UNIT -1
STATIC ELECTRIC FIELD
PART - A

1. Define Divergence:

The divergence of we vector D at any point is defined as the limit of the surface integral per unit volume as the
volume enclosed by the surface around the point shrinks to zero.

]3: im .fD.n.ds

Av—0 AV

2. Define curl:

Curl of a vector at any point is defined as the limit of the ratio of two integral of its cross product with the
outward drawn normal over a closed surface, to the volume enclosed by the surface as the volume shrinks to
Z€ero.

- Exn
CurlF = limm

v—=0 AY4

3. State Stoke’s theorem:

The line integral of the vector to enclosed path is equal to the integral of the normal component of its curl are any

surface balanced by the continuous [ﬁﬁdl = [ﬁ(V xF)n.c.

4. State Gauss law:

The surface integral of a normal component of electric flux density vector D over a closed surface is equal to the
charge enclosed by that surface.

[ﬁD.n.ds =Q

5. State Divergence theorem:

The integral of the divergence to the vector field over a volume V is equal the surface integral of the normal
component the vector over any surface bounding the role.

J'y VF dv= [!]fn ds

6. Define electric field intensity:

The electric field intensity is defined as the electric force her unit charge it is given by

g-f
Q

According to coulomb’s law,

" 4ner?
7. State Coulomb’s law:

Coulomb’s law of electrostatic force states that the force of attractive or repulsion is directly proportional to the
product of the magnitude to the square of the distance between them

Fw%N (or) C* /m?



8. Define electric flux:

Electric flux is defined as the lines or force. It denoted by the symbol y(P,). Its unit is coulomb

E= Q
4mer’
9. Define electric flux density:
It is defined as the flux per unit area. Its unit is C/m2.
D-—'_ —F¢
4mr

Where D is called electric flux density.

10. Define electric Dipole:

The equal and opposite charge constitute the electric dipole separated by a small distance .
11. Define absolute potential:

It is defined as the work done per coulomb to being to the point index consider.

12. What is the integral form of Gauss law:
mD.n ds=Q
13. What is the point form of Gauss law:
VD=p

This is called the point form (or) differential form of Gauss law.

14. Define electric Dipole moment:

The product of charge and spacing is called electric dipole moment.
15. Define potential:

The potential is a scalar quantity and is found to be moving that test charge against the field from a reference
point say from infinity to its final position.

16. What are the co-ordinate systems?

In order to describe a vector accurately, some specific lengths, directions, angles, projections or components must
be given. There are three simple methods of doing this and they are

1. The rectangular or Cartesian system of co- ordinates
2. The circular cylindrical system of co —ordinates
3. The circular spherical system of co - ordinates

17. Give relation between electric field & potential:

If two points are separated by an infinitesimal distance dr, the work done in moving at point charge from one
point to other is given by

dv=-E.dr

Since scalar potential V is a function of x, y, z.



@dx+@dy+@dz=—ﬁ dr

ox oy 0z

[zaxg+e1yav+eazg‘;].(zix dxeay dy +a, do)=—E.dr
Vr.dr=-E.dr

LE=-VV

18. State the principle of superposition?
Principle of superposition:-

Let Q1 be at a distance of rl from origin and Q2 be at a distance of 12, then E at P.

Q1 - Q1 -

E(r)= a, + a
) dneg|r 1|’ ! 4ngg|r —1|” ’

If we add more charges at other positions, the field due to ‘h” point charges is

Q1 o Q1 - Qn -

E(r) =

+
4ngg|r -1 [* u dngg|r -1 [* % dney|r—r, |

n
Q
(r)= 7,
m-14ng, ‘r - rm‘

19. Give electric flux density due to line, surface * volume density electric flux density D or electric
displacement

D=¢g, Ec/m?

Electric flux ¥ = [ﬂﬁ ds

p, dl
4nR?

For line charge, D = ag

ps ds
For surface charge, D = a
& J 47R? %
py dv
For volume charge, D = > ag
47R

20) What do you meant by conservation field?
If the line integral of a vector field around a closed path is zero, such a field is called conservative field.
21) Define DOT product.

Given two vector A & B, the dot product or scalar product is defined as the product of the magnitude of A, the
magnitude of B & the cosine of the smaller angle between them.

AB=|A|[B|cos 0,

The dot product obeys communicative law

A B=B. A




22) Define CROSS Product.

The cross product:- A
AxB=ay|Al|B| sin 0, 0,,
ax ay axz : " B
AxB=|A A, A,
1
B, B, B, :
I
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PART-B
1) Explain the rectangular co ordinate systems?

This system has three co - ordinates axis mutually at right angles to each other and we name them as x, y and z
axis. A rotation of x - axis into y - axis would cause a right handled screw to programs in the directions of z -

axis.

A point is located by giving its x, y and z co - ordinates. These are, respectively the distance from the origin to
the intersection of a perpendicular dropped from the point to the x, y and z axis.

An alternative method of interpreting co -ordinal values is to consider a point at the common intersection of
three surface, the planes x = constant, y = constant & z = constant, the constant being the co -ordinates values of
the point.

The following figure 1.1 (a) shows the points p(1, 2, 3) & (2, -2, 1) respectively
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This figure (1.1b) shows a rectangular co ordinates system

If we visualise three planes interesting at the general point P, whose co - ordinates are x, y and z, we may
increase each co ordinates value by a differential amount and obtain three slightly displaced planes intersecting
at point ‘I”’. Whose co - ordinates are x+dx, y+dy and z+dz. The six planes define a rectangular parallelopiped
whose volume is dv = dx dy dz the surface have differential areas ds=dx dy; ds=dydz;ds =dxdz



X- axis

Fig (1.1a)

X =0 plane
Y =0 P

plane 0

Z =0 plane

Finally the distance dL from p to p! is diagonal of the parallelopiped & has a length of \/(dx)z +(dy)* +(dz)’

The volume element is given in fig (1.1c)
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Vector components and unit vector:-

Let us first consider a vector ‘r” extending outward from the origin. A local way to identify this vector is by

giving the three component vectors, lying along the three co - ordinates axis, whose vector sum must be the
given vector. If the component of the vector are x, y and z, thenr = x+ y+ z.

v




Unit vector are those which have unit magnitude and directed along the co -ordinates axis in the direction of
increasing co -ordinates values. Any vector ‘B” may be described by

B=B.a.+B,a, +B,a,
|B| :./Bi +B§ +B2

as =

| i

2) Explain Circular cylindrical co -ordinates:-

A point was located in a plane by giving its distance p from the origin & the angle ¢ between the line from the

point to the origin & an arbitrary radial line taken as ¢ =0, a distance Z of the point

z
A

b ¢ = constant
p= a constant
z
A
P> 41 2))
Zl
>y

/

X

There are three unit vectors designed as follows.

e apata point P (p, ¢,z) is directed radially outward, normal to the cylindrical surface p=p, . It lies in the
planes ¢=¢, & z=z,

e a¢ isnormal to the plane ¢ _¢ y points in the direction of increasing ¢, lies in the plane Z = 7, is
tangent to the cylindrical surface p=p,

e  The unit vector a, is same as unit vector a, of the rectangular system.



¢ The unit vectors are again mutually perpendicular for each is normal to one of the three mutual
perpendicular surfaces.
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The above figure can give the rectangular of Cartesian & rectangular co -ordinates
x=pcosd=x"=p°>cos’ ¢ — (1)
y =psing=y’ =p’*sin’*¢ - (2)
z=z

Equ(1)+(2) =>x>+y*=p° [cos2 ¢ +sin’ ¢]



p=yx"+y’

cos ¢ = Xp’ sinq):y sing _y

P cosdp /X
_ 1y
¢ =tan 4

Conversion of Cartesian to cylindrical :-

A vector function is Cartesian co-ordinates is given as follows.
A=Aa +Aa +Aa, —(1)

& we need a vector in cylindrical co - ordinates
A=A +Aa +Aa, - (2)

To find Ap:

Ap :A.ap
A = (A, a, +Ayay +Azaz).ap

A =Aa.a,+Aa .a, - ((3)
Tofind A¢ :
A,=(Aa, +Aa +Aa,)a,
Ay=Aa,.a,+Aga a,

A, =A,

a,a,=a,a, =0

a, a, a,
a, cos ¢ —-sin¢ | o
a, —sin ¢ | cos ¢ 0
a, 0 0 1

Sub in (3) & (4) we get

A, =A cos ¢+A sing
Ay=-A sing+A cosd
A=(A cosp+A, sind)a, +(-A, sing+A cosp)a, +A, a

Cylindrical to Cartesian:-

A=A a +A

A =A.a,
=(A,a,+Aa,+Aa,) a,

A, =A cosd—Ad sin ¢

A =Aa,
=(A,a,a,+Aa,.a)

A=A sin¢ —A¢ cos ¢

A=(A,cosdp—A¢ sin §) a +(A sind —A¢ cos d)a, +A a,

Qs TAR,

3) Explain about spherical co - ordinates system:
Let us draw a spherical co ordinates system on three rectangular axis as shown in fig (a)

We first define the distance from the origin to any point as r. The surface r = constant is a sphere.



The second co - ordinates is angle Q between the z - axis & the line drawn from the origin to the point in

question. The surface Q = constant is a core & the two surface, core &sphere are everywhere perpendicular along
their intersection which is a circle of radius r sin 6.
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) Fig (b)

The third co - ordinates ¢ is also an angle and is exactly the same as the angle ¢ of the cylindrical co -

ordinates. It is angle between the x - axis & the propagation in the z = 0 plane of the line drawn from the origin to
the point.

Three unit vectors may again be defined at any point. Each unit vector is perpendicular to one of the three

mutually perpendicular surfaces & oriented in that direction in which the co - ordinate increases.
z
A




The unit vector a, is directed radially outward, normal to the sphere r = constant & lies in the cone 0 = constant &

the plane ¢ = constant.

The unit vector ap is normal to the conical surfaces, lies in the plane & is tangent to the sphere.
a,xag =a,

The surfaces have areas of rd rdQ, rsinQ drd¢ & r*sin0d6 d¢. the volume is r*sin®drd® d¢

x=rsinBcos¢ = x> =r’sin*Bcos ¢

y =rsin@sing =y> =r’sin’0sin’ ¢

z=rcosf =z>=r’cos’0
r=\C+y? ++2°

_ z
0=cos™

¢ =tan' (%J

ar a0 a¢
a, sinBcos ¢ cos B cosd | —sin ¢
a, sinBsind cos 0 sin¢ cos ¢
a, cos6 —sin 6 0

Transformation of vector in Cartesian to Spherical:

Let us consider a vector in Cartesian co - ordinate
A=Aa +Aa +Aa,

& to find the components of spherical vector

A =Aa,

=(A,a, + Aya/V +Aa))a,

=Aaa +Aaa +Aa.a,

=A, sinfcos¢+A sinBsing+A, cos
A,=Aa,

=(Aa +Aa +Aa,)a,

=A, sinfcos¢+ A, cosOsing+A, sin0
A, =Aa,

=A sing+A cos¢

A=(A sin¢cosp+A sin Osing+A, cosO)a, + (A, cosbcosdp+A cosOsing—A, sin 0)a, +(-A, sing+ A cos)A,

The line, surface & volume integral let us consider a charge Q whose density along line, surface, & volume is

givenby p;,ps,py

Line integral Q= IpL dl p, = % as AL—0
L

Surface integral Q = Ips ds p, = % as AS—0
S

Volume integral Q= J-pv dv p, = % as AV—0
v

4) State and Explain Divergence theorem.



Divergence:

Definition: The divergence of the vector F at any point is defined as the limit of its surface integral per unit
volume as per the volume enclosed by the surface around the point shrinks to zero.

_ lim [E.n ds
Av—0

Proof:
Consider an elemental volume Av=Ax Ay Az of a parallopiped.

Let F is a vector field. The flux of any vector F through a surface is given by the surface integral of the vector over
that surface.

The flux passing out of the volume is taken as positive and that passing inward as negative. Let Fx, y, Fz be the
components of F along the co -ordinates axis, so that

F=F,+F, +F,
Consider the volume element , the flux of the vector F in y direction into hand face is and F, (Ax Az) and

OF,
out of right hand face it is [Fy + a;ijAxAz. Therefore, the net increase of flux along the positive Y direction is

OF
flux along Y axis =| F, + —LAy |AxAz—F, AxAz
y ay y

[
»

F+£Az Av = AxAyAz

i

OF,
——»F +—Ay
oz

v

F + & Ax
oz

oF
=F, ALAz+— AxAzAy - F AxAz
ay y

OF,
= —=AxAzAy
oy

Similarly in x direction,

Flux along x axis = [FX + %l:: ij AyAz—F, AyAz

OF,
= FXMAZ + a—XXAxAyAZ —FXMAZ

= oF, AxAyAz
ox

Now, along the z - direction, the net influx of the vector is given by.

Flux along z axis = [FZ + 6an Az) AxAy —FAxAy
Z



=F MAer ‘AxAyAz F AL Ay

= i AxAyAz
0z

Now, total increase is given by,

Total flux

oOF
= oF, AxAyAz+ = —L AxAyAz+ = oF, AxAyAz
ox ay oz

oF
[ﬁF nds-(aF + Y+ZF ]AXAYAZ

ox 0oy
OF
A A
ox oy oz
F nds
@ an aFy an
=>4+ 24+ =

Av ox 0Oy 0z

By definition of divergence, we get

- OF,
vE=lim| e T
wo0Av| Ox Oy Oz
- OF
V.F:aFX oty 0k,

ox 0oy oz
[ﬁF'ndS:V.F
v Av

Divergence theorem:

The integral of the divergence of the vector field over a volume V is equal to the surface integral of the normal

component of the vector over any surface bounding the volume.

Mathematically for any field vector F

- oF OJF GF
J‘J.V.F:§+g+az

Proof:

By definition of divergence,

.7~ m( u Z]dxdydz

When dv = dx dy dz

Now,

J.”V.I—:dv:f iaxvuia +£az (Fa,+Fa, +Fa,)dxdy dz
y ox Yoz vy

5y
I 2

y )dx dy dz

[[[v.Fav= maf;dx dy dz-+ mgmy dxdz + [[[ 2= dz dx dy

= .”Fx dydz +HFY dxdz 4-'”.1:Z dxdy

= fIFSXdy dz+ ﬂ F dx dz + H F,,dx dy
[[]v. Fav = F. hds



Hence proved.
5) Explain Stoke’s theorem.

The line integral of the vector around a closed path is equal to the integral of the normal component of its well
over any surface bounded by the contour.

mﬁ.dl :Dj(VxlE). nc/s

Where C is closed contour which bounds the surface S.
Proof:

Consider the arbitrary surface S as shown below.

If F is the field vector, then by definition of curl, the line integral UjF dL, divided by the surface area gives the

curl of F normal to the surface at the point around which the surface shrinks to zero.
fiF. a1
Thus lirro1 e curl nF

Where curl nF is the component of curl of F normal to the surface S.

Now divide up the area S into a large number of still smaller elements 1, 2 etc. Each area element can be
represented by a vector directed outwardly normal to the surface.

For each such element, find the line integral in the positive direction, normally anti-clockwise which corresponds
to the positive direction of the surface elements.

If all the elements 1, 2 etc are summed up, the contributions of the common boundary of any two adjacent
elements neutralize each other, as they are oppositely directed along the common boundary

fIF.dl=[Fdl, +[Fdl, +[F dl
Applying the definition of curl F, we have

mF .dl = curl Fds, + curl Fds, +curl ds, +curl Fds, = Ij.curan ds.

(i.e) curl Fds, + curl Fds, +..... denotes the summation of normal components of curl F over the whole surface S.

Therefore,

EﬁF.dl = _Ucurl F.nds



Hence stoke’s theorem is proved.
Curl:

The curl of a vector at any point is defined as the limit of the ratio of the integral of its cross product with the
outward drawn normal over a closed surface, to the volume enclosed by the surface as the volume shrinks to
zero.

‘curlF‘ :liml[ﬁn xFds
v—=>0 v T

The component of curl of vector in the direction of the unit vector n is the ratio the line integral of the vector
around a closed contour, to the enclosed area bounded by the contour, as the enclosed area diminishes to zero.

n curlF = limlmf. dl

a>0 g .
Referring to fig, consider an elemental plane surface of area AY AZ bounded by a contour C marked as able.

|curl B| x = curl of B in the x - direction

v
~<

@Bm

lim =
Ay—0
AZ%O Ay Az

Where B is a vector, choosing the value of B at centre, we have the closed integral of B around the abde,

:del

Integral along e, = (By - ?%)Ay
Z

Integral along ab = zf@ﬂ Az
oy 2

Integral along bd = —[By + @Ej Ay
0z 2

Integral along de=—| Bz— 8]3& Az
oy 2

Adding



DjB dl =By Ay—a‘l AyAz
v oz

curl, B= [m - aByJ =p,J,

0Bz AyAz

+Bz Az+

oy oz
Simarlly
OBx 0Bz
1 B=| —-—|=
ULy [ 0z  0Ox j oly
curl B= [0]3}7 - aBX] =],
ox o0y

curl B =|curl, Bla, + ‘curly B‘ay +|curl, B

aZ

=u(Jiac+]ya,+],a)

X z

oy Oz oz ox )7 (ox oy
a, a, alz
-9 0 0
curl B= AX /6y Az
B, B, B,

The main difference of divergence & curl is that in the former the parameter along x varies only with x but in curl
the parameter in x varies along y & z.

6) Define coulomb’s law. Derive coulomb’s law in vector form
Coulomb’s law:-

The law states that “two charges Q; and Q, separated by a distance ‘r’" in free space or vacuum, the force of
attraction or repulsion is directly proportional to the product of the magnitude of charges and is inversely
proportion to the square of the distance between them

Q,Q
Fooi;2 2

KQ,Q,

r2

F=

Where, k = proportionality constant = Zl—
e
Where
¢ = permittivity of the medium

£=¢g€,

g, = absolute permittivity = = ﬁ =8.854x107"
X

€, = Relative permittivity of the medium which is 1 for free space / air.

F — QIQZ
4mer?
_ 00,

2
4mee x

F :9><109Q172Q2 newton or C* / m?
r



Coulomb’s law in vector form:-
F»

0
. /

0 2

In vector form, we need an additional fact that the force all along the line joining origin the two charges & is
repulsive if they are of opposite sign.

Let ry locate Q; and r locate Q». Then the vector Ri>=r; - r1 represent the direct line segment from Q1 to Q..

Let F> be the force on Q2 by Q1. Note Q; and Q> have the same sign.

I?_ Qle P

2= 2 12
4neR;,

Let F» be the force on Q> by Q1 where a; =a unit vector in the direction of the Ry,.

=

12 _ L-5

Ry,

an =

R, _
R, ‘1‘2 - 1‘

Let Q; be located at x,ax +y,ay +z,a, and Q, be located at x,ax +y,ay +z,a,

Then r, -1, =(x, — Xl)gx +(y, - Y1)£y +(z, —Zl)gz

2

R, = ‘rz —r1‘ = \/(Xz _X1)2 +(y, _Y1)2 +(2,—2y)

Therefore,

E = Q1Q2 b 2 —1;
2_4n8[(x2—X1)2+(y2—y1)2+(22—21)2:| '1‘2—1‘1'
QQu[ (5, =xp)as +(y2 =y, Jay +(2, 2, )a. |

F, = 7

47'[8[()(2 =x,)" +(y, ~ya) 4 (2, = Z1)2:|
7) Explain electric field intensity?
Electric field intensity:-

Consider one charge in fixed position say Q1 and none a second change slowly around. The change Qt will
experience a force exerted by Q1.

As per coulomb’s law, force on Qt by Q1 is given by

Q1Qt -

= a
t 2 91t
4me Ry,

The force exerted on the test charge Qt is defined as the electric field intensity

_ Ft _ Q1 o
-~ 7 Ay
Q, 4mgRj,
Generally, E:LZ% RN
4me R K /e\et
' 5 Rit )
1 7



Case (1):- charge at origin
Let us consider a charge at the origin and to find electric field intensity at point whose co - ordinates are (x, y, z)

V4

P(x,y, z)

(0, 0, 0) [ X
0 Y

R = (xax + yay +za.) — (Oax + Oay + Oa,)

R:xaeryay+zaz=Jx2+yz+z2
a ~ R xax+yay +za,
e i A Bt

R [C+y +7

= 5 ar
4ne,R

~ Q(xax + ygy +Z;z)

)A

4me, (x2 +y*+2°

Case (ii):- Charge not at origin

P, R=r-r’ .
(xX'v' ) >
P(x, v, z)

If we consider that the charges are not at origin but located at r1 and fixed electric field intensity a P at distance r
from the origin.

R=r-r

B Q r—rt

E= 4rg,(r—1')? - ‘r—rl!

