 2Lx)] (2.67)

Step 3: Minimise the residual. The weight function W(x) = x> — 2Lx. Thus we have
L
[ &7 -2LoR,x)dx = 0 (2.68)

Solving for ¢,, we get ¢, = 38,751.43. Hence,
T.(x) =300 + 38,751.43(x* — 2Lx) (2.69)

We can readily obtain the exact solution as

L.
|

W, ¥ Tolee T
4 (fx)lm-lct =T, + (—W——J cosh [m(L - x)]

cosh (mlL)
where
m = 1P (2.70)
kA,

We observe that the exact solution is an exponential function. The approximate solution
obtained just now is quadratic. We can improve our approximation by taking higher degree
terms in the polynomial trial function. Let

Fx) = o ¥ 017+ c +.C3x° (2.71)

5
_
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From the boundary conditions, ¢p = 300°C.
¢, = —-2c,L - 3C3L2 (2.72}
Thus, 1
Fx) = 300 + cy(x* - 2Lx) + o5 (% < 3L %) e

The weighted residual equations can be developed using the two weighting ﬁmCtiom
(_\'2 — 2Lx) and (,\'3 — 3L%). We can get the solution as

Gy 48,8604, Cy = —109,229 (274)

Thus,
F(x) = 300 + 48,860.4(x° — 2Lx) — 109,229(x> — 3L%x) (2.75

We can further improve upon our solution by taking one more term in the series, i.e.

j:'(x) = ¢g -+ c|x ar c2x2 =13 c3x3 S C4]C4 (276)

From the boundary conditions we have
o = 300, ¢ =—2c5L B3l - dc,L? 2.7

Thus,

Fla) = 300 + (o — 2Lx) Hfes(x® — 3L%) + culx® - 4L°x) (2.78)

We can develop the three weighted residual equations using the weighting functions
(x = 2La), {5 = 3L pand (x* — 4L°x). We can get the solution as
c, = 53,702.8, . oy = -255,668, ¢4 = 132 x 10°
Therefore,
7(x) = 300 + 53,702.8 (3% — 2Lx) — 255,668 (x’

Table 2.1 compares the various approximate solutions with the exact solution. It 1s
observed that the accuracy of the Galerkin approximate solutions can be systematically
improved by taking more and more terms in the series solution. However, the mathematical

~ 31%) + 1.32x 106 (x* — 4L%x) (2.79)

Table 2.1 Comparison of Various Solutions for Temperature in a Fin

Axial Quadratic Cubic Quartic Exact
location solution solution solution solution
0 300 300 300 300
0.005 281.59 280.87 280.75 280.75
0.01 265.12 264.11 264.00 264.02
0.015 250.59 249.62 249.60 249.62
0.02 238.00 237.33 237.39 23743
0.025 227.34 227.16 227.27 227.31
0.03 218.62 219.02 219.12 219.16
0.035 211.84 212.83 212.86 21291
8.8:5 207.00 208.51 208.43 208.49
0.05 204.09 205.98 205.79 205.85
; 203.12 205.16 204.91 204.97
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Chapter 2

MATHEMATICAL
PRELIMINARIES, INTEGRAL
FORMULATIONS, AND
VARIATIONAL METHODS

2.1 GENERAL INTRODUCTION
2.1.1 Variational Principles and Methods

This chapter is devoted to a review of some mathematical preliminaries that prove to be
useful in the sequel and to a study of integral formulations and more commonly used
variational methods such as the Ritz, Galerkin, collocation, and least-squares methods.
Since the finite element method can be viewed as an elementwise application of a variational
method (see Section 1.4), it is useful to learn how variational methods work. We begin with
a discussion of the general meaning of the phrases “variational methods™ and “variational
formulations” used in the context of finite element formulations.

The phrase “direct variational methods” refers to methods that make use of variational
principles, such as the principles of virtual work and the principle of minimum total potential
energy in solid and structural mechanics, to determine approximate solutions of problems
[see Oden and Reddy (1983) and Reddy (2002)]. In the classical sense, a variational prin-
ciple has to do with finding the extremum (i.e., minimum or maximum) or stationary values
of a functional with respect to the variables of the problem. The functional includes all the
intrinsic features of the problem, such as the governing equations, boundary and/or initial
conditions, and constraint conditions, if any. In solid and structural mechanics problems,
the functional represents the total energy of the system, and in other problems, it is simply
an integral representation of the governing equations.

Variational principles have always played an important role in mechanics (see the ref-
erences at the end of the chapter). First, many problems of mechanics are posed in terms of
finding the extremum (i.e., minima or maxima) and thus, by their nature, can be formulated
in terms of variational statements. Second, there are problems that can be formulated by
other means, such as the conservation laws (as illustrated in Chapter 1), but these can also
be formulated by means of variational principles. Third, variational formulations form a
powerful basis for obtaining approximate solutions to practical problems, many of which

Scanned by CamScanner



10D

R T
F FINITE ELEMENT ME
NTRODUC TION TO TH '
28 ANl um total potential energy. for example,
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arded as d SHH T A inite elem .

can be reg nt of displacement fini ¢ e body [Reddy (2002)]. Varia-

ne
is for the developn aex fio]
as a basis for enlacement and stress fielc g :
imate displacement . rovid
determine approximate dispk (o unify diverse fields, suggest new theories, and p e

tional formulations can .|l.s¢') sel istence and uniqueness of solutions to problems. Similarly,
i 16,8 1¢ existence ¢ N - At i
a powerful means to study | can be used in lieu of the equations governing

» 7 )
Hamilton's principle [see Reddy (2002)

dvnamical systems, and the variational f :
eé,llt‘lll'(‘"‘ in vlinear continuum thermodynamics.

orms presented by Biot (1972) replace certain

2.1.2 Variational Formulations
A ions”’ the construction of a
i S hrase “variational formulations” refers to' strl .

e 4 ill be made clear shortly) or a variational principle that is
functional (whose meaning will be m
equivalent to the governing equations of the problem. The modern use of‘the phrasc? refers
to the formulation in which the governing equations are Uanslgtefi into eq.m\fa]ent weighted-
integral statements that are not necessarily equivalent to a variational principle. Even thpse

i iational principles in the classical sense (e.g., the Navier—
problems that do not admit variational principles in the :
Stokes equations governing the flow of viscous or inviseid fluids) can now be formulated
using weighted-integral statements.

The importance of variational formulations of physical laws, in the modern or general
sense of the phrase, goes far beyond its use as simply an alternate to other formulations
[Oden and Reddy (1983)]. In fact, variational forms of the laws of continuum physics may
be the only natural and rigorously correct way to think of them. While all sufficiently smooth
fields lead to meaningful variational forms, the converse is not true: There exist physical
phenomena which can be adequately modeled mathematically only in a variational setting;
they are nonsensical when viewed locally.

Thf_: starting poi-nt for the discussion of the finite element method is differential equations
governing the phyS.lcal phenomena under study. As such, we shall first discuss why integral
statements of the dlffe;ential equations are needed.

2.1.3 Need for Weighted-lﬁiegral Statements

In almost all'approximate methods used t i
] appro 0 determine the solution of dj i
integral equaihlgﬁé, we seek a solution in the form o Bt s

A 4

N =
uOAUnx) =3¢/, %) 2.1.1)°
Jj=1 '

where u represents the solution i
o n of a particular dj ' : :
ary conditions, and (/s i, Precsi differential equation and associated bound-

of unkno N that is represented ag ali b
which mew;rg:lr:ﬁ:m ¢j and known functjons ¢, of position x in ;Za:i combination
sy solmimi o lzoscdl. We shall shortly discygg the conditions 0 SRR ihan
Py 5 o o N 18 completely kpowp only when ¢, are = n ;.
1eans to de l:mmelqj. such that Uy sagich J 41e Xnown. Thug, we must find

Scanned by CamScanner



CHAPTER 2: MATHE
2! MATHEMATIC . =
ATICAL PRELIMINARIES, INTEGRA] FORMULATIONS, AND VARIATIONAL METHODS 29

and conditj -
actsolutions ogn ., dcwm.]inpclzl thT:,‘: ‘mcl‘hlud.\' are not uhoutlpmblcms for which ex-
approximate methods is to find m? l‘l ) n]':)xlinu 1(‘)(15 g ‘111211I1§n1ut1c1|| i b O'f
analytical solutions. When the exact lxlvluli(:m"f i problcmﬂ s ngt admlt
find a solution Uy that satisfies the )l:nvvrnilll' tll-“m'" 'Iw dtl'lt‘fm'"Cd» th'c s
process of satisfying the governing cqumiuml%l L(I.“‘“-mm maelc | g b
but by planning) N algebraic relations : 1 p‘pmm’mulcly. i e EICCldefl”Y
discussion of these id;-m o ]L‘ \ .1( ns leong‘lhc N parameters ¢y, ¢y, . - . | ¢y. A detailed
e as 18 given in the next few paragraphs in connection with a specific