B Qr-r' ,
4neo‘r—r1’

_ Qr-rt
4neo‘r—rl‘%

I =Xax + yay + za;

r' =x'ax+y'a, +z'a,

r—r' :\/(x—xl)2 +(y-y') +(z-2")
Q[(x-x")a, +(y-y"a, +(z-2")a, |
4re, [(x—xl)2 +y-y') +(Z—Zl)2:|%

E=

8) Discuss electric field intensity due to continues charger electric field intensity due to continuous charges:-

If charge Q is uniformly distributed throughout a volume V, the charge density p is given by

Py



To define the value of the charge density at point P, let us consider the charge AQ in a volume AV. The ratio of
infinitesimal charge AQ clinded by volume AV as AV =0

Similarly we can write for p; and p,

.AQ. . AQ
pe=lim —%ips = lim —=

The charge element dQ and total charge Q due to these charge distribution are,
dQ=p, dl>Q={p,dl
L
dQ=p, ds—>Q=jps ds
S

dQ=p, dV—)Q:J-pV dv
A%

- Q -
4mg R? T
E= J-4pL CI;IZ a, (line charge)
g,
Here, E= I4p S c;sz a, (surface charge)
g,

py dv —
E= a, (volume charge
j 4mg R T ( ge)

9) Explain Electric Potential difference and Potential

Electric Potential difference and Potential

F=qE
Since there is a moment of charge in electric field from one point rl to another point 12, there will be work done

against force. W= —I qE.dr= - qIE. dr

T I

Potential difference is defined as the work done in moving a unit positive charge from one point to another in an
electric field.

Work done on unit positive charge per charge is

v

q
V:—TE.dr J/C

1

E= Q 3
4mer
V=- Q lz dr
dme, ;T
__ Q1]
But drg, | r],
Q1.1
dney |1, 1
Q Q

4mer, - 4mer,
Vi =Vs-Vyor V,=V,-V,



E = Negative of potential gradient at that point.
10) Determine electric filed intensity due to infinite line charge
I) Using cylindrical co - ordinates?

An infinite line of charge having the charge density p, c/m is considered along the Z - axis. i.e, the line extends

from - oo to +oo along the z - axis. A point P is considered along the axis perpendicular to z, where ‘E’ is to be
measured the point ‘P’ located at a distance p from the origin.

Consider a small differential length dL carrying char dQ along the z - axis.

dQ=p,_ dl
=p, dz
dl —
E= LpL 7 ag
4ne R

B dz a, pa,-za,
o Ane (0P +2%) [P+ 2

_ P ( o
= pa,—za,)dz xa,
dme,(p® + zz)% J; )

pL +00 .

- P [pa,dz[a,]
dney(p +2%) 2 L !
Eo_PL pdz a

_4TC80 i (p2+zz)%

tanE):A:z:ptanE)
dz=psec’ 0
-

z=-w, ==

2

T
Z#+00,0=—
2

oL % p(psec’0)de 5;

E= 4me 2,52 2
o -y (pT+p” tan 0,0, 2)
P 7 p?sec’ 0 do ~
- 3
4ngy 5/ [p2(1+ tan” 6)]4
P 72 p°sec’0 do T
dne [ *sec® 0 } ¢
RATESD
p 7 —
=—= I cos 6do a,
4mep Y
PL : A
= sin 0 a
dmp o014 !
y
_w
=B 2] a,
4mep
E= PL a?)
27gp

11) Derive the electric field intensity due to finite line charge using cylindrical co - ordinates?
Due to finite line charge:-

Let us consider the differential element dl along z - axis let the minimum point be z1 and maximum point z2



dl

Q -
= 7 %
4me,R

p, dz
J, " (pa.-za)

dme, (pP+77) N

o IpLdzaq)

4ng, (p2+22)%

Jp sec’0do —
41‘[80 p’sec’0 %

12. Derive the expression for electric field intensity due to finite and infinite line charge using Cartesian co -
ordinates

Consider a uniformly charged line of length ‘L whose charge density pL c¢/m. Consider a small element dl at a
distance ‘1" from one end of the charge line. Let be any point a distance ‘" from the element p dl.

The electric field at a point P due to the charge element p dl is

dg=Pedl g
4re,r

The x and y component of electric field dE is given by,



dE =dEsin6 - (2)
dE =dEcos 0 - (3)

_p, dlsin 0

dE - (4
X 4mer? @)
From fig
0
x-L
h P
tan 6= h
x—{
x—{= =hcotd - (5)
tan

—~dL=—h cosec’0d® - (6)

. h
sinh =— =>r=—
sin 0

r=h cosec6 - (7)

dE, p,dl 51r21 0
4mer

_ p;hcosec” 0sin® d

4ne h? cosec? O
=0

[dE =P [ g
EX_IdEX_4n18h [ sin 0 do

=h [-cos 9]:&2

" 4nch
P1
= Cos o, +Cos o
4neh [ ! 2]
p,dlcos® p,hcosec’8cos 6.dO
dE, == P 2 2
Y 4mer 4neh® cosec” 0

=0l

E, = I Pr 05 0do = -Pr [sin 9]"_%
- 4neh 4neh =

p . .
E = 4TcLah [sin o, —sina, ]

“

Case (i):- If the point ‘P’ is at bisector of a line, then o, =0, =
E, =0, -~ E becomes E;

E=Pu [cos oz]
2nch

Case (ii):- If the line is infinity long, then a=0, E, =0

PL
* 2neh

13. Explain the electric field intensity due to a charged circular disc

Consider a circular disc of radius R charged uniformly with charge density of p, C/m?. Let be any point on the

axis of disc at a distance from the centre.

Consider an angular size of radius ‘r’" & of radial thickness the area of the annular ring ds = 2nr dr. The field
intensity at point p due to the charged annular ring is



_p, ds
4med?

Disc

Since the horizontal component of electric field intensity is zero, the vertical component is

dE P dsco§6
Y 4med

dEy =dE cos6

0 sin@ =7 q

d h cos 0 = %

tan 0= A

T
From fig,

tan O:A:r:h tan 0
%1 dr=h sec®> do

T

sin 0=1 =d=—
sin©

_ p,2mr dr cos O
Y dng d?
_ p,2nr h sec’ 6d6 cos 6
- 2
r

sin® @

dE

dne

22
p, sec Bsin”6 do _Ps im0 do

dE_ ==
Y 2¢ tan® 2¢

_ Ps f . _ Ps o
Ey =0 J.sm 0 do —E[—COSG]0

E= p—5(1 —CoSs o)
2¢

p-Pfelqo D
2¢ Jh? +R?
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14. Explain the electric field intensity due to infinite plane sheet of charge and two infinitely conducting

planes

Consider an infinite plane sheet which is uniformly charged with density p, c/m?* p,.

The field intensity at any point “p” due infinite plane sheet of charged can be evaluate by applying expression of
charged disc.

E:&(l—cos a) o =90°
2¢

E=P
2¢

Two infinitely conducting planes

+pS

- Ps

Consider two infinite plane sheet with charge density +p, and —p, ¢ / m?2separated by distance d.

E_Ps P _P.
2¢ 2¢& ¢

15. Derive an expression to determine electric field intensity and at P due to an electric dipole and its torque

moment.
Electric dipole:-
An electric dipole or dipole is two equal and opposite charges separated by a very small distance.

The product of charge and spacing is called electric dipole moment.

z
1
P
1
o 0o N
A L
v
d
% r
1
wy
y, >
2
r-11
v
_Q I -1
Electric dipole

Let +Q and -Q be the two charges separated by a small distance ‘d’. The product of charge Q and spacing ‘d” is
called the dipole moment m=Q d

Let P be any point at distance of r1, r» and r from +Q and -Q and midpoint of dipole.



Potential at due to +Q, V, = Q

4mer,
Potential at due to -Q, V, = 7Q
4mer,
. 1 1
Resultant potentialatp, V=V, +V, = Q{ _ }
4ne|r, 1,

If the point ‘P’ is for away from the dipole the distance r; and r; are given by

r1=r—%c056
rZ:r+%Cose

Potential at P due to dipole

Vo Q 11
4ne r—%cos 0 r+%cos 0

B & d cos 0
4ne| 12 —d% cos® 0
V:g(dcc;s 9) since d/2 <<r2
4me r
Ve Qd cozse
4ner
m cos 0
.m=Qd; V=
Q 4ner?

This shows that the potential is directly proportional to the dipole moment and is inversely proportional to the

square of the distance between them.

Electric field produced at P due to the dipole:

As V =-[E. dr, this relation can be used for evaluation of field at P due to +Q and -Q separately.

The electric field E has components along radial distance r and angle Q.

E=E, +E,
E:_ar@_aqi
or r oQ

ov_—m cosb ov_-m sin @

o 2mer’ Tor Aner?

—(m cos®|] —-m sin©O
E=a ag 5
4negr

r

3
2ng,r

T

E, - m cosge o g.F, = m C0536 _D
2me,r 2mgr

E :[m Sme]:soEsz smG:DQ

T dnet? dngr®

The expression above clearly indicate that the field component (radial as well as angular) vary inversely as the

cute of the distance
If Q =90°, E; = vanishes, but Eq persists

If Q = 90°,0bviously p is somewhere in alignment with dipole axis.



Torque experimented by a dipole in a uniform:-

VLR
4,

The dipole moment m = QL is a vector direct from negative to positive charge forming the dipole .

Uniform Field E

The numerator of the potential is given by m cos 8, which can be written as m . ar

Vo ma,
4mer?

There are two charges +Q and -Q placed in a uniform electric field. These charges experience a force QE but
opposite in direction

These two forces form a couple whose torque is equal in magnitude to the produced of force and the aim of
couple.

Torque = QE/ sin 6
_ . . _d
Q¢ Esin 6 sin 0=/

=mE sin® d=Lsin0
T=mxE - ‘

In conclusion, although a dipole in a uniform field E does not experiences a translation force, it does experiences
a torque.

16) State & Prove Gauss law?
Gauss law:-

The electric flux passing through any closed surface is equal to the total charge enclosed by the surface.
Y= Qencl
Proof:

Consider a small element of area ds in a plane surface having charge Q and P be a point in element. At every
point of surface, the electric flux density D will have Ds.

Ds (Normal)

&)

Fig . closed surface having charge



 cos0= D, (normal)
From fig, D

S
Dg(normal) =Dy cos 6

Let Ds makes an angle 6 with ds the flux crossing ds is the product of normal component of Ds and ds.

d¢ = Dg(normal). ds
=Dy cos6.ds
d¢ =Dg.ds

Total flux passing through closed surface,

¥ =Jd¥ =[f|D,.ds

E:%:D:SE:D:%
4mer 4nr

The small element of area ds on surface of sphere is

ds, =r d6 sin6 d¢
ds=r’sin® d6 d¢

Q .
¥ :szmrz.r2 sin0 do d¢

[ sin 0.dod¢

Q ZJ h
4n lool

-2 cos], o]
_ %[1 +1]122]=Q
¥=Q

Note:-

Total charge enclosed Q= Ipvdv —(1)
Y

Q= [f]D. ds= Ipvdv -(2)

Applying divergence to (2),

fiD.ds=[v.Ddv -(3)

Comparing 2 & 3 we get
VD=p,

Differential from Gauss Law.

17) Explain the application of Gauss law?

Application of Gauss law:-

Application 1: To determine the field at a distance r from an line charge of strength A c¢/m.

The figure shows a theoretically infinite charged line with length alone particular signified. Imagine that a
coaxial cylindrical surface surrounds the charged over a meter length this is a Gaussian surface.

The electric field at any point is radial an independent of both positions thro along and angular position around
the wire.



As the electric field is in the same plate as the circular ends at top and bottom of the cylindrical, no flux passes
through the end surfaces.

E:
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Infinitely long Line
of charge

Applying Gauss’s law for a metre length the charged line

[ﬂ-E.nds:anEr:%
0

E-F,-—"a
2me,r

Where ar is unit vector at any point P on the cylindrical surface and is disc radially outward, being perpendicular
to the axis of the charged line.

Application2:

Consider a closed pill box shaped surface S resting on the surface of a charged on the conductor be given by the
surface charge density function ps. Consider an elementary surface area As; the applying gauss law to the small

pill box shaped surface S, we have the surface. Integral of the normal component of E=En As Thus,

g,EnAs=Q =p,As

E
S
EnAs=pg As
€
E=Ps n
&)
Application 3:

TE f A Infinite sheet of
_/ charge

By summery it is obvious that the field can only be perpendicular to the surface of the infinite plane sheet of
charge.

[[D-nds=Qp, A [+ D=gE]

U.]E .nds = ps A
s 80
EQA)=Ps A
€o
E=Ps A

2g,



Application 4:

To determine the variation of field the point to point due to

(i) A single spherical shell of charge with radius Ri.

(ii) Two concentric spherical shells of charge of radii Ry (inner) & R (outer)
(iii) Spherical volume distribution of charge of radius R density L

(i) Single shell of charge

2

WV

Let us suppose a total charge Q to be uniformly distributed over an imaginary shell of radius R; in a medium of a

free space. At any radius r < R;. Inside the shell of charge. Integral of D overa spherical surface.

mﬁ.nds:so[ﬁE.nds:O

E=0 (forr<R))

On the other hand, at any radius r = Ry, integral of D overs spherical surface is equal to the charge by itself.
Thus,

snmE. nds=¢g, B(4nR})=Q

__Q
4ng R2

E=0

(ii) Two concentric shells of charge




Consider the two spherical shell charges Q1 & Q> at radius R; & R» respectively

R <Ry, E =0 (in the charge free region)

Just outside the shells of charges Q1 & Q> respective

E= ﬁa(i.e;at r=R, +dr)
4mer

E= o +Q22 a, (ie; at r=R, +dr)
4me R;

At any point outside both the shells of charge (i.e) r = R>

p=2*D

dmer® T
(iii) Spherical volume distribution of charge:

Consider any point with in the spherical volume of charge (ie) for r < R. As we have uniformly distributed by a
concentric sphere of radius r < R is proportional to cube radius < R to the total volume charge

>-(5)
Q (R

3
T
2=
E= 4Qr Zar(rSR)
g, T
Qr
= ame =R
0

The above relation indicates that the field is zero at the centre of the sphere and increases uniformly to a
maximum.

At r=R
E= Q 5
4mer

Uniformly distributed volume charge of density pv,

» I

1
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UNIT -1
STATIC ELECTRIC FIELD
INTRODUCTION TO CO - ORDINATE SYSTEM:

In order to describe a vector accurately, some specific lengths, directions, angles, projections or components must
be given. There are three simple methods of doing this and they are

1. The rectangular or Cartesian system of co- ordinates
2. The circular cylindrical system of co —ordinates
3. The circular spherical system of co - ordinates

Explain the rectangular co ordinate systems?

This system has three co - ordinates axis mutually at right angles to each other and we name them as x, y and z
axis. A rotation of x - axis into y - axis would cause a right handled screw to programs in the directions of z -
axis.

A point is located by giving its x, y and z co - ordinates. These are, respectively the distance from the origin to
the intersection of a perpendicular dropped from the point to the x, y and z axis.

An alternative method of interpreting co -ordinal values is to consider a point at the common intersection of
three surface, the planes x = constant, y = constant & z = constant, the constant being the co -ordinates values of
the point.

The following figure 1.1 (a) shows the points p(1, 2, 3) & (2, -2, 1) respectively

Z- axis

\
\

(1,2, 3)

y- axis

v

c-=-d----t----1-49

This figure (1.1b) shows a rectangular co ordinates system



If we visualise three planes interesting at the general point P, whose co - ordinates are X, y and z, we may
increase each co ordinates value by a differential amount and obtain three slightly displaced planes intersecting
at point ‘’. Whose co - ordinates are x+dx, y+dy and z+dz. The six planes define a rectangular parallelopiped
whose volume is dv = dx dy dz the surface have differential areas ds=dx dy; ds =dydz;ds =dxdz

Finally the distance dL from p to p! is diagonal of the parallelopiped & has a length of \/(dx)z +(dy)* +(dz)

The volume element is given in fig (1.1c)

z
A
dx dy
\
,”‘ P’
1y A
[
v dx dz
dy dz

g

Vector components and unit vector:-

Let us first consider a vector ‘r’ extending outward from the origin. A local way to identify this vector is by
giving the three component vectors, lying along the three co - ordinates axis, whose vector sum must be the
given vector. If the component of the vector are x, y and z, then r = x+ y+ z.

v

Unit vector are those which have unit magnitude and directed along the co -ordinates axis in the direction of
increasing co -ordinates values. Any vector ‘B” may be described by

B=B.a.+Ba, +B,a,
|B|= /B2 +B; +B;

as =

| =l



DOT product:-

Given two vector A & B, the dot product or scalar product is defined as the product of the magnitude of A, the
magnitude of B & the cosine of the smaller angle between them.

AB= ‘A‘ ‘B‘COS 0,5

The dot product obeys communicative law

A B=B. A
XX = av'ay = z°7z =
a,.a,=a.a, =a.a, =
The cross product:- A
AxB=ay|Al|B| sin 0, 0,,
ax ay axz : " B
AxB=|A A, A,
1
B, B, B, :
I
AXB

Circular cylindrical co -ordinates:-

A point was located in a plane by giving its distance p from the origin & the angle ¢ between the line from the

point to the origin & an arbitrary radial line taken as ¢ =0, a distance Z of the point

V4
A

b ¢ = constant
p= a constant
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There are three unit vectors designed as follows.

e apatapoint P (p, ¢,z) is directed radially outward, normal to the cylindrical surface p=p, . It lies in the
planes ¢=¢, & z=z,

e a¢ isnormal to the plane ¢ _¢ , points in the direction of increasing ¢, lies in the plane Z = Z3, is
tangent to the cylindrical surface p=p,

e The unit vector a, is same as unit vector a of the rectangular system.
¢  The unit vectors are again mutually perpendicular for each is normal to one of the three mutual
perpendicular surfaces.

a ,xa,=a,
a,xa,=a,

a,xa, =a,



The surfaces have areas of pdpd¢, dpdz, & pdddz the volume becomes pdpdd

/

L+

The above figure can give the rectangular of Cartesian & rectangular co —ordinates
x=pcosd=x>=p*cos’¢ — (1)
y=psing=y’ =p’sin’*¢ - (2)
z=z

Equ(1) +(2) =>x>+y*=p° [cos2 ¢ +sin’ ¢]

p=yX+y’
3 . y/ sing vy
COS(I)—%, qu)_%‘—coscb_ “

¢=tan™ %

Conversion of Cartesian to cylindrical :-

A vector function is Cartesian co-ordinates is given as follows.
A=Aa +Aa +Aa, —(1)

& we need a vector in cylindrical co - ordinates
A=A +Aa +Aa, - (2)

To find Ap:

A, =Aa,
A =(Aa, +Aa +Aa,)a,

A =Aa.a,+Aa .a, - ((3)
Tofind A¢ :
A,=(Aa, +Aa +Aa,)a,

Ay=Aa,.a,+Aga a,
A,=A,



a,a,=a,a, =0

a, a, a,
a, cos ¢ —sind | 0
a, —sin ¢ | cos¢ 0
a, 0 0 1

Sub in (3) & (4) we get

A, =A cosp+A sing
A,=-A sin¢+A, cosd
A=(A cosp+A, sind)a, +(-A, sing+A  cosp)a, +A, a,

Cylindrical to Cartesian:-

A=Aja +Apa,+Aa,
A =A.a,
=(A,a,+Aa,+Aa,). a,
A, =A cosp—-Ad sin ¢
A =A.a,
=(A,a,a,+Aa,.a)
A=A, sin¢ -—A¢ cos ¢
A=(A, cosd—A¢ sin §) a +(A sing —A¢ cos ¢)a, +A a,

The spherical co - ordinates system:

v

Fig (b)



N

5 Fig (0

Let us draw a spherical co ordinates system on three rectangular axis as shown in fig (a)
We first define the distance from the origin to any point as r. The surface r = constant is a sphere.

The second co - ordinates is angle Q between the z - axis & the line drawn from the origin to the point in
question. The surface Q = constant is a core & the two surface, core &sphere are everywhere perpendicular along
their intersection which is a circle of radius r sin 6.

The third co - ordinates ¢ is also an angle and is exactly the same as the angle ¢ of the cylindrical co -
ordinates. It is angle between the x - axis & the propagation in the z = 0 plane of the line drawn from the origin to
the point.

Three unit vectors may again be defined at any point. Each unit vector is perpendicular to one of the three
mutually perpendicular surfaces & oriented in that direction in which the co - ordinate increases.

The unit vector a; is directed radially outward, normal to the sphere r = constant & lies in the cone 0 = constant &

the plane ¢ = constant.

The unit vector ap is normal to the conical surfaces, lies in the plane & is tangent to the sphere.
a, xa, =a,

The surfaces have areas of rd rdQ, rsinQ drd¢ & r*sin0d6 d¢. the volume is r*sin®drd® d¢

x=rsinfcos¢ = x> =r’sin*Bcos’ ¢

y =rsin@sing =y> =r"sin’0sin’ ¢

z=rcosf =z>=r’cos’0
r=\C+y? ++2°

_ z
0=cos™

¢ = tan' (%J

a, a, a,
a, sinBcos ¢ cos 0 cosd —sin ¢
a, sinOsing cos 0 sing cos ¢
a, cosO —sin 0 0




Transformation of vector in Cartesian to Spherical:

Let us consider a vector in Cartesian co - ordinate
A=Aa +Aa +Aa,

& to find the components of spherical vector

A =Aa,
=(A,a,+Aa +Aa,)a,
=Aaa +Aaa +Aa,.a,
=A, sinfcos¢+A sinBsing+A, cos

A,=Aa,

=(Aa,+Aa +Aa,)a,

=A_ sinfcos¢+A, cosbsing+ A, sin®
A,=Aa,

=A, sing+A cos¢
A=(A, sinpcosdp+A sinOsing+A, cosO)a, + (A, cosOcosdp+A cosOsing—A, sin 0)a, +(-A, sing+ A cosh)A,

The line, surface & volume integral let us consider a charge Q whose density along line, surface, & volume is
givenby p,,pg,py

Line integral Q= IpL dl p, = % as AL—0
L

Surface integral Q = Ips ds p, = % as AS—0
S

Volume integral Q = .[pv dv p, = % as AV—0
v

State and Explain Divergence theorem and Stoke’s theorem

Divergence:

Definition: The divergence of the vector F at any point is defined as the limit of its surface integral per unit
volume as per the volume enclosed by the surface around the point shrinks to zero.