Consider the problem of solving the differential equation

d du :
- fl(-\)g; +c(wu= £(x); for O<x <L (2.1.24q)
subjected to the boundary conditions
du
u(0) = uy, [a(x)—] = Qo (2.1.2b)
dx |, _,

.wher ea(x )., ¢(x),and f (x) are known functions, uo and Qgare known parameters, and u (x)
is the function to be determined. The set a(x), c(x), f(x), up,and Qy is called the problem
data. An example of the above problem is given by the heat transfer in an uninsulated rod (see
Example 1.2.2): here u denotes the temperature (6), f(x) is the internal heat generation per
unit length (Ag), a(x) is the thermal resistance (kA), ¢ = B P, u is the specified temperature
(60), and Qy is the specified heat. '

We seek an approximate solution over the entire domain 2 = (0, L) in the form

N
Uy =) ci$;(x)+po(x) (2.1.3)

=1

where the c; are coefficients to be determined and ¢;(x) and ¢o(x) are functions chosen
such that the specified boundary conditions of the problem are satisfied by the N-parameter
approximate solution Uy. Note that the particular form in (2.1.3) has two parts: one con-
taining the unknowns (3 ¢j¢;) that is termed the homogeneous part and the other is the
nonhomogeneous part (¢) that has the sole purpose of satisfying the specified boundary
conditions of the problem. Since ¢ satisfies the boundary conditions, the sum Y cj¢; must
satisfy, for arbitrary c;, the homogeneous form of the boundary conditions (Bu = il is said
to be a nonhomogeneous boundary condition when & # 0, and it is termed a homogeneous
boundary condition when i = 0; here B denotes some operator). Thus, in the present case,
the actual boundary conditions are both nonhomogeneous (B = 1 and it = uo at x = 0, z'ind
B=a(x)(d/dx)andii = Qpatx =L).The particular form (2.1.3)is convenientin selecting
- ¢ and ¢;. Thus, ¢y and ¢; satisfy the conditior}s

Bpo=1i, B¢;=0 forall p 51,21 .0 (2.1.4)

To be more specific, let L =1, ug =1,00=0,a(x)=x,c(x)=1, f(x)=0,and N =2.
Then we choose the approximate solution in the form .

d 305
U, =ci1¢1 + 22 + ¢o With po=1, ¢ (x) =x>—2x, ¢p=x"—3x
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¥ (2.1.2b) of the problem for any values of ¢; and ¢,

l'OﬂL
tha

because _d¢n) —0: ¢,(0)=0, (:“) ' = for J ’ ( )
¢o(0) =1, (’l dx ). 'l" o
tisfy the differential equation (2.1.2a), we must have
To make U> sati ‘ : . jgd
{IIL/_* . {l"(/j | U 2(_|(‘\ l) 3(.‘!(.‘ 2 l) 2c 7% ()(,!X
R - teor(x?=2x)+(x* =3x) +1=0 (2.1.6)

- ~oeffic s of various powers
sion must be zero for any value of x, the coefficients of the va p
oo IS EXPIess k
Since this exg

of x must be zero:
I'+2¢y+3c; =0

—(6c1 +3c) =0
¢c1—9c; =0
e=0

The above relations are inconsistent; hence, there is 1o solution to the. equatif)ns. On .the
other hand, we can require the approximate solution Uy to satisfy the differentia] equation
(2.1.2a) in the weighted-integral sense,

I
/ W(x)Rdx =0 (2.1.7)
0
where R denotes the left side of the equality in (2.1.6) and is called the residual,
dUy . d*Uy
=F—— = U
= Vi Un

number of equations as the number of unknown coefficients, ¢ j- For example, in the present
example, if we take ¥ = lLand w=x, we obtain

1 1 1 1
0=/ I"Rdx= (1 + 2¢, + 3¢;) + 5(—601 = 3¢) + §(C1 = 9¢;) + 192
0

I
i ! I i I
0~/0 x-Rdx=§(1+26‘1 +302)+§(—661 —36‘2)'{-2(61 ~9C2)+§CZ

or

2 Sot 4. 3]

AMAEELT g 6 gp e = (2.1.8)
which provides two

-integra] Statements
algebraijc €quations
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Coefﬂcients. We will now discuss the

wd in structural mechanics,
u

se
tup the necegs

) dary equati p
details of the Ra Y €quations to solve for the unknown

yleigh-Ritz method, which is popularly
131 Rayleigh—Ritz Method

The Rayleigh-Ritz (R-R) method consists of three basic
dSIC S CpS'

Step 1; Assume a displacement field, Let the displacement fi Idb
= A nt rne e

_ 1.2, ..., m, where N; are the shape function given by (¢(x) + ¥ ¢;N;},

i are the as yet undetermined coefficients.

withi

Sipp 2 Ev(;luﬁztzggn:{; tfehet tO{‘ali potential. For the system under consideration, evaluate the
1otal potential i, nt with the assumed displacement field in Step.1 above.