I—::lim [F.n ds

v—0

Proof:

Consider an elemental volume Av=Ax Ay Az of a parallopiped.

Let F is a vector field. The flux of any vector F through a surface is given by the surface integral of the vector over
that surface.

The flux passing out of the volume is taken as positive and that passing inward as negative. Let Fx, y, Fz be the
components of F along the co -ordinates axis, so that

F=F«+Fy+F,.
Consider the volume element, the flux of the vector F in y direction into hand face is and F (Ax Az) and

OF
out of right hand face it is [Fy + a;Ay]AxAz. Therefore, the net increase of flux along the positive Y direction is

OF
flux along Y axis =| F, + —LAy |AxAz—F, AxAz
y ay y



A
F +EAZ Av = AxAyAz
ooz /
)
OF,
—}Fy+a—Ay
Z
Ty

F + & Ax
oz

oF
=F AKAz +—L AxAzAy —F AxAz
y ay y

OF,
=—L AxAzAy
oy

Similarly in x direction,

Flux along x axis = [FX + ZI:: ij AyAz—-F, AyAz

OF
= FXMAZ + a—XXAxAyAZ —FXMAZ

= oF, AxAyAz
ox

Now, along the z - direction, the net influx of the vector is given by.

Flux along z axis = (FZ + aaFZ Azj AxAy —E AxAy
Z

= FZA”Z/Ay-r%AxAyAZ—FXMAy
Z

= % AXAyAz
0z

Now, total increase is given by,

Total flux
oF
_ & AxAyAz+=—L AxAyAz+ = oF, AXAyAz
ox ay oz
- OF
[ﬁF. O L Y AXAYAz
T ox 0y 0z
OF
= @ + _y + % AV
ox oy oz

F nds
U;] an aFY an
: =—=>4 L4z

AV ox 0Oy Oz

By definition of divergence, we get



- OF
~V.F= liml{an +—X +6FZ}AV

w=0Av| Ox Oy Oz
- OF
Vo oF, o OF,
ox oy oz
mF .nds =
Av

Divergence theorem:

The integral of the divergence of the vector field over a volume V is equal to the surface integral of the normal
component of the vector over any surface bounding the volume.

Mathematically for any field vector F

- 0F, OF, ¢F
j{v.F:a—XﬂrEHa—zz

Proof:

By definition of divergence,

- F= [ 25

When dv = dx dy dz

OF
z dxdydz
0z jd Y

Now,

= 0 0 0
I'VUV Fdv = j(@x a, +% a, +a—z aZ](FXaX +Fa +Fa, )dxdy dz

OF
—HJ'[ZI;: +6yy+66FzzjdXdy dz

J‘_[ V.Fdv= jj;jﬁaxe dx dy dz+ﬂjiy1:ydy dx dz +J_[I aaFZZ dz dx dy

= [[F, dydz+[[F, dxdz +[[E, dxdy

= ﬂstdy dz +\J‘J'Fsydx dz + ”FSde dy
” V.Fdv= D] F. hds

Hence proved.
Stoke’s theorem:

The line integral of the vector around a closed path is equal to the integral of the normal component of its well
over any surface bounded by the contour.

mf:.dl :m(VxIE). nc/s

Where C is closed contour which bounds the surface S.
Proof:

Consider the arbitrary surface S as shown below.

If F is the field vector, then by definition of curl, the line integral DjF dL, divided by the surface area gives the

curl of F normal to the surface at the point around which the surface shrinks to zero.

fiF. a1
Thus lim S =curl nF

s—0



Where curl nF is the component of curl of F normal to the surface S.

Now divide up the area S into a large number of still smaller elements 1, 2 etc. Each area element can be
represented by a vector directed outwardly normal to the surface.

For each such element, find the line integral in the positive direction, normally anti-clockwise which corresponds
to the positive direction of the surface elements.

If all the elements 1, 2 etc are summed up, the contributions of the common boundary of any two adjacent
elements neutralize each other, as they are oppositely directed along the common boundary

fIF.dl=JF dl, +[F dl, +[F d,

Applying the definition of curl F, we have

mF .dl = curl Fds, +curl Fds, + curl ds, +curl Fds, = ”curan ds.

(i.e) curl Fds, + curl Fds, +..... denotes the summation of normal components of curl F over the whole surface S.

Therefore,

mF.dl :churl F.nds

Hence stoke’s theorem is proved.
Curl:

The curl of a vector at any point is defined as the limit of the ratio of the integral of its cross product with the
outward drawn normal over a closed surface, to the volume enclosed by the surface as the volume shrinks to
Zero.

‘curIF‘ :limlmn xFds

v-0 v
B

The component of curl of vector in the direction of the unit vector n is the ratio the line integral of the vector
around a closed contour, to the enclosed area bounded by the contour, as the enclosed area diminishes to zero.

n curlF = Iim1 f.dl

a-0 g v
Referring to fig, consider an elemental plane surface of area AY AZ bounded by a contour C marked as able.

|curl B| x = curl of B in the x - direction



v
~<

DjB dl

im
-0 Ay Az

Az—0

Where B is a vector, choosing the value of B at centre, we have the closed integral of B around the abde,

=[fiB di
Integral along e, = (By - ?%)Ay
Z

Integral along ab = zf@ﬂ Az
oy 2

Integral along bd = —[By + a'lgj Ay

oz 2
Integral along de=—| Bz— 8]3 ﬂ Az
oy 2
Adding
[1B i = By ay— BLAYAZ g, 5, OBz Ayaz
L 0z 2 2
curl, B= dBz OBy | _ .
oy oz
Simarlly

0Bx 0Bz
1. B=| —-—|=
Uy [ 0z  0Ox j ol

OBy 0Bx
| B=| —2L-—" =
curl, [ pe j Mol

curl B =|curl, Bla,+ ‘curly B‘ay +|curl, B|a,

=w(Jiac+]ya,+],a)

0Bz OBy |— (6Bx GBij 0By 0Bx |—
curl B=| —-—Z |a +| —-——|a, +| —2>—— |a,
dy oz oz ox )7 | ox oy

a, a, alz
curl B= %x 7&y %z
B, B, B,

The main difference of divergence & curl is that in the former the parameter along x varies only with x but in curl

the parameter in x varies along y & z.



1. Define coulomb’s law
Coulomb’s law:-

The law states that “two charges Qi and Q. separated by a distance ‘1" in free space or vacuum, the force of
attraction or repulsion is directly proportional to the product of the magnitude of charges and is inversely
proportion to the square of the distance between them

Foo 7(21?2
T
_KQQ,

r

F

. . 1
Where, k = proportionality constant = e
e

Where
& = permittivity of the medium

E=§E,

L _g854x10™

g, = absolute permittivity == Frers
X

€, = Relative permittivity of the medium which is 1 for free space / air.

F — QIQZ
4mer?
_ 00,

2
4me e x

F=9><109Q]7?2 newton or C* / m?
r

2. Derive coulomb’s law in vector form?

0
o /

Coulomb’s law in vector form:-
F>

ai

In vector form, we need an additional fact that the force all along the line joining origin the two charges & is
repulsive if they are of opposite sign.

Let ry locate Q; and rz locate Q>. Then the vector Ri>=r - r1 represent the direct line segment from Q1 to Q..

Let F» be the force on Qz by Q1. Note Q; and Q> have the same sign.

PT_ Qle o

2= 2 12
4meR],

Let F> be the force on Q2 by Q1 where a; =a unit vector in the direction of the Ry.

=~

an =

12 zgz L-h
‘R]Z Ry, ‘1‘2 —1‘1‘

Let Q; be located at x,ax +y,ay +2z,a. and Q, be located at x,ax +y,ay +z,a.



Then r, -1, =(x, —x, )Ex +(y,— y1)£y +(z, —zl)az

R, = ‘I‘z _r1‘ = \/(Xz _X1)2 +(y, _Y1)2 +(2, _Zl)z

Therefore,

b Q,Q, r -1
2= > 5 =X
47[8.:()(2_)(1) +(y2=y1) +(2-2) :| ‘rz_r1‘

B Q,Q, |:(X2 % )EX +(¥, Vs )5‘/ +(z, -z, )a2:|
B %

F,

ame (6, =%, + (V2 = 1) + (22— 2,) ]
3. Explain electric field intensity?
Electric field intensity:-

Consider one charge in fixed position say Q1 and none a second change slowly around. The change Qt will
experience a force exerted by Q1.

As per coulomb’s law, force on Qt by Q1 is given by

F = Qth o

t 2“1t
4ne R7,

The force exerted on the test charge Qt is defined as the electric field intensity

E= £__Q a,.
Qt 4T[80th b
Generally, E:%i V AN
4ng R 7, /9\ 0,
i Rit)
\\ el /I

Case (1):- charge at origin

Let us consider a charge at the origin and to find electric field intensity at point whose co - ordinates are (x, y, z)

z
P(x,y, z)
R
(0,0.0) > b
0 y

R = (xax + yay + za,) — (Oax + Oay +0a.)

R =xax +yay +za, =X’ +y> +2°

R xax+yay+za,

TR e
Rl +yi+z
-2
4ng R

B Q(xax + yay + zgz)

)A

4ne, (x2 +y*+7°



Case (ii):- Charge not at origin

R=r-r’

o

P(x, v, z)

XV Z)e

If we consider that the charges are not at origin but located at r1 and fixed electric field intensity a P at distance r
from the origin.

R=r-r'
B Q y r—rt
4rg,(r—1')? ‘r—rl‘
Qr-r!
13
4neo‘r—r‘

Qr-rt

3
=%

E=
4rme

I =Xax + yay + za;

r' =x'ax+y'a, +z'a,

r—r' :\/(x—xl)2 +(y-y' ) +(z-2")
Q[ (x-x")a, +(y-y"a, +(z-2")a, |
4re, [(x—xl)2 +y-y') +(Z—Zl)2:|%

E=

4. State and explain the principle of superposition?
Principle of superposition:-

Let Q1 be at a distance of r1 from origin and Q2 be at a distance of 12, then E at P.

— Ql py Ql o

= +
dngg|r —1|? ) dngg[r —1,|” %

If we add more charges at other positions, the field due to ‘h’ point charges is

Ql o Ql o Qn o

= +
4nso‘r—r1‘2 N 4me, ‘r—rl‘Z % 4n80‘r—rn‘2

E(r)= 3 — 3=

Sangy|r-r " "

5. Discuss electric field intensity due to continues charger electric field intensity due to continuous charges:-

If charge Q is uniformly distributed throughout a volume V, the charge density p is given by

P:V

To define the value of the charge density at point P, let us consider the charge AQ in a volume AV. The ratio of
infinitesimal charge AQ clinded by volume AV as AV =0

Similarly we can write for p; and p,



e AQ. L AQ
P, =lim i ps =lim —2

The charge element dQ and total charge Q due to these charge distribution are,
dQ=p, dl>Q=[p, dl
L
dQ=p, ds—>Q-=p, ds
S
dQ=p, dv—>Q=J‘pV dv
Vv

S ~ag
4me R

pdl — .
E= a, (line charge
J 4mg,R? " ( ge)

Here, E= j a, (surface ch arge)

2

4

¢ pydv
4mg R?

ps ds
ng R

a, (volume ch arge)

7. Explain Electric Potential difference and Potential

Electric Potential difference and Potential

F=qE

Since there is a moment of charge in electric field from one point rl to another point r2, there will be work done
against force.

W:—TqE. dr=- qTE. dr

it T

Potential difference is defined as the work done in moving a unit positive charge from one point to another in an
electric field.

Work done on unit positive charge per charge is
Ty
q
V=~ j Edr J/C

1

__&{_ET
But 4mey | r],

Q  Q
4ne,r, 4meyr,
Vig=Vs-V,or V,=V,-V,

8. Give relation between electric field & potential:
Relation between electric field and potential

If 2 point are separated by an infinitesimal distance dr, the work done in moving at point charge from one point
to other is given by



dv=-E.dr

Since scalar potential V is a function of x, y, z.

@dx+@dy+@dZ: —E. dr
ox oy 0z

0x oy 0z
Vr. dr=-E.dr
~E=-VV

[aav+aav+aav]@xdx+%(w +a, dz)=-E.dr

E = Negative of potential gradient at that point.
12. Determine electric filed intensity due to infinite line charge
I) Using cylindrical co - ordinates?

An infinite line of charge having the charge density p; ¢/m is considered along the Z - axis. i.e, the line extends

from - oo to +oo along the z - axis. A point P is considered along the axis perpendicular to z, where ‘E’ is to be
measured the point ‘P’ located at a distance p from the origin.

Consider a small differential length dL carrying char dQ along the z - axis.

dQ=p, dl
=p, dz

ijdl
 4ne, R2®

pLdZ g pa, —za,
47580 p +Z \/p +Z

+o0

=p7L3 J(pae— za,)dz xa,

0,0, z)




%

Eo P p(psec’0)de i
3,
4me, - (p* +p” tan’ O)A

_ P 7 p*sec’0 do

<

angy 3/ [pZ(l + tan’ 6)]%

P, e p’sec’0d0 —
4 3 3 a¢
Ty [p sec 6)}

p % -
=L fcosede a,
4mep %
PL %
sin 6 a
p— [sin6] a,
PL
2| a
4ngop[ la,
E: PL a:
27gp

13. Derive the electric field intensity due to finite line charge using cylindrical co - ordinates?

Due to finite line charge:-

dl

X

Let us consider the differential element dI along z - axis let the minimum point be z1 and maximum point z2.

= 2 2 a_¢
4ng R
p, dz
J " (pa.-7a)
4“80(9 +27) N
_[pLdz ad
pL Z

4ng, (p2+22)%

Jp sec’0d® —

a4

47: €5 p sec’ O

14. Derive the expression for electric field intensity due to finite and infinite line charge using Cartesian co -
ordinates

Consider a uniformly charged line of length ‘L” whose charge density pL c¢/m. Consider a small element dl at a
distance ‘1" from one end of the charge line. Let be any point a distance ‘" from the element p dl.



The electric field at a point P due to the charge element p dl is

p. dl

dmer’

dE= - (1)

The x and y component of electric field dE is given by,
dE =dEsin6 — (2)
dE, =dE cos 6 - (3)

_p. dl'sin 0 N

dE, =———— 4
X 4rer? @)
From fig
0
x-£
b P
tan 0= h
x—/
x—{= =hcotd - (5)
tan

—~dL=-h cosec’0 dd — (6)

. h
sin@ =— =>r=—
r sin O

r=hcosec6 — (7)



_p,dlsin 6

dE, a
4mer
_ p;hcosec’ 0sin® dO
47e h? cosec’ 0
E,=[dE =" [ sin6do
4me b
:p—l[—cos o] ™
4neh “
P
= COS 0L, + oS o,
4neh [ ! 2]
p,dlcos® p,hcosec’@cos 6 do
dE, == T 2 2
Y 4mer 4neh® cosec’ 0
E = j P cos0de =L [sin 6] "
T, 4meh 4meh “
E =L [sin o, —sina, |
¥ 4meh

Case (i):- If the point ‘P’ is at bisector of a line, then o, =a, =a
Ey =0, - E becomes Ex

E=Fu [cos a]

2neh

Case (ii):- If the line is infinity long, then a=0, E, =0

P
* 2neh

16. Explain the electric field intensity due to a charged circular disc

Consider a circular disc of radius R charged uniformly with charge density of p, C/m?”. Let be any point on the

axis of disc at a distance from the centre.

Consider an angular size of radius ‘r’ & of radial thickness the area of the annular ring ds = 2mr dr. The field

intensity at point p due to the charged annular ring is

Disc




Since the horizontal component of electric field intensity is zero, the vertical component is

dE =P dscoie
¥ 4med

dEy =dE cos6

0 sin 6 = rd

d h _h
cos 0= %1
tan 0= rh
T
From fig,

tan G:Aér:h tan 6
%:1 dr=h sec® do

r

sin 0=1 =>d=—
sin©

_ p,2mr dr cos 0
Y 4ne d?
_ p,2nr h sec® 6d6 cos 0

r2

dE

4me oA
sin“ 0
p, sec 0sin’0d0 p

> sin 6 dO
2¢ tan® 2¢

dE ==

E :&jsinede:
2¢e

y
0

Py o
% [—cose]0

E= p—5(1 —cos a)
2g

E=Pelp M
2e vh? +R?
17. Explain the electric field intensity due to infinite plane sheet of charge

Consider an infinite plane sheet which is uniformly charged with density p, c/m?* p,.

The field intensity at any point ‘p” due infinite plane sheet of charged can be evaluate by applying expression of
charged disc.
E=F(1-cos ) a=90°
2¢

E=Ps
2¢

18. Derive the expression for electric field intensity due to two infinitely conducting planes

P

-Ps




Consider two infinite plane sheet with charge density +p, and —p, ¢ / m?2 separated by distance d.

2¢ 2 &

PP P

19. Derive an expression to determine electric field intensity and at P due to an electric dipole
Electric dipole:-
An electric dipole or dipole is two equal and opposite charges separated by a very small distance.

The product of charge and spacing is called electric dipole moment.

1

2! i

I1

Q.
-

r-11

_Q > -1
Electric dipole

Let +Q and -Q be the two charges separated by a small distance ‘d’. The product of charge Q and spacing ‘d” is
called the dipole moment m=Qd

Let P be any point at distance of r1, r> and r from +Q and -Q and midpoint of dipole.

Potential at due to +Q, V, = Q
4mer,
Potential at due to -Q, V, = —Q—
4mer,
Resultant potentialatp, V=V, +V, = Q1 1
4ne|r, 1,

If the point ‘P’ is for away from the dipole the distance r; and r; are given by

rlzr—%COSG
I‘2:r+%C059

Potential at P due to dipole



voQ 11
4ne r—%cos 0 r+%cos 0

B & d cos 6
4ne| 2 —d% cos® 0
vzg(d cos 9) since d/2 << 12
4me r
Ve Qd cozse
4ner
m cos 0
.m=Qd; V=
Q 4ner?

This shows that the potential is directly proportional to the dipole moment and is inversely proportional to the
square of the distance between them.

Electric field produced at P due to the dipole:
As V =-[E. dr, this relation can be used for evaluation of field at P due to +Q and -Q separately.

The electric field E has components along radial distance r and angle Q.

E=E, +E,
E:—ar&—aQ v
or r oQ

@_7m Cose.@_fm sin 0
o 2mex® or  Admegr?
m cos®) —-—m sin 0
aQ 4 2
TEr

E=a

r

3
2ng,r

T

E, - m cosge o 6.F, = m C0536 _D
2me,r 2mgr

Er:[m Sine]:soEsz sinO:DQ

3 3
4ne,r 4ne,r

The expression above clearly indicate that the field component (radial as well as angular) vary inversely as the
cute of the distance

If Q =90°, E; = vanishes, but Eq persists
If Q = 90°,0bviously p is somewhere in alignment with dipole axis.
20. Discuss torque experiment by dipole in a uniform field?

Torque experimented by a dipole in a uniform:-

VLR
in

The dipole moment m = QL is a vector direct from negative to positive charge forming the dipole .

Uniform Field E

The numerator of the potential is given by m cos 8, which can be written as m . ar

Vo ma,
4ner?




There are two charges +Q and -Q placed in a uniform electric field. These charges experience a force QE but
opposite in direction

These two forces form a couple whose torque is equal in magnitude to the produced of force and the aim of
couple.

Torque = QE/ sin 6
_ . . _d
Qé E.Slge sin O_A
=mk sm d=Lsin 6
T=mxE ‘
e
In conclusion, although a dipole in a uniform field E does not experiences a translation force, it does experiences

a torque.

9. Give electric flux density due to line, surface * volume density electric flux density D or electric
displacement

D=¢, Ec/m’

Electric flux ¥ = mﬁ ds

p, dl
4nR?

For line charge, D = ag

For surface charge, D = I%
b1
py dv

For volume charge, D = -
4nR

R

10) State & Prove Gauss law?
Gauss law:-

The electric flux passing through any closed surface is equal to the total charge enclosed by the surface.
R Qencl
Proof:

Consider a small element of area ds in a plane surface having charge Q and P be a point in element. At every
point of surface, the electric flux density D will have Ds.

Ds (Normal)

Fig . closed surface having charge

. cosf= Dg(normal)
From fig, Dg

Dg(normal) = Dg cos 6



Let Ds makes an angle 6 with ds the flux crossing ds is the product of normal component of Ds and ds.

d¢ = Dg(normal). ds
=Dy cos6.ds
d¢ =Dg.ds

Total flux passing through closed surface,

¥ =]d¥ =[f|D,.ds

5 Q

4rer

Q

4nr

=>D=¢E=D=

2 2

The small element of area ds on surface of sphere is

ds, =r d6 sin6 d¢
ds=r’sin® d6 d¢

\p:mﬁrz.rz sin0 do d¢

=9T [ sin0.dodo

T 4=0Q=0

:%[_ cos] [¢]"

:4%[1+1][2n]:Q
¥=Q

Note:-

Total charge enclosed Q= Ipvdv -(1)
Y

Q= [j]D. ds= Ipvdv -(2)

Applying divergence to (2),

fID.ds=[v.Ddv -(3)

Comparing 2 & 3 we get
VD=p,

Differential from Gauss Law.

21. Explain the application of Gauss law?

Application of Gauss law:-

Application 1: To determine the field at a distance r from an line charge of strength A c¢/m.

The figure shows a theoretically infinite charged line with length alone particular signified. Imagine that a
coaxial cylindrical surface surrounds the charged over a meter length this is a Gaussian surface.

The electric field at any point is radial an independent of both positions thro along and angular position around
the wire.

As the electric field is in the same plate as the circular ends at top and bottom of the cylindrical, no flux passes
through the end surfaces.



E:

——
-

]
\ Im
1

1

1

1

——

—

Infinitely long Line
of charge

Applying Gauss’s law for a metre length the charged line

m[E nds=2nr Er:y
€y

E-F, -—" a,
2me,r

Where ar is unit vector at any point P on the cylindrical surface and is disc radially outward, being perpendicular
to the axis of the charged line.

Application2:

Consider a closed pill box shaped surface S resting on the surface of a charged on the conductor be given by the
surface charge density function ps. Consider an elementary surface area As; the applying gauss law to the small

pill box shaped surface S, we have the surface. Integral of the normal component of E=En As
Thus,

E
gEnAs=Q=pAs

EnAs= psE
€

E=Ps
€

.n

Application 3:

TE f A Infinite sheet of
_/ charge

charge.

By summery it is obvious that the field can only be perpendicular to the surface of the infinite plane sheet of

[ﬂ[D. nds=Q p, A [ DfsoEJ

U]E nds="Ps A

€y

E(2A) :M
€p
E=P 2 A n

2g,



Application 4:

To determine the variation of field the point to point due to

(i) A single spherical shell of charge with radius Ri.

(ii) Two concentric spherical shells of charge of radii R (inner) & R (outer)
(iii) Spherical volume distribution of charge of radius R density L

(i) Single shell of charge

2

WV

Let us suppose a total charge Q to be uniformly distributed over an imaginary shell of radius R; in a medium of a

free space. At any radius r < R;. Inside the shell of charge. Integral of D overa spherical surface.

mﬁ.nds:so[ﬁE.nds:O

E=0 (forr<R))

On the other hand, at any radius r = Ry, integral of D overs spherical surface is equal to the charge by itself.
Thus,

snmE. nds=¢g, B(4nR})=Q

__Q
4ng R2

E=0

(ii) Two concentric shells of charge




Consider the two spherical shell charges Q1 & Q> at radius R; & R» respectively

R <Ry, E =0 (in the charge free region)

Just outside the shells of charges Q1 & Q> respective

E= ﬁa(i.e;at r=R, +dr)
4mer

E= o +Q22 a, (ie; at r=R, +dr)
4me R;

At any point outside both the shells of charge (i.e) r = R>

p=2*D

dmer® T
(iii) Spherical volume distribution of charge:

Consider any point with in the spherical volume of charge (ie) for r < R. As we have uniformly distributed by a
concentric sphere of radius r < R is proportional to cube radius < R to the total volume charge

>-(5)
Q (R

3
T
2=
E= 4Qr Zar(rSR)
g, T
Qr
= ame =R
0

The above relation indicates that the field is zero at the centre of the sphere and increases uniformly to a
maximum.

At r=R
E= Q 5
4mer

Uniformly distributed volume charge of density pv,

» I

1
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UNIT 11
CONDUCTORS AND DIELECTRICS
PART-A
1. Write the poisson’s and Laplace’s equation.
Poisson’s equation:

Viv =—£
E

Vv =0.
This is the Laplace’s equation.

v 9v OV

Viv=-—"+— +-—=0 [cartesian
8)(2 ayz aZZ [ ]
2 2
S L T
ede| oOe| e|dd oz

2
VZV:%E[I‘ZQ}+ 21. Q{sin 9@}— 3 1 5 67\2/:0
r-or| or| r°sin® 0O 00| r°sin0” O¢

2. Define capacitance:

Capacitance between two conductor defined as the ratio of the magnitude of the total charge on eitherconductor
to the potential difference between conductors.

C= Q farads
v

Where,

C is capacitance in Farads

Q is charge in coulombs

V is potential difference between the conductor due to equal to opposite charges.
3. Define electric current:-

It is defined as the rate of flow of charges the direction of the current flow is opposite to the flow of charges . the
unit of current is Amperes.

_dQ
dt

4. Define electric current density

It is defined as the current per unit area. It is denoted by ‘J” and its unit is Ampere /m”.

I
J= e
I=]JA
I= D‘j J.ds
5. Write the equation of continuity.
v.)o-2
ot

6. Write the point form of ohm’s law.



J=cE
This is the point form of ohm’s law.

Where, o= . Its unit is Mho/m

Pe He

7. Define dipole moment

Dipole moment is denoted by P is defined as the product of a charge in the distance of separated by the charge
P=qd

8. Define polarization:-

Polarization is defined as the total dipole moment unit volume.

_ Pltotal 1 &

7211

P =
Av Avio

9. Define inductance:

The inductance is defined as the rate of total magnetic flux linkage to the current through the coil and it is

denoted by symbol
Lo dA _ Nd¢
S di o di .{@:9}
L No¢ di I
I
10. Define flux linkage.

Flux is defined as the product of N — turns in the coil, and the total flux linked with the coil. It is defined by the
symbol (A )

A =N¢
11. Define Mutual inductance:-
Mutual inductance is defined as the flux linked is one coil due to the current following the second coil.
12. What is meant by dielectric breakdown?

When the electric field in a dielectric is sufficiently large, it begins to pull electrons completely out of the
molecules & the dielectric becomes conducting.

13. Define dielectric strength of material & give its unit.

The maximum electric field intensity that a dielectric material can with and without break down is the dielectric
strength of the material, unit: V/m

14. Find the capacitance of cylindrical (co — axial) capacitor shown in fig. here each dielectric occupies
one has the volume with a =3cm & b =12cm ¢, =2.5& ¢, =4 . The voltage difference is 50 v.

Solution:-
TEE, _TEE,
“Tup) ()
C=C,+C,= 1nT(CZZ)(S” +¢,,)
_ mx8.854x10" [25+4]

in('%3)



C =130.6 pF/m

15. Find the resistance a copper wire of length 200 km and uniform cross section area 40mm?. Given that
the conductivity of Cu is 5.8 x 10" S/m.

Solution:-

_ L 20010’
cA  5.8x10" x40x10°°
2x10° 2x10°

T5.8x4x10°x10°  5.8x4x10°

3
- ZXI(Z) -86.20

R=86.2Q
16. A Cu bar of 30mm x 80mm in cross section and 2m in length has 50mv ends. Find resistance intensity.
For Cu, 6 = 5.8 x 10" S/m.
Solution:-

/¢ 2
Re——o o=
oA 5.8x10" x300

R=14.268x 10°°

E:X:50x10*3
d

=25%x107=25mV/m

17. A parallel plate capacitor has an area of 0.8 mm separation of 0.1mm with a dielectric for which
€, =1000 and a field of 10° v / m. Determine the capacitance and voltage across the two plates.

Solution:-
Given A =0.8m’ d=0.1 mm

g, =1000 E=10°V/m

CoFA _EEA _ 8.854x107x1000x 0.8

d d 0.1x107°
_ 8.854x107"* x10° x 0.8 x10°
A 0.1
=8.854x8x10°°
C=70.732F

V=Ed=10°%x0.1x10"° =100v

18. A capacitor consists of two similar square aluminium plates each of 10cm x 10 cm mounted parallel
and opposite to each other. What is the capacitance when the distance between them is 1c¢m and dielectric

is air.

Solution:-

Given A=10x10"x 10x10°=10"m’
D=1lcm=1x10"m

_gg A 8.854x107x107

C 2
d 1x10

C =8.854 Pf



19. Determine capacitance of area 1sqcm, separated by 1cm placed in a liquid whose dielectric constant is
6 & £,=8.854x10"

Solution:-
A=lem*=(1x10%=1x10*
d=1cm=1x10?

_gg A 8.854x107x6x107

C )
d 1x10

C=0.5312 pF

20. If C =40 nF, d = 0.1mm & A = 0.15m’. Determine the relative permittivity of dielectric material used
in a parallel plate capacitor?

Solution:-
C= £,6,A
d
40x10° = 8.8854x107 x g, x0.15

0.1x107
. :40x10*9x0.1x10*3
T 8.854x1072x0.15
g, =3.01

21. Find the capacitance / unit length between two plate cylindrical conductor in air of radius 1.5 cm &
coil a centre separation of 85 cm.

Solution:-

o C_ 7 _ mx8.854x10"

() ()

C’ =6.89 pF/m

22. Calculate the capacitance / km length of two identical parallel wires of diameter 1 cm each and plate 1
m apart. Also find the potential difference between them, which will make the ‘E’ at the conductor
surface just 4x10° v/m.

Solution:-

Radius a=0.5 X 102 m, d = Im, E = 4x10°

o C_ me, _mx8854x10"

£ (4 m(l)

0.5x107

C’ = 5.25pF

E:% —V=Ed
=4x10°x1

V=4x=10° Volts

23. The conductors of two wire transmission line of length 4 km are spaced 45 cm between centre. If each
conductor has a diameter of 1.5 cm, then calculate capacitance of the line.



Solution:-

me,l  mx8.854x107% x4x10°

C= -
d 0.45
") (g
C =27.17 nF

24. Consider that two copper wires of 1.299 mm diameter are parallel with separation d between the axes.
Determine ‘d’, so that the capacitance in air is 30 pF/nF

Solution:-
. E _ Tg,
£om(%)
—12
301072 = nx8.854x10

(%)

1n(%)=%:0.927

d_ e _ 953
a

-3
d=253a=2.53x 22X 10

d=1.63 mm

25. Calculate the capacitance of the co —axial cable with the radius of inner conductor a 10 mm and outer
conductor b = 10 mm and has ¢ =3.5. The inner conductor is at potential 1 kv and the outer shield is

grounded. The cable is 8 km long.
Solution:-

Given a=10mm,b=15mm ¢ =3.5 /=8km

2nf  2mx3.5x8.854x10"" x8x10°

=LA 15
In (A ) In (10)
C=3.84 nF
26. Find the capacitance / unit length of a co axial conductor with outer radiys 4 mm and inner radius 0.5
mmif ¢ =2
Solution:-

C  2mee,  2mx8.854x1077x2

DI

05

1

C’ =139. 116 pF/km

27. The radius of inner and outer spheres are 10 cm & 20cm respectively. The space between the two
spheres is field with ¢ =3 . Find the capacitance.

Solution:-

4ne dmege, 4mx8.854x107 %3

C= =
Y b 5

R
0.1 02



C = 66.76 pF

28. Two capacitance 10uF& 25uF are connected in series & parallel. Find the equivalent values of

capacitance.
Solution:-

C, =10uF, C, = 25F
(i) In series:-

CC, 25x10x10™"
“C,+C,  35x10°

Ceq =7.142 pF
(ii) In parallel:-
Ceq = C1+C2 = 35|,lF

29. The radii of inner and outer sphere are 10 cm & 20cm respectively. The space between the two sphere
is field with insulating material of ¢,. Find the capacitance formed by the two conductor sphere.

Solution:-

_Arnee,
€= 11

a b

4Tc><%>< 3
__ 36mx10° "
R
0.1 02
(0.33x10*9)3
5

~0.99x10”°

5

C = 66.76 pF

30. The radii of two sphere fifer by 4 cm with air dielectric & the capacitance of the spherical capacitor is

% pF. If the outer sphere is grounded, determine the radii. The capacitance of spherical capacitor is

Solution:-

C= 4n80(t;£j
—a

b—a=4x107

(o 41t><8.854><10]2[ b
4x10

160, 1o =4nx8.854x10"2[ ab 12)
3 4x10°
ab=0.019m"

Solving we get,

a=012m&b=0.16 m



PART-B
1) Explain the significance of Poisson’s and Laplace equation:
Poisson’s Laplace equation:

Gauss law states that the surface integral of the normal component of electric flux density vector over a closed
surface is equal to the charge enclosed by the closed surface.

mD. nds=Q= J.J.J.p dv — (1)
As per divergence theorem,

fD.nds=[[[(v.V)dv —(2)

Equating (1) & (2), we get
[[J(v.D)ydv={[[p dv
VD=p — (3)
This is point form of Gauss law,
Sub D = ¢E in eqn (3), we get
VeE=p=>V.E== —>(4)

Relating E &V, as E=-VV — (5)

Sub (5) in (4), we get

This is known as Poisson’s equation.

In a non- conducting region, charge density is equal to zero (p=0)

ViV=0
This is known as Laplace’s equation
2 2 2
V2V = ‘2)(\27 4 Zyiy + 0 ~=0 (cartesian)
Z
2 2
Vzvzli pal +l2 oV =0 (cylindrical)
pop\ op op*
vzvzlzé(r2 av) ! i J
r’or\_ or) r’sin’000
I — o (spherical)
r’sin”@ (I)

2) Define the term capacitance? Explain it.
Capacitance:-

Capacitance between two conductors is defined as the ratio of the magnitude of the total charge on either
conductor to the potential difference between conductors.

C= 9 Farads
\%



C = Capacitance in farads
Q = Charge in Coulomb
V = Potential difference between conductors due to equal & opposite charges on them magnitude Q

When the capacitance of a single conductor is referred to, it is assumed that the other conductor is a spherical
shell of infinite large radius.

Consider two conductors of arbitrary shape (1) & (2) as shown in below figure

(1) If initially both the conductors are uncharged & if a charge is removed from (2) to (1), the conductor (2) will
be left with — Q

(2) Work is done in moving a charge from (2) to (1) resulting in a potential difference developed between two
conductors. There will be an electronic field around them.

(3) Conversely, if a potential difference of V volts is applied. Then a charge of +Q & -Q is developed along the
conductor. So, there exist a relationship between Q & V, and the ratio is constant.

If acharge of 1 coulomb is associated with a potential difference of 1 volt, the capacitance between the two
conductors is said to be one farad.

3) Derive the expression of capacitance for various geometries :

(1) Parallel plate capacitor:-
PLATES

A typical parallel plate capacitor which consists of a pair of flat parallel plates with surface area A separated by
distance ‘t” and through a dielectric of permittivity =g,

.



The capacitor may be charged by connecting the terminals a and b to a source of potential difference. Let us
assume that there is uniform charge density over a plate surface, psC /m?* and also across the dielectric.

mD. ds=Q
D.A=Q

D=%=ps

So that the filed intensity is

€ g8,

Potential difference between the plates is given by the integral of the field E over the thickness t. As the field is
uniform, we can write

Capacitance may be expressed as,

ngzps AzgoarA
vV o pt t
SOSr

Capacitance of an isolated sphere

In the case of an isolated conductor, the other conductor forming part of the capacitor is a spherical of infinite
radius. Let it be radius r; the potential of an isolated sphere is the work done in moving a positive test charge
from infinity to the sphere consequently, the absolute potential is given by

v__Q

= [For a free space medium ¢, =1 |
4mer

So the capacitance is given by,
Q
C= Vo 4me

Capacitance between two concentric spherical shells:-

A spherical capacitor is composed of two concentric, spherical, conducting shells separated through a dielectric
medium; say free space in the case. Let ‘a’ and ‘b’ be the radii of the inner and outer shells respectively.

If a charge ‘Q’ is distributed uniformly over the outer surface of inner shell of radius ‘a’ then there will be equal
and opposite charges induced on the outer shell of radius ‘b’.

The filed at any point between the shells is given by

Capacitance of co- axial cable with two dielectrics

Let us consider a cable with two dielectric with permittivities ¢, &e, . If E; is the field intensity at any radial

distance r in the dielectric (1) and E, that in the dielectric (2).



E, =P (r, <r <)
2ne,r

E,= PL (t, <1 <13,) / Cable sheath
2me,r '

\'A :—}E1 dr; V, :—].Ez dr

by by

V=P nk oy - b
2mesE,, I 2me,e, L '
V=V, +V, ‘

V= pL{llnrz + 11nr3}

2neg e, L &, L

>

The capacitance / m length is given by 0

coPL_ 2Me\€,48,, p/m
2.303{@2 logy, 2 +¢,,10gy, rﬂ
I I,
0.0241c,¢, uF
C= T, I, Am

g, log,, % +¢,log, >
I )

Capacitance between two parallel wires:-

Assume that + p, and - p, are the charge in ¢/m of the wires A and B, spaced D me ties apart and radius of each

wire is r metre, remembering that D >>r.

In order to determine the capacitance between A and B, we need to find the potential difference

Letx=r,D—x=-1.

4) Derive the expression of energy and energy density?

Energy in a capacitance:-



Potential is defined as the work done/ unit charge. If the capacitor is connected to a source of potential the
capacitor acquires charge. It involves the work to charge a capacitor.

Potential may be expressed as the infinitesimal work per infinitesimal charge.

v=dW
dQ
dW = VdQ

If ‘Q’ is the charge corresponding to V,

v=9
C

1
dW = EQdQ

If the capacitor is initially uncharged and the process of charging continued until a charge Q is reached, the total
work done is

1q QZ
W==|1QdQ== Where Q=CV
C{Q Q=2c Q
2
W= L or 1CVzor 1QV Joules
2C 2 2

Energy density:- 7\ T
At
At

/e

When a capacitor is charged to a V between the plates, the energy stored is given by
W = 1CV2
2

The potential difference between the parallel faces of the volume element is

AV =E(At)

AW = %AC(AV)Z
1 2 2
= S E(ADE(At)
1 2 3

AW = %SEZ’(AS)
AW _1 e
2
Energy W:%CV2 /%QV/%% Joules

2
Energy density o= lep_lpg-1D Joules
2 2 2 ¢

5) Explain current, current density and equation of continuity?

Electric current:-



It is defined as the rate of flow of charges. The directions of the current flow is opposite to the flow of charges.
The unit of current is Amperes

—_diQ_)
=% M

Let us consider a charge Q in a volume V. Let p, be the volume charge density given by
Q=[flp. dv — ()
\
Sub (2) in (1), we get
—d
=5 v =@

Electric current density:-

It is defined as the current per unit area. It is denoted by ‘J” and its unit is Ampere/ m”.

]:%:I:J.A:@].ds S

Equation of continuity or continuity equation of current:-

Let us consider a closed surface S, the current through the closed surface is I, due to outward flow of positive
charges.

=49
dt

m].ds :;—fmpv dv — (5)

By applying Divergence theorem,

D‘j].ds = jj j (VJ)dV — (6)
Equating (5) & (6), we get

j{j(v.ﬂd%[ﬂ%.dv

_ —0p,
ot

V.J
This follows principle of conversation of charges
6) Explain in detail about the boundary conditions of electric field

Boundary conditions of electric field:-

e  Conductor — Free space
e  Conductor — Dielectric
e Dielectric — Dielectric

Conductor — Free space:



Dn

Free Space
D AW En
N D w a ¢ » b E
b Al T E
S R d ¢ Conductor
We know that for a conservative field,
[E-di1=0
[Edl+ [Edl+ [Edl=0
ab be da
Al AL
[E, AW +Ey. = ~Ey. == =0
E =0
seDt=0
Hence Dt=0
As per gauss’s law,
fONds=Q
Dy.As=p, As
Dy =p,
eEy =p,
E, = Ps
aOgr
E =P
€
1). E,=0; D, =0
2). Ey :&; Dy =ps
€
2. Conductor — Dielectric:-
Dw
P AW o Dielectric
E,
_ 5 Ex
Dv
N, ‘ b
D, AL T E
_______ d c Conductor




fiDy-ds=Q [Edl+ [Edl+ [Edl+ [EdI=0
ab be od

S da
A A
D, As = p,As IEl.AW+IEN.7L—IEN.7L= 0
eEy =p, E =0
Ey=—- D, =0
€0€,

DN = p&.
E, =P

Sﬂgr

3. Dielectric — Dielectric:-

DNI
Dielectric

E
DNI AW N1

A
v
c

Dv» e -TTTTTe ~ C Ev
D . .
Dielectric
D,
’ DN’) Ev’)
U](Dm -Dy,)nds=Q=p  As Assume AL — 0
(Dni —Dyp)As =p, As E,AW-E,AW =0
Dy, —Dyz =0, E,=E,
D D
& Ex —&,Eq, =p, o T
€ €
Dy _&
D, ¢
For a perfect Dielectric, p, =0
Dy =Dy,
&.Exi = 6,E
Ew_8
Ev, &
Dno
I)bl A
A D
D,
0,
0
Du Do
D
cosf, =1
D]
Dy; =D, cos8,
D
cosf, = -2

2

Dy, =D, cos6,



D, cos6, =D, cosez‘ — (1)

Eni

0,
Ey

. E .
sin0, :E—”:>Etl =E, sin6,
1

. E .
sin6, = E—‘Z =E, =E, sinb,
2

|E, sin®, =E,sin6,| — (2)

@+

E, sin6, E,sin6,

€,E, cos0, - ¢,E, cos0,
tan0, tan0,
e &
tan0; g,

tan6, e,

Summary of boundary condition:
Conductor — Free space:-

D, =0;E, =0; Dy =p,;

The tangential component of electric field & electric flux density is equal zero.
The normal component of the electric flux is equal to the surface charge density.