Step 3: szr up ailC{' solve the system Of equations. By virtue of the PSTP, the total potential
will be stationary with respect to small variations in the displacement field. The variations in

- 1 o .
the displacement field in our case are attained by small variations in the coefficients ¢;. Thus
we have

oI, _
= (, I= ks 2t i (3.41)
de;
which will yield the necessary equations to be solved for the coefficients c;.
This method was first formulated by Rayleigh (1877) and later refined and generalised by
Ritz (1908). Rayleigh worked with just one term, viz., ¢;N; while Ritz extended the technique
to an n-term approximation. However, both of them used shape functions N which were single
composite functions valid over the entire domain of the problem. Further extension of their
technique by using piece-wise defired shape functions N; will lead us to the variational
formulation of the finite element method. ’ _
We will now illustrate the basic scheme of R-R method with some simple example

problems.

Example 3.1. A bar under uniform load. Consider a bar clamped ‘at one end and left f-ree
at the other end and subjected to a uniform axial load go as shown in Figure 3.4. The governing

differential equation is given by
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with the boundary conditions u(0) = 0; i |
Galerkin weighted residual method in Ex

he R-R method. For a general defom‘ation

v=L

We discussed the solution using the ]4

We will now illustrate the solution using L

L) '} du )
. - —~AE| — | |dx
Strain energy stored in the bar, U Io er (dx J J (g

L
) qou dx — Pu(L) (3“

Potential of the external forces, V = —

has been included in the Potengg

u
where, for the sake of generality, a tip load P, = AE I

=L

of external forces. In view of the second boundary conditiO_D, the expression for the Potenty
of external forces reduces (for this example) to the following:

L
V = —Io Gou dx (345

Thus we need to find u(x) that minimises the total potential of the system given by

L1 du f
0, = J; [EAE(EJ 5 flouJ dx (346

subject to the essential boundary condition that u(0) = 0. It is to be observed that the for:
boundary condition at the free end (du/dx|,_, = 0) has been incorporated in the expressio
for the functional ttself and thus the trial function assumed need only satisfy the essentid
boundary c%n%ion.: élso, we observe that the continuity demanded on u(x) is lower (i.e. need
to be differaﬁle,;only once) compared to the differential equation form.

Let us now solve for the displacement field using the R-R method.

Step 1: Assume a displacemen: field. Let us assume that

u(x) = cx + (:3x2 (3'47)
This satisfies the essential boundary condition that u(0) = 0. We have
; e ‘,_:—. ;:-. "d;ﬂ”..‘.l'q. ..,'H - ."_..... & -
: L e a?ix—r».".-ei...l.u%.zxi.. ‘ : E (3-48)
* -
] almﬂan af the ta[ potential. The total potential of the system is given as

o it
.i' ‘ "“I-"'

ot
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Principle of Stationary Total Potential (PSTP) 77

L'l AE
Il = i >
P J. [ 2 (¢ + 2c,x)" - qo(c;x + (‘zxz)] dx

AE| , 4c? 2 3
R —— 2 7 ! 'L IA
5 [Cl L + ) th 2(‘,('211:‘ - G ('2 = {oCy 3 (3.49)

Step 3: Set up and solve the system of equations. From the principle of stationary total
potential (PSTP), we have

oIT,
== =) B iy 2 (3.50)
dc;
Therefore,
oIl
b AE L
5, = 0= SCaL +2e,17) - ‘1—02— =0
oIl 3
P AE : qoL
N 0= = Gal'/3 + 2¢,1%) - OT =0 (3.51) |
|
Solving, we obtain |
DL 9
Thus,
w(x) = - w2 = _ory — 52 (3.52) :
AE 2AE |

which is observed to be the same as that obtained in Example 2.1.