The normal component of electric field is ratio of the surface charge density to the absolute permittivity.

Conductor — Dielectric:-

D, =E, =0;Dy =p,;

The tangential component of electric field and electric flux density is equal to the zero.

The normal component of electric flux density equal to the surface density.

The normal component of the electric field is equal to the ratio of surface electric density to permittivity.

Dielectric — Dielectric

E,=E, Dyi =Dy
D, _& Ew _&
D, & Ev, &
tang, g

tany,, ¢,

7) Discuss about the capacitor of various geometries using Laplace equation

Capacitance of various Geometries using Laplace equation:-



1) Due to a parallel plate capacitor:-

X — axis
T V:V()
X=d
+Q++++++++++++
d
Q ‘ X=0
V=0

Let us consider two parallel plates placed along the x- axis

We know that, Laplace equation for Cartesian co — ordinates is

ViV =0

o’V 9V 9V
+ + =

ox* oyt o7

0

Since the plates are along x- axis, variation of potential in Y and Z direction is equal to zero.

62\7_
e
o*V
J.éxz :J.O
v _
ox
av_,
dx
[dV=[A dx

A

V=Ax+B — (1)
Boundary conditions are

x=0,v=0

x=d,v=yv,
Applying boundary condition in Equation (1), we get

B=0
o =A(d)
v,

0

d

V=%x+0 Q)

(a) Calculate E from E=-VV

E:ﬂax
0x
£-2( %)
ox\ d
-V,
E=—2L 3
La. = 0)

(b) Calculate D =+¢cE

-V,
_Z 04

D= x
d

Sub Equation (3) in D=¢E



(c) By gauss law,

mD.nds:Q
eV,
=|(Dds=|p.ds= g
Q I s jp s q
_—eV)A
Q=
C:Q:S—Farad

8) Explain the capacitance of co — axial capacitance using Laplace equations
2. Due to co — axial capacitor:-

Let us consider a co — axial cylindrical capacitor with inner radius ‘a’ & outer radius ‘b’.

&)

Since potential varies with respect to p , variation with respect to ¢& z=0. The above equation reduces to

v

16V oV?
p =
op

ViV=— =
p2 6(])2 072

pop

V=0

10

10 9V
pop

P

&)

Multiply by p J. the above equation,
p

R BN Y
op op p

V=Alnp+B

0=Alnb+B

B=——Y0_in(b)
In(2)

Vo

— (1)

When p=a,V=V,;p=b,V=0;

V, =Alna-Alnb

v, :Aln(%))

A Vo

In(34)

Sub the values of A & B in eqn (1)

\Y
Vg™

)

In(b)

%)



Vi 11
(%) Pg P

Y% 1
1
ln(ab) p
V,
AN
D=¢E
_ eV, 3
pln(ba) ’
Q={p, ds
Q- eV, d
AR
Q- eV, dral ngz 2nge L
pin(%) Vo In(5;)
eV,
Q= aln({;a) x2nal
Q- 2meVy !l

in(%)

(iii) Capacitance due to a cone separate from the conductor along its vertex with air gap as dielectric

2
S ) (0.4 P W '3 Bt Sl
r° or or ) r°sin” 000 00 ) r-sin“6 o

Since the potential is constant with r and ¢ , the above equation reduces to




1 i[sin@a—vj =0

r’sin®0 80 00
d dv
sin6— |=0 V, =Alog, tan%; +0
de( dej = Alog,tan%)
sin Gd—V:A A=—10
de log, tanO/
d—va cosec 6 d6 V= log tan/
de log, tan(y
_ 0 -
V—Alogtanéﬁ-B E=-VV
0=",v=0 S oA YA
2 or r 00 rsin 6
6=a;,V=YV, E:_—lﬂae
r 00
-1
0=Alog, tan/, +B E=— log tan
B A r log, tan‘yae[ & /}
0=Alog1+B
B=0
-1 \A
E=— tan
r log tan(% tan/ de( A)
20
-1y, sec 22
r log tanO/ tan/
-1
r log tanO/ ZSln/ cos/
cosé
-1 \A 1
E=—ni——— g
r log tan(y sin6
D=¢E
B Al B
rsinflog, tan%
At 0=qa
—-¢&V,
Q=|p,ds=|———2——.ds=p
2[ !rsin 6log, tano/ s
-V, ”- rsinad¢
1rsmoc10ge tanéo 0 r
-eV,2n
= r :>Q o0
log tan(%
So the limit of r is changed from O to ry
-eV,2n
logtan(%
_Q_ 2mer, 2meyE, T, Farads

B Vo - (log tan%) log tano/

9) Derive the capacitance due to concentric spherical shell
Capacitance due to concentric spherical shell:-

Let us consider two spherical conducting shells separated by a dielectric with permittivity ¢ .



Let ‘a’ and ‘b’ be the radii of inner and outer shells respectively.

Let the potential V=0 atr=b, V=Vjyatr=a

2
AR B B T 4 T
T or or ) r°sin”0 00 00 ) r°sin”0 o

Since the potential is

Constant with ¢& 6, the above equation reduces to

1o(pV)

r° or or
g(rz ﬁj =0
or or

rzﬂ:A
or

ov
Y _A
or AZ
_-A
V= 4+B
When V=0atr=>b;

V=Vjyatr=a;

o:—%+3:>3=%

VO:—AA-H%

v-a(1-1)
b a
A1)
b a
V,
B7 0
%
b a
M R AU 2 e
1.1 1 1) 1 1b r
b a b a b a
E=-VV
_oV —
= ar
or
_ 40V \A
T o)
b a
—
gt
b a
D=¢E=— Vo
=
b a
D, =ps
-V,
A9 =0
=
b a
Vo um?2Q



1 1 :‘Q‘
b a
Q  4ne
TV, T

10) Explain about the nature of dielectric materials
The nature of dielectric materials

Dielectric in an electric field can be named as a free space arrangement of microscopic electric dipoles which
are composed of positive and negative changes whose centre do not co inside.

These are not free charges and they cannot contribute to the conduction process. Rather, they are found in place
by atomic and molecular forces and can only shift positions slightly in response to external fields. They are
called bound charges, in contrast to the free charges that determine conductivity.

The characteristics of the dielectric material are store electric energy. This storage takes place by means of a
shift in the relative positions of the internal, found positive and negative charges against the normal molecular
and atomic forces.

There are two types of molecular.

1. Polar molecule — a dipole is formed without the application of E
2. Non- polar molecule — a dipole is formed with the application of E.

A dipole moment is defined as the product of the charge and distance of separation between them. It is denoted
by P and its unit is coulomb.

P=qd

If there are ‘n’dipole in a volume AV, then the total dipole moment is given by
nAvV
Plotal = ZR
i=1
The term polarization is defined as the total dipole moment per unit volume
nAvV
1 ZP
Ar i=1

AS

s

E

NN

A '
7
s 7

T /’

The flow of current is due to bounded charges & free charges

NN




QT:Qb+Q

AQ, =-P.As
Q, =—{f|Pds
Q, =[fIDds

Q = _Qb + QT

Q=[|(D+P).ds

The relationship between E and P is given by

P=X, ¢, E
Q=[[|(&E +X,&,E)ds

s

=[fle.E(1+X,) ds

QzﬁﬁaoerE ds

Q:EﬁD.ds

Thus ¢ =1+X,

X, = electrical susceptibility. It is a dimensionless quantity.

Summary

C= % Farads

viv="P (poisson's equation)
€

V*V =0 (Laplace equation)

2
Wl 1oy 1€
2 2 2C
2
o-tep-lpp-1D°
2 2 2 ¢

Boundary conditions:-

E,=0 E, =0 E,=E,
D, =0 D, =0 Dﬂ:iltaan:s2
D, s&,tanf, ¢
Dy=ps Dy =ps Dy, =Dy,
E,=Ps g -Ps Eu_&
€o €08, Ev, &

11) Explain in detail about polarization and its types?

Polarization:-

Polarization of a uniform plane wave refers to the time varying behaviour of the electric field strength vector at
some fixed point in space.

Consider a uniform plane travelling in z — direction with e and H vectors lying in the x- y plane.

If Ey = 0 and Ex is present, the wave is said to be polarized in the x — direction. If Ex = 0.Ey = is present, the
wave is said to be polarization in the y — direction.

(i) Linear polarization:-



If both Ex and Ey are present and are in phase, the resultant electric field has a direction at an angle of

tan‘( % ) . If the direction of the resultant vector is constant with time, the wave is said to be linearly

polarized.

E4 E

yp--- - - - - - - - - — -

E= B +E

(i) Circular polarization:-

If Ex and Ey have equal magnitudes and a II phase difference, the locus of the resultant ‘E’ is a circule and the
wave is said to be circularly polarized.

If Ex and Ey have same magnitude Ea and differ in phase by 90°.

The resultant electric field in vector form is
E=a.E, +ja,E,

The corresponding time varying field is
E, =£_1an cosmt —z_lyEa sin ot

The component are

E =E, cosot E, =-E, sinot

E; +E; =E]

The equation shows that the locus of the resultant e is circle whose radius is Ea.

E
E

a

E

X

(ii) Elliptical polarization:-

If Ex and Ey hare different amplitude and a II phase difference, the locus of electric field is an ellipse and the
ware is said to be elliptically polarized.

Let Ex has magnitude A and Ey has magnitude B and differ 90° in phase.
The resultant electric field in vector form
E=a.A+ja,B

The corresponding time carrying field is



E=a,Acos ot +e_1yBsin ot

The components are

E =Acosot& E =-Bsinot
E E
X =cos ot & —L=-sinot
B
E> E’
|
A A?

The equation shows that the locus of the resultant E is an ellipse

Fig:- Elliptical polarization
UNIT - II PROBLEMS

1. A condenser is composed of two plates separate by a sheet of insulating material 3 mm thick and of
g,, = 4. The distance between the plates us increased so as to allow the insulation of a see and sheet of 5

mm thick and ¢, . If the capacitance of the condenser so former is 1/3 of the original capacitance, find

€,.

r2

Solution:-

The capacitance of a parallel plate capacitor is C= £8A

A 4x A
Therefore, C, = Sofa 5 AR

d, 3x10°”°
A
CIZﬂSOA
3
€8,A  gyxe XA
C:=74, " sxi0°
2 x10
C,- 10° agarzA

When C, :% C, , the above equation can be equated as,

10°g5,A 1 L Ax 10° x Ag,

5 3 2
6= _om
9

2. A parallel plate capacitor has three similar plate the outside two being joined together the inner plate is
immovable so that it can be used as a variable capacitor. If C1 is the capacitance when the inner plate is

exactly midway between the outer plates and C2 is the capacitance when inner plate is 3 times here the
plate than outer plate.



Solution:-

To determine the capacitance C1:

Outer plate I 7\
d
% |

Movable inner plate

% |
Outer plate IT v

C :%4_%
1
hoh
e

To determine the capacitance C2:-

Outer plate | A
d
Y ‘

Movable inner plate

ol
Outer plate 11 v

ceA eA 4deA 4eA

C,=—F—=—-> —+—
27 43/"7d

AA d 3d
C_E%:(%_Aj‘*

2734 d )3

3. The capacitance of the condenser formed by the two parallel metal sheets, each 100 cm” in area
separated by dielectric of 2 mm thick is 2 x10 p F. A potential of 20kv is applied into it. Find (i) Electric
flux (ii)Potential gradient in Kv/m (iii) relative permittivity (iv) Electro flux density

Solution:-
Given A=100cm2,d=2mm, C=2x10"*pF

V=20 Kv

Q

(i) The capacitance C= v

_Q
20x10°
Q=2x10"*x2x10*x10"°

Q=4uC

2x10™ %107 =

(i1) The Electric flux ¥ =Q =4uC

3
(iii) E:X:&:mxlo‘s v/m
d 2x10

(iv) Capacitance between parallel plates C= &8 A



8.854x107" xg x100x10™*

2x10*x10° = :
2x10™

x=4.5177

—6
D op = Qo #x10°
A 100x10
D, =4x10"¢c/m’

4. The parallel conducting disks are separated by 6 mm and contain a dielectric for ¢ = 4. Determine the

charge densities on the disks . Z
V=270V

_ A M~ ' @A
B=2Y_ 20290 _500' vim .
d 6x10” !
d |
E=-VV=-3x10"a,V/ma !
|
]
|

Vo T

D=¢E=¢gE . Vy =

=8.854x107 x4 x (—3>< 104)

=-10.62x107 a, ¢/ m’
p, =%10.62x107
=+1.062uC/m’

5. An air condenser consisting of a parallel square plate of 50 cm side is charged to a p.d of 250 v. When
the plate are 1mm apart. Find the 100 rt line. Assume perfect insulation.

Solution:-
A=50x102x50x 107 = 25%10’m

_gA _8.854x107%x25x107

When d; = 1x107, C -
d, 1x10

C;=0.22x 10-8 F

_gA _8.854x107°x25x107
d, 3x107

When d2 = 3x 107, C,

C2=0.07x10%F

The energy stored in Clis W, = %CIV2

The energy stored in C2 is W,, = %CZV2

We = wel - We2
1 1
=—C, V' -=C,V’
2 2
1
=5vz(cl -G,)

— L 250)10.22-0.07]x10*
2



We =4.583 x=10"]

6. The radius of two sphere differ by 4cm with air as dielectric and the capacitor of the spherical

capacitor is % pF. If the outer sphere is grounded, determine the ratio.

Solution:-

C=4ne, [ba‘—b)
—a

b—a=4x107

C=4nx8.854x107" sz
4x10

—12
@xm“ _ 4T[><8.854><210
3 4x10”

(ab)
ab=0.019m’

b-—a=4x10"

b=a+4x107
ala+4x107]=0.019
a’+4x10%a-0.019=0

Solving for a, we get
a=0.12m
b =0.16 m.

7. The radius of outer sphere

4me 4mtx8.854x1107"2%x27°

[/ g w—

X
0.1x107  0.25x10°

C = 0.46pF
:g:—l =T) :2.15><1012
C 0.464x10
E A 2.15x10"

=B o ]

Epax = 1.56 x10°V/m

8. Determine the voltage across each dielectric in the series plate capacitor conducting two dielectric
g, =3 &¢&_, =1, when the applied voltage is 200. Here A =1m’, d; = lmm & d, = 4 mm.

Solution:-
Ceq = C1.C2/C1+C2

C =2.043nF

D,=p,="="=

Q_pV _2.043x107x20
A A 1

D, = 4.086 x 107c/m>.



D 4.086x107
6c, 8.854x107x3
D 4.086x107

* g, 8.854x10"7x1
V,=Ed, =15.4x10*x107 =15.48
V,=E,d, =46.15x10° x4x107 =184.6

1

=154x10" v/m

=46.15x1072v/m

10¢g,
—

9. A spherical capacitor with radius a 20 ccm & b =4 ¢cm has a non homogeneous dielectric of ¢ =

Calculate the capacitance of the capacitor.

Solution:-
a yoQ - _
V= —'[E dl = —![4mr2 arj (drar)
_Qpdr
4 er?
_Qj_dr__ -0 tdr
C4m ) 10g,” 40me, ) r
T
.
Q
V= Joms [m(%ﬂ
40me, Q
(%) v
40nxﬁx 10°°
— 2P =C
In(#3)
C=1.6nF

10. Determine the voltage across each dielectric ion the capacitor as shown in the figure, when the applied
voltage is 200v.

Solution:-
A
3 mm
N AN
A
1 mm
I A
A A 1
C = 8A &l 85X 5400
d d, 10~
C - &A  gg,A g,x1x1 1000
1T, = = =

= = g
d d, 3x10® 3 °

Since the capacitor are in series,



1000¢
5000: 70
ce, | S°)X( 3 )

1000z,

eq - -
C+C 50006, +

_ 5x10°xg,”
T 16x10%,
_ 5x10°x10°x g,
- 16x10°

= 5020 % 8.854x107"?

44.270
16

=107

Ceq=2.766 0 F

Q_cCv 2.766x107° x 200
A A 1

D,=p, =

D, = 5.54x 107 C/m®

D 5.54x1077

E = = — =1.25x10*V/m
€€, 8.854x107"x5

D 5.54x107

E = = ——=6.25x10'V/m
€€, 8.854x107"x1

V,=Ed, V,=EJd,
V,=1.25x10*x107 =12.5v
V, =6.25x10* x3x107° =2

11. A parallel plate capacitance has an area of 1m with the distance b/w the plates 0.01m & thickness of
the wood is 0.002 m. The relate dielectric constant of wood is 6 the that of calculate the capacitance.

Solution:-
0.002m Wood
A
@ Air
- \ 4
d=0.0lm —
d
-V
d +d,=d
854x107 x1x1
d, +0.002=0.01 C, _8.854x10 7 x1x1
0.008
d, =0.01-0.02; d,=0.008 C, =1.106nF
C. = % _ €€ A
’ dZ dZ
 8.854x107? x6x1
0.002
C,=26.562nF
Capacitance in series
—18
CC, _1.106x26.56x107" | 0 =

“C+C, 27.668 %10



12. Three capacitor of 10uF, 25uF & S0puF are connected in series & parallel. Find the C., & energy
stored in each case, when the combination is connected across 500v supply.

Solution:-

(i) In series

1 1 1 1 (1 1 1)1
— =t —t—= —+—+—

cC, ¢ ¢, ¢, 10 25 50)10°
=(0.1+0.04 +

04 +0.02)10°
=6.25puF

W, = %p\ :lx 6.25x 107 x (500)°

W, =0.7811J
(ii) In parallel
C,=(10+25+50)x10° =85 uF

W, = %cpv2 :%x85x106 x (500)*

We=10.625]
13. Referring is the figure, determine

@) Capacitor / unit length of the cable
(ii) Maximum of in each dielectric with the data V, =1.2kv, &, =45 &g, =&, =2r, 41, =40mm

I

T

(i) The capacitance of co axial cable

2 2
C = TCrSl G, = Tsz —
ln[ ZJ ln[3J
L L
_CC, 2me e,

C+C,
A € szln(rzj+glln[r3j
rl r2

(ii) To find maximum E,

2% 8.854x107* x4.5

C = — =0.36nF/m
(o)
In| —
10
-12
c,- 21 x8.854x107" x3 — 0.24nF /m
40
In| —
)
Y. G 036_1 5 &V, +V, =1200V
V C 0.24
V, =480V Q=C,V,=0.36x10"x480=172.8nC/m
po_ Q 172.8x10”

r(max) =

e 2mre 2mx0.01x8.854x1072x 4.5



E (max) = 69.1 kv/m
Atr=r,=2r

172.8x107

E = ———=518kv/m
21x0.02x8.854x107" %3

V, =720V, C,=0.24n F/m
Q = C2 V2 =172.8n C/m

14. If two parallel plate, of area 4m” are separate by a distance of 6mm, field the capacitor between these
2 plate. If a rubber sheet of 4mm thick with ¢ =2.4 is introduced in between the plates leaving a gap of 1

mm on both sides, dielectric this capacitance.
Solution:-

Given, A=4m’*&d=6x10"

=5.90x10°F

C :@ _ 8.854x107"% x4
d

6x107
Capacitance of two introducing rubber is

g, A geA €A
:() +()r +()

C
dl d2 d2
—8.854x102 x4 1 4 2.473 . 1 _
L1x107 4x107 1x10~
C=8.854x10"x4 10%%}
—8.854x107 x4 4x103+w}
=8.854x11.4x107"%x10°
—92.082nF
C=92nF

Problems in Laplace’s equation

15. Show that the expression for the potential due to electric dipole satisfies the Laplace’s equation
Solution:-

_Qdcos® kcosO

2

v

4n80r2 r

Qd

4re,

where k =



2
V2V:l2£ rza—V + 21_ i sinea—v}+—21. 6_\2/
r° or or r°sin6 00 00 | r°sinB O¢
:Lzﬁ rzkcoseg(%j +5— 1 9 sinei(—k cos@)
r-or or\r r-sin6 00 00 r
1 8 [kcosb
t o
r°sin® o¢ r
:lz2 r’kcos _—3 +5 1 i sinek(_szme)}
r° or r r-sin© 00 r
_ 1 0[2kcos 1 —2ksinecosej
r? or r’ r’sin0 r?
B 2kcos6_ 2k cos O
rt rt
ViV=0

Thus the potential due to dipole satisfies Laplace’s equation.

16. Determine whether or not the following potential fields satisfy the Laplace’s equation.

() V=x’*-y*+7’

OV 0V oV

+ +
aXZ ayz aZZ
2 2 2
:%[xz—y2+zz}+%[x2—y2+Zz]+%[x2—y2+zz}
0 0 0
=—(0x)+—(-0y)+—(0
aX( X) 6y( y) 82( z)
=2-2+42
=2.

This equation does not satisfy the Laplace’s equation.

(i) V=pcos p+z

2 2
V2V:li pa_V +l 0 \2/ +a \2/
popl Op) plod 0z

ov 0

— =—/(p cos¢+z).cos

% ap(p ¢+2).cosd

oV o .

— =—(pcos ¢ +z) =—psin

P 6¢(p ¢+2z)=—psing

oV 0

—=—(pcos ¢p+z)=1

5, o, Peose+)

VZVzli(pcos¢)+i2£(—pSin¢)+£:1
p Op p~ 00 0z
:cos¢_cos¢+0
p P

ViV =0

Satisfies Laplace equation

(iili) V=rcos 0+¢ In spherical co — ordinates



2
V2V—ia(rza—vj+ ! 2[Sinea—VJJ— ! aV—O

ol o) r’sin6 a0 20 ) r’sin’0 09
= r2a—V+r22(r cosO+¢)—1° cosesinea—v+sin9£(rcos€)+¢)—rsin29
or or 00 00

2 2
+ 2]. 6\2]4— 21. 8—2(rcos9+(|)):0
r'sin® 06~ r°sin6 0

2 .

VzV:lzg(r2 cos0) +
r-or r-sin

! 5 %(—r sin Q)

_ 2cos0 3 2cos0 _0
r r

ViV =0

This field satisfies Laplace equations.



UNIT 11
CONDUCTORS AND DIELECTRICS
PART-A
1. Write the poisson’s and Laplace’s equation.
Poisson’s equation:
Viv = —é
Viv=0.
This is the Laplace’s equation.

*v v v .
=—+—+—5 =0 [cartesian]
ox~ 0y Oz

2 2
VL2 A] A,
ede| Oe| e| 0 0z

2
vl 22 ], L,
r"or| oOr| r°sin® 0O 0] r°sin®” Od

Viv

2. Define capacitance:

Capacitance between two conductor defined as the ratio of the magnitude of the total charge on eitherconductor
to the potential difference between conductors.

C == farads

Where,

C is capacitance in Farads

Q is charge in coulombs

V is potential difference between the conductor due to equal to opposite charges.
3. Define electric current:-

It is defined as the rate of flow of charges the direction of the current flow is opposite to the flow of charges . the
unit of current is Amperes.

_dQ
dt

4. Define electric current density
It is defined as the current per unit area. It is denoted by ‘J” and its unit is Ampere /m”.
I

1=
I=].A

Izg‘j].ds

5. Write the equation of continuity.

v

V.]=
J ot

6. Write the point form of ohm’s law.



J=cE
This is the point form of ohm’s law.

Where, o= . Its unit is Mho/m

Pe He

7. Define dipole moment

Dipole moment is denoted by P is defined as the product of a charge in the distance of separated by the charge
P=qd

8. Define polarization:-

Polarization is defined as the total dipole moment unit volume.

_ Pltotal _ i% P
Av Av i !

P

9. Define inductance:

The inductance is defined as the rate of total magnetic flux linkage to the current through the coil and it is
denoted by symbol

L _dA _Nd¢
di di [@ _ 9}
Lo N¢ di I
I
10. Define flux linkage.

Flux is defined as the product of N — turns in the coil, and the total flux linked with the coil. It is defined by the
symbol (A)

A =N¢
11. Define Mutual inductance:-

Mutual inductance is defined as the flux linked is one coil due to the current following the second coil.
12. What is meant by dielectric breakdown?

When the electric field in a dielectric is sufficiently large, it begins to pull electrons completely out of the
molecules & the dielectric becomes conducting.

13. Define dielectric strength of material & give its unit.

The maximum electric field intensity that a dielectric material can with and without break down is the dielectric
strength of the material, unit: V/m

14. Find the capacitance of cylindrical (co — axial) capacitor shown in fig. here each dielectric occupies
one has the volume with a =3cm & b =12cm ¢, =2.5& ¢, =4. The voltage difference is 50 v.

Solution:-
| TEE, _ MEE,
“Tnl) © )
C=C,+C,=—0 (g +¢

-12
_ nx8.854x10 [2.54_4]

in('%3)



C =130.6 pF/m

15. Find the resistance a copper wire of length 200 km and uniform cross section area 40mm?. Given that
the conductivity of Cu is 5.8 x 10" S/m.

Solution:-

_ £ 200x10°
oA  5.8x10"x40x107°
2x10° o 2x10°

T58x4x10°x10°  58x4x10°

3
- 2X1§ ~86.2Q

R=86.2Q
16. A Cu bar of 30mm x 80mm in cross section and 2m in length has 50mv ends. Find resistance intensity.
For Cu, ¢ = 5.8 x 10’ S/m.
Solution:-

_£__ 2
oA  5.8x107 x300

R=14.268x 10°°

E=

-3
%: SOXZIO =25x10° =25mV/m

17. A parallel plate capacitor has an area of 0.8 mm separation of 0.1mm with a dielectric for which
€, =1000 and a field of 10° v / m. Determine the capacitance and voltage across the two plates.

Solution:-
Given A=0.8m’ d=0.1 mm
g, =1000 E=10°V/m
C_EA _EEA _ 8.854x107x1000x 0.8
d d 0.1x107
_8.854x107% x10°x 0.8x10’
0.1
=8.854x8x10™
C =70.732uF

V=Ed=10°x0.1x10" =100v

18. A capacitor consists of two similar square aluminium plates each of 10cm x 10 cm mounted parallel
and opposite to each other. What is the capacitance when the distance between them is 1cm and dielectric
is air.

Solution:-
Given A=10x102x 10x102=10"%m’
D=1lcm=1x10m

&g A 8.854x107x107°

C -2
d 1x10

C =8.854 Pf



19. Determine capacitance of area 1sqcm, separated by 1cm placed in a liquid whose dielectric constant is
6 & ¢,=8.854x107

Solution:-
A=1lem’=(1x10%)=1x10"
d=1lecm=1x10"?

_g8A  8854x102x6x10™

C )
d 1x10

C=0.5312 pF

20. If C =40 nF, d = 0.1mm & A = 0.15m’ Determine the relative permittivity of dielectric material used
in a parallel plate capacitor?

Solution:-
C — 8()8rA
d
40107 = 8.8854 %107 x g, x0.15

0.1x107
. 40x107 x0.1x107°
" 8.854x107%x0.15
e, =3.01

21. Find the capacitance / unit length between two plate cylindrical conductor in air of radius 1.5 cm &
coil a centre separation of 85 cm.

Solution:-

C me,  mx8.854x107"2

(%) m(Ey )

C’ =6.89 pF/m

1

22. Calculate the capacitance / km length of two identical parallel wires of diameter 1 cm each and plate 1
m apart. Also find the potential difference between them, which will make the ‘E’ at the conductor
surface just 4x10° v/m.

Solution:-

Radiusa=05%x10-2m,d=1m, E = 4x10°

c-C__m% :7I><8.854><10*12

£ m(d5) ln(‘j

0.5%107

C’ =5.25pF

E:%:V:E.d
=4x10°x1

V=4x=10° Volts

23. The conductors of two wire transmission line of length 4 km are spaced 45 cm between centre. If each
conductor has a diameter of 1.5 cm, then calculate capacitance of the line.



Solution:-

_ mel  mx8.854x1077 x4x10°

B ln(%) ]n( 0.45 )

0.75x107>

C =27.17 nF

24. Consider that two copper wires of 1.299 mm diameter are parallel with separation d between the axes.
Determine ‘d’, so that the capacitance in air is 30 pF/nF

Solution:-
C‘ — g — TESO
£om(%)
-12
30x10° = nx8.854x10

(%)

1n(%)=%:0.927

a_ e =253
a

-3
d=2.53a= 2.53xw

d=1.63 mm

25. Calculate the capacitance of the co —axial cable with the radius of inner conductor a 10 mm and outer
conductor b = 10 mm and has ¢, =3.5. The inner conductor is at potential 1 kv and the outer shield is

grounded. The cable is 8 km long.
Solution:-

Given a=10mm,b=15mm g =3.5 /=8km

2nl 21x3.5%8.854x10"> x8x10°

C= =
o) (]
C =384 pF

26. Find the capacitance / unit length of a co axial conductor with outer radiys 4 mm and inner radius 0.5
mm if ¢ =2

Solution:-
_C_ 2mge,  2mx8.854x1077x2

T m(b/) ln(“j

0.5

'

C’> =139. 116 pF/km

27. The radius of inner and outer spheres are 10 cm & 20cm respectively. The space between the two
spheres is field with ¢ =3. Find the capacitance.

Solution:-

dme dme,e,  4mx8.854x107"7 %3

C= =
A 5

o
0.1 02



C = 66.76 pF

28. Two capacitance 10uF& 25uF are connected in series & parallel. Find the equivalent values of

capacitance.
Solution:-

C, =10yF, C, = 25F
(i) In series:-

_ CC, 25x10x107"”
“C+C, 35x107°

Ceq =7.142 pF
(ii) In parallel:-
Ceq = C1+C2 = 35|,lF

29. The radii of inner and outer sphere are 10 cm & 20cm respectively. The space between the two sphere
is field with insulating material of ¢,. Find the capacitance formed by the two conductor sphere.

Solution:-

_dmege,
€= 1 1

a b
1

47t><79>< 3
- 36mx10"
1_1
0.1 02
(0.33x107)3
5

~0.99x10”

5

C = 66.76 pF

30. The radii of two sphere fifer by 4 cm with air dielectric & the capacitance of the spherical capacitor is

% pF. If the outer sphere is grounded, determine the radii. The capacitance of spherical capacitor is

Solution:-

C= 4n30(ﬂ)
b-a

b—a=4x10"

c= 4Tc><8.854><1012( ab 2]
4x10

160, 102 — 4nx8.854x10° (Lnj
3 4x10°
ab=0.019m"

Solving we get,

a=012m&b=0.16 m



PART-B
1) Explain the significance of Poisson’s and Laplace equation:
Poisson’s Laplace equation:

Gauss law states that the surface integral of the normal component of electric flux density vector over a closed
surface is equal to the charge enclosed by the closed surface.

[IjD. nds=Q= “Ip dv — (1)
As per divergence theorem,

mD. nds= HJ(VV) dv — (2)

Equating (1) & (2), we get
[[[(v.Dydv=[[[p dv
VD=p —(3)
This is point form of Gauss law,
Sub D =¢E in eqn (3), we get
V.sE:p:V.E:S —(4)

Relating E &V, as E=-VV —(5)

Sub (5) in (4), we get

This is known as Poisson’s equation.

In a non- conducting region, charge density is equal to zero (p=0)

V2V =0
This is known as Laplace’s equation
2 2 2
vy =2 \z] +2 \2/ 2 Y =0 (cartesian)
ox- oy" 0z
2 2
vy-12 pﬂ +i2 0 \2/ 2 \2/ =0 (cylindrical)
pop\ dp) p°\ 0§ ) oz
VZV:%g(rzgj+ 5 1 - 3(sineﬁj
r° or or ) r°sin” 000 00
2
1 2oV, 0 (spherical)

’sin’0 89°
2) Define the term capacitance? Explain it.

Capacitance:-

Capacitance between two conductors is defined as the ratio of the magnitude of the total charge on either
conductor to the potential difference between conductors.

C= Q Farads
\%



C = Capacitance in farads
Q = Charge in Coulomb
V = Potential difference between conductors due to equal & opposite charges on them magnitude Q

When the capacitance of a single conductor is referred to, it is assumed that the other conductor is a spherical
shell of infinite large radius.

Consider two conductors of arbitrary shape (1) & (2) as shown in below figure

(1) If initially both the conductors are uncharged & if a charge is removed from (2) to (1), the conductor (2) will
be left with — Q

(2) Work is done in moving a charge from (2) to (1) resulting in a potential difference developed between two
conductors. There will be an electronic field around them.

(3) Conversely, if a potential difference of V volts is applied. Then a charge of +Q & -Q is developed along the
conductor. So, there exist a relationship between Q & V, and the ratio is constant.

If acharge of 1 coulomb is associated with a potential difference of 1 volt, the capacitance between the two
conductors is said to be one farad.

3) Derive the expression of capacitance for various geometries :

(1) Parallel plate capacitor:-
PLATES

A typical parallel plate capacitor which consists of a pair of flat parallel plates with surface area A separated by
distance ‘t” and through a dielectric of permittivity e=gg, .



The capacitor may be charged by connecting the terminals a and b to a source of potential difference. Let us
assume that there is uniform charge density over a plate surface, psC/m?” and also across the dielectric.

mD.ds:Q
D.A=Q

D:%:ps

So that the filed intensity is

Potential difference between the plates is given by the integral of the field E over the thickness t. As the field is
uniform, we can write

v=Et=PL
8Ogr

Capacitance may be expressed as,

ngzpsAZSOSrA

vV pit t
8081_

Capacitance of an isolated sphere

In the case of an isolated conductor, the other conductor forming part of the capacitor is a spherical of infinite
radius. Let it be radius r; the potential of an isolated sphere is the work done in moving a positive test charge
from infinity to the sphere consequently, the absolute potential is given by

vo_Q

4mer

[For a free space medium ¢, =1 ]

So the capacitance is given by,
Q
C= v 4me

Capacitance between two concentric spherical shells:-

A spherical capacitor is composed of two concentric, spherical, conducting shells separated through a dielectric
medium; say free space in the case. Let ‘a’ and ‘b’ be the radii of the inner and outer shells respectively.

If a charge ‘Q’ is distributed uniformly over the outer surface of inner shell of radius ‘a’ then there will be equal
and opposite charges induced on the outer shell of radius ‘b’.

The filed at any point between the shells is given by

Q

E =
T Amgyr?

(a<r<b)

Capacitance of co- axial cable with two dielectrics

Let us consider a cable with two dielectric with permittivities g, &g, . If E; is the field intensity at any radial

distance r in the dielectric (1) and E, that in the dielectric (2).



E ="t (r <r<r,)

L=
27e,r
__bPL
E,= (r, <r<r,)
2ne,r

A\ :—].El dr; V, :—].E2 dr

r
V, = P 1,
2ngE, I,

V=V, +V,

voP [l n 1, n
2meg e, n &, L

r
V, = T P
2ngE, L

The capacitance / m length is given by 0

pL 2TESOErlSrZ

c=P_ p/m
2-303{8,2 log,, LZ'*‘ €n 10g10r3}
T, I

2

0.0241¢ ¢,

C=

1
o H%m

I

2
&,,108,, L t&, 10810;
1 2

Capacitance between two parallel wires:-

.Ab

§C

/ Cable sheath

Assume that + p, and - p, are the charge in ¢/m of the wires A and B, spaced D me ties apart and radius of each

wire is r metre, remembering that D >>r.

In order to determine the capacitance between A and B, we need to find the potential difference

Letx=r,D—x=-r.

4) Derive the expression of energy and energy density?

Energy in a capacitance:-




Potential is defined as the work done/ unit charge. If the capacitor is connected to a source of potential the
capacitor acquires charge. It involves the work to charge a capacitor.

Potential may be expressed as the infinitesimal work per infinitesimal charge.

y=dW
dQ
dW = VdQ

If ‘Q’ is the charge corresponding to V,

Q
C

1
dW = EQdQ

V=

If the capacitor is initially uncharged and the process of charging continued until a charge Q is reached, the total
work done is

1q QZ
W==-|QdQ== Wh =CV
C'([Q Q 2C ere Q

2
W= <L or 1CV201‘ 1QV Joules
2C 2 2

Energy density:- 7\ T
At
At

/e

When a capacitor is charged to a V between the plates, the energy stored is given by
W= 1CV2
2

The potential difference between the parallel faces of the volume element is

AV =E(At)
AW = %AC(AV)Z

1 2 2

= JE(AE(AY)

AW = %SEZ (At)

1
AW = Z£E*(A9)

ooV _1
AS 2

2
Energy W:%CV2 /%QV/%% Joules

2
Energy density o= 1gE2 = 1DE 1D Joules
2 2 2 ¢
5) Explain current, current density and equation of continuity?

Electric current:-



It is defined as the rate of flow of charges. The directions of the current flow is opposite to the flow of charges.
The unit of current is Amperes

_—dQ |
=% M

Let us consider a charge Q in a volume V. Let p, be the volume charge density given by
Q=[flp, dv — (2)
v
Sub (2) in (1), we get
—d
IZEU;]PV dv — (3)

Electric current density:-
It is defined as the current per unit area. It is denoted by ‘J” and its unit is Ampere/ m”.

]:%:1:]./&:@].(15 —(4)

Equation of continuity or continuity equation of current:-

Let us consider a closed surface S, the current through the closed surface is I, due to outward flow of positive
charges.

Izﬁ
dt

m].ds = gmpv dv — (5)

By applying Divergence theorem,

[j]].ds: j j j (VJ)AV — (6)
Equating (5) & (6), we get

Il - jg%. av

) _a p\'
ot

V.J
This follows principle of conversation of charges
6) Explain in detail about the boundary conditions of electric field

Boundary conditions of electric field:-

e  Conductor — Free space
e  Conductor — Dielectric
e Dielectric — Dielectric

Conductor — Free space:



Dn

Free Space
b AW Ex
N D w a ¢ > b E
b Al T E,
emmmee R d ¢ Conductor
We know that for a conservative field,
[E.dl1=0
[Edl+ [Edl+ [Edl=0
ab be da
Al AL
[E, AW +Ey.—~Ey. == =0
E =0
seDt=0
Hence Dt=0
As per gauss’s law,
fDNds=Q
Dy.As=p, As
DN = ps
eEy =p,
EN — pS
8U‘C"r
E, =5
€y
1). E,=0; D,=0
2). Ey =&;DN =pg
€y
2. Conductor — Dielectric:-
Dn
P AW _ Dielectric
E,
5 En
Dn
N ! b
D, AL T E
PP, d ¢ Conductor




DyAs =p.As
SEN - ps
E,=-F
8Ogr
DN = ps
E, = Ps
€08,

jE.dl + jE.dl + jE.dl + _[E.dl =0
ab be cod da

IEt.AW+IEN.%—jEN.%=O
E, =0

D, =0

DNI
Dielectric
D L AW N
D w a<€ >
AL
Drl T
Dw» P EE R R d Ev
D : \ .
Dielectric
D.,

Dw»

Dj(DNl -Dy,)nds=Q=p_ As

(Dxi —Dyo)As=p, As
Dyi —Dra =0

&:Exi —&,En, =p,

For a perfect Dielectric, p, =0

Dy1 =Dy,
&.Exi = 6,E
Eu_&

E

N2 &1

Dy
A

N1
Dl
Dy, =D, cosb,

cosf, =

D
cos, =—N2

2

Dy, =D, cos®9,

AssumeAL— 0

E, AW —E, AW =0

E.=E,
Dy _Dy
€ €
D, _&

D, s

DN2

0,



D, cosb, =D2C0592‘ — (1)

Eni

0,
Ey

sin 6, :% =E, =E, sin,
1

sin6, :%: E, =E, sin6,
2

[E, sin6, =E, sin6,| — (2)

@+

E,;sin0,  E,sin0,

g,E, cosO, N g,E, cosB,
tan0, tan0,
S

tan0, ¢,

tano, - €,
Summary of boundary condition:

Conductor — Free space:-

D,=0;E, =0, D, =p,;

The tangential component of electric field & electric flux density is equal zero.
The normal component of the electric flux is equal to the surface charge density.

The normal component of electric field is ratio of the surface charge density to the absolute permittivity.

Conductor — Dielectric:-

D, =E, =0;Dy =p,;

The tangential component of electric field and electric flux density is equal to the zero.

The normal component of electric flux density equal to the surface density.

The normal component of the electric field is equal to the ratio of surface electric density to permittivity.

Dielectric — Dielectric

E,=E, Dyi =Dy,
D, _& Ew _&
D, s Evw &
tany _

tan,, - €,

7) Discuss about the capacitor of various geometries using Laplace equation

Capacitance of various Geometries using Laplace equation:-



1) Due to a parallel plate capacitor:-

X — axis
T V:V()
X=d
+Q++++++++++++
Id
Q ‘ X=0
V=0

Let us consider two parallel plates placed along the x- axis

We know that, Laplace equation for Cartesian co — ordinates is

ViV =0

oV o’V &V
Tt t—5=0

ox~  oy" o0z

Since the plates are along x- axis, variation of potential in Y and Z direction is equal to zero.

>V
ox?

Pl
PRl
v _
Ox
av_ s
dx
jdV:jA dx

A

V=Ax+B — (1)
Boundary conditions are

x=0,v=0
x=d,v=yv,
Applying boundary condition in Equation (1), we get
B=0
A(d)
Vo

0=

V,

V="0x+0 2
CIx+ —(2)

(a) Calculate E from E=-VV

E:ﬂaX
Ox
ox\ d
-V,
E=—2 3
La —=0)

Sub Equation (3) in D=¢E



(c) By gauss law,

mD.nds:Q
-V,

=|Dds=|p,ds=—-2L
Q=D ds=[p,ds= "
_—tV,A
Q=3
ng:ﬂFarad

Vv, d

8) Explain the capacitance of co — axial capacitance using Laplace equations
2. Due to co — axial capacitor:-

Let us consider a co — axial cylindrical capacitor with inner radius ‘a’ & outer radius ‘b’.