Example 3.2. A simply supported beam under uniform load. Consider a simply supported
beam under uniformly distributed load go as shown in Figure 3.5. For a deformation v(x), we

have

q0
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The strain energy

Y
v=J; %E’E&;J 4 O
The potential of the external forces 18 )
V= —J-o qov dx (3'5‘

Thus we have the total potential

2
L|EI(d*
, =, [7(617) : q"v} K By

Step 1: Assume a displacement field. Let us assume v(x).= c; sin (7x/L). This Satisfie
e itions v(0) = 0 = W(L). Wi b
essential boundary conditions v(0) = 0 = v(L). We have

d_zv = - £ sin ud
dxz =3 l L L (3%

Step 2: Evaluation of the total potential. The total potential of the system is givep by

2
LAGEL rV . 7x . TTx
I, = Io [-2—(—(:1(2) sin T] dx — g6 Sm—L—J dx

7'El ,° 2qL

4P T

¢ (357

Step 3: Set up and solve the system of equations. From the principle of stationary oy
potential, we have

oIl
2L = )
acl (3.58
Therefore,
4
IZ'E;Icl_ 2qOL -
2% v/
i.e.
4
¢, = 001307 DL 3.5
EI :
Thus the final solution is
I
vx) = 001307 o= , X
T : (3.60
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_ Principle of Stationary Total Potential (PSTP) 19

We observe th i s AR ;

bvgsamsie 2-4)-atllt1hltsh201(l;t':loer:;:§ identical to the solution obtained from the Galerkin method
sivalent to only the diff s g In rj\cthod, the original Weighted Residual statement was
q : Ifferential equation and, therefore, required that the trial solution assumed
should §atlsfy all the bf’““d‘"'}’ conditions of the problem (essential and nz;tural). The R-R
ethod is pased on the functional in which the external forces, if any, applied at the boundaries
e taken into account through the potential of the external forces. Thus the trial solution for
he R-R methoq need only satisty the essential boundary conditions. In general, if the
-'fferentl'dl_ equation form and the functional form of a given problem are both availal;lc then
e Galerkin method and the R-R method yield identical solutions when the problem in\;olves
only essential boundary conditions and when they both use the same shape functions |

xample 3..3. . Temperature distribution in a pin-fin. Consider a 1 mm diameter, 50 mm long
pinium Pm-hn s S?OW“ in Figure 3.6, used to enhance the heat transfer from a surface
wall maintained at 300°C. Let k.= 200 W/m/°C for aluminium; h = 20 W/m?/°C, T,, = 30°C.

ll .......
V‘V i s S {M SEnok iR B s s %
= - - - — - - - - -

Fig. 3.6 A pin-fin (Example 3.3).

e temperature distribution in the fin was obtained using the Galerkin method in Example 2.8
based on the governing differential equation. The governing differential equation and the
undary conditions we used are repeated here for convenience:

2
rikeadia 1
dx .
T(0) = T, = 300°C (3.61)

g & kAC%(L) =0 (insulated tip)

here k is the coefficient of thermal conductivity, P is the perimeter, A, is the cross-sectional
rea, h is the convective heat transfer coefficient, T, is the wall temperature, and T, the
bient temperature. The equivalent functional representation is given by
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L1, (dT
= J.() _Z_A( dx

) is In
where, in general, the heat flux ¢ il
i atement of the pre

Pl Phg oy - o, :
) ’ 0 2 A N
Juded. However, in view of the insulated tip b
cluded.

g u
is to find T(x) that minimises the fUncnda';

f
condition, the equivalent sl Ty
Y L1 PRy 7" dx
L rll) Jis 2} - — (7 ) 4
N - , "
[} = J‘u 2 [(/.,\‘ J.” 2 A
s at T(0) = T, = 300°C.
subject to the boundary condition that 7(0)
Step 1:  Assume a trial solution. Let
7
T(x) = f(,k) =cg t+ C1X + CoX
From the boundary conditions, ¢y = 300. Therefore,
2
T(x) = 300 + ¢1x +.cox (34
Step 2:  Compute the functional
2
L1 g EhaEn 270 + ¢x + ¢, x° | dx )
IT = -[o Ek[cl + 2¢,x] dx+J-O (2/4( )[ 1 2 ] (365
Step 3:  Minimise the functional
a_n = O a—l_l‘ = O (3.&’
de, ’ de,
From Eq. (3.65),
3
k(2c Lo+ 2c,12) + £ zic, 5 2908 & 2 "9
AN 3 2
8 Ph( 2 (360
k —C2L3 + ZCle + — —L5c2 ¥ c_2L4 + 18013 | = 0
3 A5 2

On substituting the numerical values and solving for the two coefficients ¢; and c,, we gt

¢1 = -3923.36, ¢> = 40,498.44 (3.68)

solution for temperature

Thus our approximate

. , based on the minimisation of the
functional, is given as follows

T(x) = 300 - 392336x + 40,498 44, (3.69)

—
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