ViV

10 oV 10V oV?
=P |t ozt =2"~
pop\ op ) p” 0 oz

Since potential varies with respect to p , variation with respect to ¢& z =0 . The above equation reduces to

1 a( avj
——|p=—|=0
pop\ op
Multiply by p _[ the above equation,
P

ov ov
pap op A

V=Alnp+B — (1)

When p=a,V=V,;p=b,V=0;

0=Alnb+B V, =Alna—-Alnb
B=-Alnb VO:Aln(%)
B:_kvoln(b) A:L

In(33) In(34)

Sub the values of A & B ineqn (1)

V:lnE/a"/b)ln(%)




[y

S /T
In(3¢) %%
v, 1

e

a,

on

pin (b))

D=¢cE

__ V% o
P

pin(%)

Q={p, ds
Q:J‘i.d

pin(%)

p=a

eV,

aln(b/)

_ 2meVyt
tn(%)

(iii) Capacitance due to a cone separate from the conductor along its vertex with air gap as dielectric

2
VZV:%é(rzﬂj-r > .12 i(sinegf—)-r > .12 gzo
r° or or ) 1°sin” 6 00 00 ) r°sin” 0 o

x2mal

Q-=

Q

Since the potential is constant with r and ¢ , the above equation reduces to




3 .12 6( neﬁj 0
r°sin” 0 00 00

d dv
sinf— =0 V, =Alog, tan%, +0
de( ! dej = Alog, tan%)
sin Gi%:A Azi‘la
logctané
%:A cosec 6 do V=¢alogtan%
logetané
V=Alog tan0/ +B E=-VV
o=".v=0 = ﬂg+lﬂae+ !
2 or r 00 rsin®
0=a;V=V, v,
r 00
0=Alog, tan%+B E=— = Vo [log tan/}
r log, tan(y o9
0=Alogl+B
B=0
-1 \% 1 d
E=—. 2 . .—(tany)a
0 2)%e
r log, tan% tané de
1
20/ -~
= v, sec” 755
=—. . 5
r logctan% tané
-1 \A 1 a
r .1ogctan%.25in%.cos% !
0
cosé
el N 1,
r log, tané sin
=¢E
B A B
i o,
rsin6log, tané
At 6=qa

'S[ 'S[rsmeloge tanO/

- I'[rsmocdcb
rsmoclogetan/g 0
-eV,2n

_log tano/[] =Q=

So the limit of r is changed from O to ry

-&V,2n

log tano/

ngz 2mer, 2megE, 1, Farads

Vo (log tan %) 108 tan(V

9) Derive the capacitance due to concentric spherical shell
Capacitance due to concentric spherical shell:-

Let us consider two spherical conducting shells separated by a dielectric with permittivity ¢ .



Let ‘a’ and ‘b’ be the radii of inner and outer shells respectively.

Let the potential V=0 atr=b, V=Vjyatr=a

ViV=0=

10(,0V 1 o( . OV 1 oV?
ieiew R iiewell R srue maowy [0 L vl R s mave
r° or or ) r°sin” 600 00 ) r-sin“0 o

Since the potential is

Constant with ¢& 0, the above equation reduces to

lzé(rz ﬂj =0
I or or

é(rzﬂjzo
or\ or
PN _a

or
V="8/+8B
When V=0atr=>b;

V=Vjyatr=a;

0:—%+B:>B:%

w-a{2-1)
b a

-V,

oy
o

—-&V, x4mr? =Q

=
b a



1 1:‘Q‘
b a
C,g, 4ne
v, 1

10) Explain about the nature of dielectric materials
The nature of dielectric materials

Dielectric in an electric field can be named as a free space arrangement of microscopic electric dipoles which
are composed of positive and negative changes whose centre do not co inside.

These are not free charges and they cannot contribute to the conduction process. Rather, they are found in place
by atomic and molecular forces and can only shift positions slightly in response to external fields. They are
called bound charges, in contrast to the free charges that determine conductivity.

The characteristics of the dielectric material are store electric energy. This storage takes place by means of a
shift in the relative positions of the internal, found positive and negative charges against the normal molecular
and atomic forces.

There are two types of molecular.

1. Polar molecule — a dipole is formed without the application of E
2. Non- polar molecule — a dipole is formed with the application of E.

A dipole moment is defined as the product of the charge and distance of separation between them. It is denoted
by P and its unit is coulomb.

P=qd

If there are ‘n’dipole in a volume AV, then the total dipole moment is given by

nAvV
Ptotal = sz
i=1

The term polarization is defined as the total dipole moment per unit volume
1 nAv

P=—>P
Arzl

i=1

AS
E

s ~

/////}

//

///' ﬂx

/

The flow of current is due to bounded charges & free charges



QT:Qb+Q

AQ, =-P.As
Q, =—[f[Pds
Q. =[Dds
Q = _Qb + QT

Q=[f(D+P).ds

The relationship between E and P is given by

P=X, ¢, E
Q=[[](&,E+ X £,E)ds

s

=[fle.E(1+X,) ds

Q= meosr Eds

Q:ng.ds

Thus ¢ =1+X,

X, = electrical susceptibility. It is a dimensionless quantity.

Summary

C= % Farads

vy =P (poisson's equation)
g
V?*V =0 (Laplace equation)

2
w=levioloy-1Q
2 2

2 C
2
u)zlaE2 :lD.Ele—
2 2 2 ¢

Boundary conditions:-

E,=0 E =0 E,=E,
D, =0 D, =0 Dn:itanelz(i2
D, s&,tan6, ¢g
Dy =ps Dn=ps Dyi =Dy,
P E €
=2 E = Ps N1 _ 82
€ €08, N2 &

UNIT - II PROBLEMS

1. A condenser is composed of two plates separate by a sheet of insulating material 3 mm thick and of ¢

= 4. The distance between the plates us increased so as to allow the insulation of a see and sheet of 5 mm
thick and ¢ , . If the capacitance of the condenser so former is 1/3 of the original capacitance, find ¢ ,.

Solution:-

The capacitance of a parallel plate capacitor is C = SEA

€8y A _ g X4xA

Therefore, C, = -
d, 3x10



4000

C = gA
SOSrZA 8() X 8[' X A
C=e TS0
) x10
. 10°g,e,A
: 5

When C, :% C, , the above equation can be equated as,

10°g¢,,A l><4><103><A80
5 3 2

=2 22
9

2. A parallel plate capacitor has three similar plate the outside two being joined together the inner plate is
immovable so that it can be used as a variable capacitor. If C1 is the capacitance when the inner plate is
exactly midway between the outer plates and C2 is the capacitance when inner plate is 3 times here the

plate than outer plate.

Solution:-

To determine the capacitance C1:

Outer plate | A

Movable inner plate

»la

2
Outer plate II v
sA SA
C = 4—
d

To determine the capacitance C2:-

Outer plate I 2

Movable inner plate

»la
»

%

Outer plate 11

SA cA 48A 48A

A

l6sA 48A i
3d \dJ3

2=

T

3. The capacitance of the condenser formed by the two parallel metal sheets, each 100 cm” in area
separated by dielectric of 2 mm thick is 2 x10* p F. A potential of 20kv is applied into it. Find (i) Electric
flux (ii)Potential gradient in Kv/m (iii) relative permittivity (iv) Electro flux density

Solution:-



Given A=100cm2,d=2mm, C= 2%x10 nF
V=20Kv

Q

(i) The capacitance C = 5

_Q
20%10°
Q=2x10"%x2x10*x10"°

Q=4uC

2x107 %107 =

(ii) The Electric flux ¥ =Q =4uC

3
(iii) E:X:20X103 ~10x10° v/m
d2x107

(iv) Capacitance between parallel plates C= £t A

8.854x10™"% xg, x100x10™*

2x10*x10° = ;
2x107
x=4.5177
-6
b, —p, Qo x10°
T A 100x10

D, =4x10"¢c/m?

4. The parallel conducting disks are separated by 6 mm and contain a dielectric for ¢ = 4. Determine the

charge densities on the disks . Z
V1=270V

_ A M~ ' @ A
=Y _20"%0 5 10t v/m .
d  6x10° !
D |
E=-VV=-3x10"a,V/ma ;
|
I
|

VoL T

D=¢E=¢;¢E V, =
X

=8.854x1072 x 4><(—3><104)

=-10.62x107 a, ¢/ m>
p, =110.62x107
=+1.062puC/m?

5. An air condenser consisting of a parallel square plate of 50 cm side is charged to a p.d of 250 v. When
the plate are 1mm apart. Find the 100 rt line. Assume perfect insulation.

Solution:-
A=50x102%x50x% 102 =25x10"m

_gA _8854x1077x25x107

When d, = 1x107, C, ~
d, 1x10




C;=0.22x 10-8 F

_gA _8.854x107°x25x107

When d2 = 3x 107, c, -
d, 3x10

C2=0.07x10%F

The energy stored in Cl is W, = %C]V2

The energy stored in C2 is W,, :12C2V2

We = We] _WeZ
1 1
=—CV’'-=C,V*
2 2
1
:EVZ(CI —CQ)

— L (250)1022-0.07]x10°
2

We =4.583 x=10"]

6. The radius of two sphere differ by 4cm with air as dielectric and the capacitor of the spherical

capacitor is % pF. If the outer sphere is grounded, determine the ratio.

Solution:-

c:4nso(bab j
—a

b—a=4x107

Cc= 4n><8.854><10'12( ab 2)
4x10

~12
@xm“ _ 4n><8.854><210
4x10°

(ab)
ab=0.019m’

b—a=4x10"

b=a+4x107
ala+4x107]=0.019
a’+4x10%a-0.019=0

Solving for a, we get
a=0.12m
b =0.16 m.

7. The radius of outer sphere

47e 47 x8.854x11072x27°

7/ —

X
0.1x107% 0.25x107*

C= 0.46pF



v=o 1 _sisaa0n
C~ 0464x10

B \ B 2.15x10"
(b —a)ln(%) (0.15><10’2)1n(06215j

E

Epax = 1.56x10°V/m

8. Determine the voltage across each dielectric in the series plate capacitor conducting two dielectric
g, =3 &t =1, when the applied voltage is 200. Here A=1m’, d, = lmm & d, =4 mm.

Solution:-

Ceq = C1.C2/C1+C2

C =2.043nF

D, =p, :g:ﬂ:2.043><10’7><20

A A 1

D, = 4.086 x 107 ¢c/m’.

D 4.086x107
' g, 8.854x1077x3
D 4.086x107
2T e, 8.854x102x1
V,=E,d, =15.4x10°x107 =15.48
V, =E,d, =46.15x10° x4x107 =184.6

E =15.4x10" v/m

=46.15x102v/m

9. A spherical capacitor with radius a 20 ccm & b =4 cm has a non homogeneous dielectric of €= 10g, .
r
Calculate the capacitance of the capacitor.

Solution:-

V:—.IE.dI:—'!(%ar).(drar)
_Qpdr
4n e’
407 Gy R pdr
4nbM 40me, 3 1

0b

T

Q .
40me, [ln(r)]b

407 x LN 107
36TC =C

In(#3)
C=1.6nF

10. Determine the voltage across each dielectric ion the capacitor as shown in the figure, when the applied
voltage is 200v.

Solution:-



_5A g A g x5xl

C="r="4 o = 5000g,
1
C :%: EEpA — g x1x1 _ 10008
bod d, 3x10° 3 °
Since the capacitor are in series,
ce, (500080)x( . J

1000z,

eq
C+G 50006, +

_ 5x10°xg,’
"~ 16x10°g,
_ 5x10°x10’ x g,
T 16x10°

= ﬂ;ﬂx 8.854x107"?

Ce =2.766 n F

Q_CV _2.766x10"x200
A A 1

D,=p, =

D, = 5.54x 107 C/m>

D 5.54x107

= = ———=1.25x10"V/m
€€, 8.854x10 x5

- DP 5.54x107

= = ——=6.25x10"V/m
€8, 8.854x10 "x1

V,=Ed, V,=E.,
V,=1.25x10*x107 =12.5v
V, =6.25x10*x3x107°=?

11. A parallel plate capacitance has an area of 1m with the distance b/w the plates 0.01m & thickness of
the wood is 0.002 m. The relate dielectric constant of wood is 6 the that of calculate the capacitance.

Solution:-
-Wood
0.002m 00
A
d Air
2
_ ) 4
d=0.01lm —a—
d
_ Vv




A gg A
d,+d,=d c =2 _Gfan

1

d, d,
854107 x1x1
d, +0.002=0.01 ¢, = 8:854x10 "xlxl
0.008
d,=001-0.02; d,=0.008 C, =1.106nF
C = % — SOSrZA
2 d, —d2
_8.854x10 " x6x1
0.002
C,=26562nF

Capacitance in series

_ CC,  1.106x26.56x10"

“4C+C, 27.668x107

=1.06 nF

12. Three capacitor of 10uF, 25uF & S0uF are connected in series & parallel. Find the C., & energy
stored in each case, when the combination is connected across 500v supply.

Solution:-

(i) In series

(0.1+0.04+0.02)10°

6.25uF

W, = %psv2 = % x6.25%107 x (500)°
W, =0.781]

1 1 1 1 [1 1 1)1
— =ttt —=| =t =t | ==
cC, ¢, ¢, ¢, 10 25 50)10

(ii) In parallel

C, =(10+25+50)x10° =85 uF

b=

W, =%cpv2 :%XSSXIOG x (500)°

W.=10.625]
13. Referring is the figure, determine

(i) Capacitor / unit length of the cable
(ii) Maximum of in each dielectric with the data V, =1.2kv, ¢, =4.5 &¢_, = 7?& 1, =2r, 41, =40mm

n

r;

(i) The capacitance of co axial cable



(ii) To find maximum E,

2nx8.854x10" x 4.5
L= =0.36nF/m
20
In| —
10

_ 2nx8.854x107" %3
ln(mj
20
VvV, C, 036
v, G 024
V, =480V Q=C,V,=0.36x10"x480=172.8nC/m

e o_p_ Q _ 172.8x10”°
N e 2mre 2mx0.01x8.854x1072 % 4.5

C

c, =0.24nF/m

=1.5 &V, +V, =1200V

Er(max) =69.1 kv/m
Atr=r,=2r,

172.8x107°

E i = ——— =518kv/m
21x0.02x8.854x107" %3

V, =720V, C;=0.24nF/m
Q=C,V;=172.8n C/m

14. If two parallel plate, of area 4m” are separate by a distance of 6mm, field the capacitor between these
2 plate. If a rubber sheet of 4mm thick with ¢ =2.4 is introduced in between the plates leaving a gap of 1

mm on both sides, dielectric this capacitance.

Solution:-
Given, A=4m’&d=6x10"

_gA _8.854x10"2x4

$ e =5.90x10"F
210°

C

Capacitance of two introducing rubber is

= ﬁ + _808'A + %
dl d2 d3

C

=8.854x107" x4 ! + 24 + ! }
| 1x107  4x107°  1x107°

+1000+4><1000:l
4
1000+4><1000:|

C=8.854x10"2x4[10°

=8.854x107"? x4| 4x10° +

=8.854x11.4x107"*x10?
=92.082nF

C=92nF

Problems in Laplace’s equation



15. Show that the expression for the potential due to electric dipole satisfies the Laplace’s equation

Solution:-
Vo Qd cos® kcos6
41raor2 r?
where k = Qd
4,
2
VZV:%E{rza—V}+ 21_ 3[sinea—v}+ 21' 6\2]

ror| or | r sin® 00 00 | r7sin0 0¢

=l2£ rzkcoseg iz + 21. i sinei[kcose
- or or\r r-sin® 00 00 r

1 8*[kcos6
tS o
r°sin® o¢ r

=l2£ r’kcos 0 _—32 +5 1 2 sinek(_szme)
r° or r r-sin0 00 r
1 0| 2kcos6 1 —2ksin Bcos 0

=2 2 Tt 2
r-or r r-sin® r

B 2kcose_ 2k cos©

r* r*
VV=0

Thus the potential due to dipole satisfies Laplace’s equation.
16. Determine whether or not the following potential fields satisfy the Laplace’s equation.
i) V=x’-y’+72°

oV +az_v o’V

ViV +—
x> oy’ o7’

2

o? s 2 o 0° 2 el 0 2 2, 2
=§[x -y +z ]+W|:X -y +z :|+$[X -y +Z:|
0 0 0
=&(6x)+5(—8y)+£(6z)
—2-242
=2.

This equation does not satisfy the Laplace’s equation.

(i) V=pcos p+z

2 2
VZV:li pa—V +l 6\2/ +6\2/
pop\ op) p\od 0z

Z—Z:a—i(p cosd+z).cosd
Z—Z:a%)(pcos ¢+z)=—psind
Z—Zzg(pcos 0+2z)=1



ViV = li(pcos¢) +izﬁ(—p sin ) +i =1
p Op p- 0 0z
P p
VV=0

Satisfies Laplace equation

(iii) V=rcos 0+¢ In spherical co — ordinates

2
V2V:i22 rza—V}l— 21_ 2(Sinea—v}l— > .l 5 6_\2720
r"or\ Or ) r°sin6 00 00 ) r°sin“0 o

_pv
or

+r22(r cos0 + ) — 1’ cosOsin 66—V+sin63(rc056+¢)—rsin29
or 00 00

2 2
+ 21. 8Y+ 21. 8—2(rcos9+¢):0
r'sin@ 0¢~ r~sin6 o

10 0
VIV =——(r? cos0) + —(-rsin®
rzar( ) rzsineﬁe( )
_ZCOSO_ZCOSO_

0

T r
ViV =0

This field satisfies Laplace equations.



UNIT III
STATIC MAGNETIC FIELD
1. Define magnetisation:

Magnetic dipole moment per unit volume is defined as the magnetization (M)

M

2. State Biot savart’s law:
Biot savart’s law states that the magnetic field intensity at any point P directly proportional to

1) Current flowing through the conductor
(i1) Infinite smally length of the conductor
(iii) Fine of the and ‘0’ between the conductor and the line joining the conductor add a point P where the
magnitude field neet to be calculated.
@iv) And it is inversely proportional to the squares of the distance between them.

T o Iles21n6

3. Define Ampere’s circuital law:

The line integral of the magnetic field intensity due to closed control is equal to the current enclosed by the
path.

Hdl=I

~=h

This is the ACL in the integral for.
4. Write the differential form of ACL?
VxH=]
This is the differential form of ACL.
5. Define magnetic flux:
Magnetic flux is defined as the magnetic lines of force. It is denoted by the symbol ¢. It unit is weber (wb).
6. Magnetic flux density:

Magnetic flux density is defined as the magnetic flux per unit area. It is denoted by B. Its unit is wb/m2 (or)
Jesla.

7. What is the Gauss law for magnetic field?

The surface integral of the normal component of the magnetic flux density around a closed path is equal to Zero.

mB.n ds=0

8. Define magnetic moment
The product of current and the area of the loop is defined as the magnitude moment. It is denoted by ‘m’.

M=IA

Its unit is Ampere m’ (or) Am®.



9. Define torque:

When a current loop is placed parallel in the magnetic field forces act on the loop that tent to rotate it. The
tangential force multiplied by the radial distance at which it acts is called torque (or) mechanical mono on the
loop.

10. What is Magnetic susceptibility:-

Magnetic susceptibility is defined as the ratio of magnetization to the magnetic field intensity. It is denoted by
Xm.

It is dimension quantity.
11. Define magnetic scalar potential?

It is defined as dead quantity whose negative gradient given the magnetic intensity if there is no current source
present.

Where Vm is the magnetic scalar potential
V, =—[H. dI

12. Define magnetic vector potential.
It is defined as the quantity whose curl gives the magnetic flux density.
B=VxA

Where A is the magnetic vector potential
_ Kol
A_4-n'['VU; dr W/m

13. Define hysteresis:

The phenomenon which causes magnetic flux density (B) to lag behind magnetic field intensity (H). So that the
magnetization curve to incoming and decreasing the hysteresis.

14. What are the major classification of magnetic material.
There are three groups of magnetic material they are

a) Diamagnetic
b) Paramagnetic
¢) Ferromagnetic

15. A steady element of 1072, A. m is located at origin in free space (i) What is the magnetic field intensity
due to the current element at (1, 0, 0) & at (0, 0, 1).

d) Solution:-

dﬁ: Idl><a;z
e) 4nR
3, o -3 _
:10 a7,2><ax :10 a,A/m
4 (1)) 47
o ldixar _10"a, xa,

N 4nRE Am()(1)



16. A circular loop located on x*>+y* =4, z=0 carries a direct current of 7A along a, . Determine H at
,0,5) & (0,0, -5).

Solution:-

2 2 2 2 2 2
. . .o Xty =ai=>xT4+y =2
Equation of circle is y y

From the above equation, p=2,I=7A,h =5

— 2 p— p—
- Ip = Tx4 &
Aot +n?)? 24+25)"

H=902,mA /m

17. A thin of radius 5 cm is placed on a place z = 1cm so that the centre is at (0, 0, -1) cm. If the ring

carries 50 ma along 54, , determine H at (0, 0, -1)cm (ii) (0, 0, 10)cm.

Solution:-

2

Ip
_50x107°(5%x107%)? "
_2[(5x10*2)+(2x10*2)2]% ‘
25%x107* x5%x107°

= 7 =400.23a, mA /m
2[25x10*4 +4x10’4] 2

ITI:

(i1) At (0, 0, 10)c,, h =9cm

50x107° x25x107 -
y az

2(5* +9%)72x10°°

H :57.26£zmA/m.

H=

18. Determine the current density for H=28sinxa,A/m

Solution:-
VxH= j
a, a, a,
i i ﬁ =a (0-0)+a (0)+az[i(2851nx)}
Ox dy dy Y ox
0 28sinx O

=28cosxa,A /m’

19.A wire carrying a current of 8A is formed in the circular loop. If ‘H’ at the centre of the loop is 40A
/m. What is the radius of the loop if the loop has (i) Only one turn (ii) 10 turns

Solution:-

|

H=—a,
2p

If there are ‘N’ turns,

p-M
2p
p—ﬂ— 18 0.1m

TOH 2x40



(i) EN =10

10x8

= =1m
P 2x40

20. The portion of the sphere is specified by r = 4,

0<0<0.1m,0<$<0.3m. H=6rsindar1,18rsinOcosdas A/ m. Determine the current.

Solution:-

a, ra, rsinfa,
1 0o 0 0

’sin| or 00 N

H, rH, rsinbH,

r

VxH=

21. A radius = 2cm B = 10Wb/m?. If the plane of the coil is perpendicular to the field, determine ¢ .

Solution:-
d=BA
=10xmr’ =10xn(2x107)?
$=12.56mWb

PART-B
1) Explain BIOT — SAVART’S LAW VECTOR FORM:-
State Biot — savart’s law in vector form?

The magnetic field intensity at any point at a distance r from a current carrying conductor is directly
proportional to

1) The current flowing through the conductor
(i) The infinitesimal length of the conductor

(iii) The sine of the angle between the conductor and line joining the conductor with point ‘P’ where the
magnitude field intensity is to be calculated.
@iv) And is inversely proportional to the square of the distance between them

Hool
dl

HooI dl sin®

r2

He kIdl 2sm 0
T

K :% = constant of proportional
n

ﬁ:I dl sin6

4nr?

The direction of the magnitude field intensity is perpendicular to the plane containing the conductor carrying
current the line joining the conducts to the point P where magnitude field intensity to be calculated.

ﬁ:I dl sin6 -

ar
47r?
dl xa,

4mr?

BIOT SAVARTS law in vector form H=I

— (1)



N T /'| ar = i
fe— i
We know that

| =

dl xr
nr’

We know that H=I

Let us a rectangular sheet of width ‘v’ and sheet current density k, then the total current I is kb.

_ B «—
H=m K><2a ds b

< 4nr
ﬁ:uj ]XazR dV

v 4nR

2) Determine that magnetic field intensity due to finite and infinite wire carrying a current I:

Due to infinite wire:-

0,0,7)
dl




R=P-dl

=pa, —za

diH _ IaX;R
4nR?

dl=dz a,
~ R pap-za

QR = — =+-F~ 7%
R ez

_Idz a, x(pa, —za,)

dH =
An(p® +2%) \/p2 +7z°
— Ipdz a, xa,—1z dz a, xa,
ar= %
4n(p* +2%)2
m: Ipdza¢

4n(p* + zz)%

Z
tan G:E:z:pt
dz =psec’6 d6
When

z:+c>o,9:+E
2
Z:—co,e:—E
2
_ 2 o
el Ip(p sec” 6)d0 ay

4n(p*+p? tan’ 9)%
Ip? sec? 6d0

dH= 3
4n[p *(1 +tan’ 6)} 2
+00 2 2 _
IdH:Ip sgec 6::16a
bt 47p” sec’ O
dH = Lcos 6 do £¢,
47p
_ %, \
H= _[ ——cos 0 .dO a,
47p
I . % =
=——[sin0| 72 a
4np[ ]’% ¢
H=-1 22 a,
4mp
H=—t a
2mp
Due to finite wire:-

p

ay

7,2

dl

7




Let us consider a current carrying conductor of length z. Let us consider z1 and z2 inclined at o, and a,

— “2ldIxag

H_£4m¥
J~Idz a, x (pgp za,)
4n(p® +Z° \/p +7z°

_]%IpdzaZ xa,—1z dz a, xa,
2z 4n(p2+zz)%

_ Ipdlaq,
5 An(p® + Zz)%

Ip? sec® o da ag

° 4n(p® +p’ tan? (x)%

z=ptan a

dz =p sec’ o da

He Ip? sec’ o do -

ay
L An(p +p’tan® OL)%
le sec’a do -
4n(p®sec’ oc)

©

:—jcosada 5.1,
4mp 7

= I ;. . "
H :Tm[sm o, —sina, | ay

3) Determine the magnetic field at the centre of a circular wire carrying a current i in the anti — clockwise
direction.

The radius of the circle is ‘a’ & the wire is in XY plane:-

a=90°

V4

The field intensity at O is given by H= DjdH , where dH is the field intensity at O due to any current element IdI.

The direction of dl at any point P on the circular wire is given by the tangent at ‘P’ the direction of current flow.



The unit vector at P directed towards the centre ‘0’ is obviously along the radius p0, so that a = 90°

Idl

2

sin90°

|dH]| =
4ma

_ Idl
4na’

The direction of the vector dH is given by dl x ar, along z — axis in the positive direct

Hence, |dH|= Idlz a.
4na
- ¢ 1dl
H: z
a I 4ma*
= - 1
H=a, dl
4na2J‘
= -1
Consequently, H=a,——(2na)
4ma
-1 a,
2a

4) Determine the magnetic field at any point on the line through the centre at distance ‘h’ from the centre
and perpendicular to the plane of a circular loop of radius of radius ‘a’ & current 1.

9\ r
1
ar
h
90°
dr dl

0

I

Consider P as the point distant h from the plane of the loop.
To find the field intensity at P:-

Consider two diametrally opposite elements of the wire loop dl & dl'. The field intensity at P at distant at r from
the current element Idl is given by



dﬁ: 1 dlxar

4mr?

As the vectors dl and a, are perpendicular the value of dH is given by

dH = I dlz ar. sin90°
nr
dH = I dl2
4nr

This field is oriented at an angle Q to the plane of loop. The diametrally opposite element Idl will also produce
a field of magnitude equal to dH.

dH = Idl 51?9
4nr
Where sin 6 = #] and r?=a’+h?
(a> +h?)”

The resultant field intensity at that point is given by integrating the z — component of the field contributions of
all the current elements

Idl a
H, = (f|dHz
['Ij [Ijéln(a +h2 +h2)%
7 _fa
M@+N/$
2
HPZLXZTM
4n(a® + h?)?
Ia®
H=-— 2 _
P2 +h?)?

As the field is directed along z — axis

Ia® -
Hp = 7% aZ

2(a® + h?)”
If h = 0, P continues with 0,the centre of the wire — loop.

-l 13
2a° 2a

5) Derive the expression for the magnitude field intensity due to a rectangular loop:-

A : B
|45 T
0 i
D_ ! . C
« I\Xj »

Consider a rectangular loop ABCD carrying a current I through the loop. Let ‘L’ be the breadth of the

loop Magnitude field intensity H due} _ 1

"To and AB at ‘0 Alirrp(smm2 o)



Substitute p = %; o, =0, =45°

| o o o
H= W{sm(‘ﬁ ) —sin (—45°)]

w5 %)

Eoikd
I

\/Err(

I

\/Ercé

Similarly “‘H” to arm CD at ’o’} =

Magnitude field intensity due to 21 21
=t —
Arm Ad & BC| 2n¢ 2nb
21 [b + q
2z b
o221 [5 + b}
2n fb
He V21 [f + b}
n | ‘b

The above expression can be deduced to a square by substituting /=b=a

nEY

T a

H:2\/§1
mTa

Magnetic field intensity due to a rectangular loop:-
Consider a rectangular loop (PQRS) located in XY plane which carries a current I. “‘H’ is found at on 0.
Let ‘L’ = length b rectangular ‘b; = breadth of rectangular.

Each side of rectangular is treated as finite length current element.

- y
Consider PS, H due to finite length wire, A
= I .. . :
H=——[sin 6, +sin6, |P S o d
4nd >
L = I . . - 319
d=5, H1=H[sm 0, +sin 62]a¢ 4 4 v
0,
From symmetry of rectangular, for QR A 0,
e s P )
H. = ZTE—L[sm 0, +sin 62]a¢

Similarly H due to finite length RS & PQ



I . .
H3=H4=ﬁ[sm 0, +sin 64]
= = I . .
H3=H4=m[sm 0, +sin 64]
ﬁ:ﬁ1+ﬁ2+ﬁ3+ﬁ4
If1, . . 1,. .
= f(sm 61+51n62)+§(sm63+sm(94)

6) Determine the expression for the magnitude field intensity due to a square loop:-

P Q

S R

Consider a square loop PQRS of side ‘a’. A current “I’ flows through the loop

H= %np[sin o, —sinal]

H due to all the four sides = 4x1 = 4x\21 = 2,21
\/Ena 2ma na

7) Derive the expression for the magnitude field intensity due to a solenoid:-

A helical coil or solenoid is usually used to produce a magnetic field. Let us calculate the magnetic field of such
a coil.

A coil of wire wound its the form of a cylindrical as shown in fig. Let us assume there the turns in the windings

are closely and ever spaced so that the number of turns per unit to of the solenoid is constant N. The path of the
current through the coil is helical

0QO0000000000QQ
de -
a ldx1 6,
R T Y I
P
P é sin©
' O0O00000O0O0O00000O0
I

(b) Cut view of solenoid

A

(a) Solenoid



rd6

——=sin 0
dx

dee =dx
sin 6

If ‘N’ is the number of turns, Ndx = Nrde and the total current element in the solenoid
Sin
Idx = INrdG
sin®
2 2
DBx — pIa3 _ %. INrde
2r 2r° sin©
2
SinG:E; r’ = .az
r sin” 0
2 2 a2
dBx M2 3INdGZua II\ZTd.Gsm G:HINsinede
2r’°sin 0 2a°sin 6

ul N
2

sin 0 dO

Q
Bx = Ide = I
Q

Bx= uIZN [Cos 6, —cos 62];x

Case 1: In case the solenoid considered to be long and the point P lies in the muddle.

Q,=0&Q,=n
B= HIN[cosofcosrt]
B:%ﬂ—(—l)]:pm

Case ii:- If the point lies at one end of the solenoid. Q, =0 &Q, =g

N [cos 0-cos %J

Jesla

From the alone equations, it is clean that the magnitude field is one half at one end than at centre.

> > > » Direction of field

B max

Centre of solenoid

b

—_ -

8) Derive the expression for the magnetic field intensity due to a toroid:-



Assuming diameter of the core is small and compared to the diameter of ring the circular paths through the core
will be approximate of same length 27 r.

Ampere’s circuital law,
j Hdl= NIH
H{dl = NI= 2nr (H) = NI
1

NL_NI

=H= =
2nr l

Where L — mean circumference b the Toroid.

B=pH
E:HNI
)

9) State and proof Ampere’s circuital law?
Ampere’s circuital law:-

The law states “ the line integral of the magnetic field intensity (H) around a closed path is the ssame as the net
current Ienc enclosed by the path

[ﬂﬁ dl=I . ie, D]ﬁ dl =1 — general form

Ampere’s law is easily applied to determine H when the current distribution is symmetrical
By applying stoke’s theorem

L =[fJH.dl =[[|(VxH). ds = (1)
But I, :m] .ds —(2)

Comparing (1) & (2), VxH =] — point form or differential form

JIH dI =[f)(V<H).ds=[f]] .ds integral form of ACL

So, VxH =J#0
So magnetic field is not conservative.
PROOF:-

Consider an infinitely long straight conductor carrying current I placed along z — axis consider a closed circular
path of radius r. The point P is at a perpendicular distance ‘r’ for the conductor. Consider dl at point P which is

in a¢ direction.



NANMN AN AR RRRY RRNY

dl=rd¢ ad

H obtained at point P from BIOT savart’s law due infinitely long conductor is

[T
2nr
L dl = rdg = ——do
2nr 2n

10) Explain in detail about the Applications of Ampere’s circuit law:-

Amperes law is used to find H for symmetrical current distributions. For symmetrical current distribution H is

either parallel or perpendicular todl .
When H is parallel to di, [H| = constant.

Applications of Ampere’s circuit law:-

Case i:- Infinite line current (or) H due to infinitely long conduction. Consider an infinitely long straight
conductor placed along Z — axis carrying current I. considers a point P on the closed path at which H is to be
obtained. The radius of path is ‘r’ and hence P is a perpendicular distance ‘r> from the conductor. Consider di at

point ‘P’ in a, direction i.e, H,

ﬁ = H¢ 5¢ I dd) a;
According to Amperes circuital law,

fiH di=1

fH, 8. v dgay =1

2n

[Hrdp=T

0

I

2n
H¢ r[d)]o =1 :>H¢ :Tm

H at point P is given by H=H,a,



ﬁ=i.;¢ A/m
2nr

Case ii:- H due to cylindrical conductor (or) co — axial cable

R

Conductor
Consider a cylindrical conductor of radius R carries an unitorm current of I amperes. It is placed along z — axis
and has finite length.

H s to be obtained considering two regions.

Region 1:- With the conductor, r <R.

According to ampere’s law, [ﬂﬁ dl=1,.

As current I flows uniformly, it flows across the cross sectional area nR”, while the closed path enclosed only
part of current which passed across the cross sectional area nR”.

nr?

Hence current enclosed by path, I =L B
T

FI:Hd) ay, dl=r d¢ ad
Hdl=H, a, rd¢a¢=H, rd¢

TH rd(l)—Ii H _I.r
o ¢ ’RZ ¢ ZTCRZ
— Ir —
H= ap A /m.

2nR? oA/

Region 2:- Outside the conductor, r > R

The conductor is infinite length along z — axis carrying a current I,

ﬁ = L ;(1) r>R
2nr _ I

H =— On the surface
2nr

. = 1
Outside the conductor, H oo~
T




Formulae:- Curl, distance & gradient in all the three system of co — ordinates.

Co — ordinate
system Cartesian Cylindrical Spherical
VxA=—1 i(Hd,sine)—aHe ar
rsin@| 00 0,
1[ 1 eH, & -
—| = & (tHy) |ae
a, a, a, a, a, a, r|sin® op O,
o 0 0 0 0 1|0 OH, |-
Curl VxA VxA=l— — — VxA=|— —— — l S
ox oy oz op poy oz +r{8r(rH¢) 86:|a¢
A A A A, A, A,
10 , 1 0 .
VD=—=—(D,)+ — (D, sin6
rzar( \) rsineae( o Sin6)
: 1 oD
Divergence = i}
oD :
V.d:aDX y+6DZ V.D:li(pD )+1®+8DZ rsin® ¢
ox 6y oz p@p P p 64) o0z
— 8V* —
Vd=—ax+—ay+—a
ox oy oz ov- lov- ov- vy v lov- 1 ov-
Vv=—ap+——ay+—a VE_art ot Ay
Gradient op p o 0z or r 60 r sin® o¢

11) State and prove point from of ohm’s law.

Point form of ohm’s law:-

Ohm’s law is given by V = IR where ‘R’ is the resistance of the given medium. Let S and S’ be two surface with

potential V and V + AV . The plate are separated through a distance A?.

I:HJ.Nds

If there is a charge —q, it will experience a force.

F=-qE

In free space, the electrons would get accelerated and its velocity would continuously increase.

In the crystalline material, the progress of the electron is impeded by its continual collisions with the thermally
excited attained is drift velocity.

V,=—pE — (1)

The electron velocity is in a direction opposite to that of the electric filed.




We know that J=p .V, — (2)
Sub (1) in (2), we get

]: —Pe MeE
J=0cE

Point form of ohm’s law.
PROBLEMS UNIT - III

Problems in BIOT — SAVARTS LAW:-

1. Find the magnetic field intensity at the origin due to a current element Idl =3n(a, +2a, + 352)uAm at (3,

4, 5) in free space.

Solution:-
AZ
(3,4,
Idl
R
»Y
(0,0,0)
X
d_ _ Ia X a_R
47R?
— R _—(3a,+4a, +5a,)
“ IR Jo+16+25
a, =—0.424a_-0.565a, —0.707a,
Id1 =3n(a, +2a, + 35,)x 10°
a, a, a,
Idixag =| 37 67 9 [x107°

—0.424 -0.565 -0.707
=(2.661a, —5.339a, +2.67a,)x10°°
—  (2.661a, —5.339a, +2.67a,)x 10

dH = -
()

dH =4.24a, —8.51a, +4.25a,nA

2. Find the infinitesimal strength at P2 due to the current element 2n51uA.m at P1. The co — ordinates of
P1 and P2 are (4, 0, 0) & (0, 3, 0).

Solution:-
According to B.S.L, the infinitesimal field strength at P2 due to the current element ZnazuA.m at Plis

IlcTh ><£R12 _—

dH: = X2 _R,, =(0-4)a, +(3—0)a, +0a, = —4a, +3a,
4nR;



- R,, —4ax+3ay —4ax+3ay
ariz = = =

R,| 1649 5
1dl, =27ma, pAm
a, a, a,
ILdl, xagz=[ 0 0 2x
W Koo
A e
:%[Bax—k%y}
de = %[35 i 4a_y:|

4n(5)°
dH, =-12a_—16a,nA/m

3. A filamentary current of 10a is denoted inward from infinity to the origin on the positive x — axis &
then outward to infinity along positive y — axis. Find ‘H’ at p(0, 0, 1).

Solution:-

T Id1><azR _ Idlxlj R = —xa, +a,; 1dl =10dxa,
47R 4nR
0

_EO dxay x(—xax +£L) _—_5J- dxa,

1_4Tl:OO |: ,1+X2]3 211:00(1_”(2)%

X o =23 A/m
21 1+ x2|, 2n

q, .5 tdyay)x(-yay +a,)

2= 3
2wy, |:[1+y2:|

57 dya,

27 (Hy?)”

5 —
= —ax

21

H=H,+H, =079, +a, |A/m



4. In cylindrical co- ordinates, H = 2p— p2)£¢ A/m for 0 < p<1. (i) Determine the current density as a

function of p within this cylindrical (ii) What is the total current passing through surface z =0, 0 < p in

a, direction? (iii) Verify the same using stoke’s theorem.

Solution:- H=(2p—p*)asA/m0<p<1

ap p;q; gz
J=V><H:li i —
p|op ob 0z
0 p2p-p>) O
1 0 2 3 0 2 3va
=—la (0—-—@2p"—p’) |+0a, +—(2p" —p)a
p_p( 62(9 p)} 0 ap(p p7)
:l[4p—3p2}52
p
J=(4-3p)a,

(i) 1=[7 &:TJZ pdp do
s 0

21

= j I (4-3p)pdp do
00
2n 1

= [dof4-3pp dp
0 0

e[ 400 30
_(d))() ( 2 3 ]0

=2n(2-1)=2n

I1=6.28A
[ — 21 -
(i) [H. di=[@p-p*)as pdoa,
£ 0
=2n(2—1)=2n=6.28A
5.The H= [yCOS((X,X)]E_lx +(y +e)a,A/ m. Determine the current density over the yz plane.

Solution:-

a a a

X y z

j=yxu=| &2 2
ox dy Oy
ycos(ax) O y+e'
=a, i(y+f:x)—0 +[£(ycos((xx)—£(y+ex)}+ O—E(ycos(ax) a,
oy 0z ox oy
J= a_+ (—e")ay —Ccos0Xa,

Since x =0, on yz plane ,

J=a, - e“gy - cos(O)az

J=a,—ay—a,A/m>

6. A flat perfectly conducting surface in xy plane is siluated in a magnetic field,



— a a,, z>
H= 3cosxax +zcosxay, 220 , find ‘]’ on the conductor surface.
0 , z<0
Solution:-
a, a, a,
J=VxH= i i i :ax[O—ﬁ(zcosx)}+a 0—3(3cosx) +a, i(Zcosx)_—a(3cosx)
ox oy oz oz Y oy Ox oy

3cosx zcosx O
=a (—cosx)+a (0)+a,(-zsinXx)

I —cosXxay —zsinxa,, z=>0
0 , z<0

7.1f H= yax —xaya/m on plane z = 0, (i) Determine J (ii) Verify Ampere’s law by taking the circulation

of H around the rectangular path withz=0,0<x<5 & -2<y<6.

Solution:-
a, a, a,
j=vxH=|L 2 2
ox 0Oy oz
y —x 0

) —afo- - 90
(i) =a,[0-0]+a,[0 0]+az{ax( x)ay:|

=-2a,A/m’
(11)}[H. dlzu +£ +£ +J4 JH dl
AY
&
Ly Al
; N,
5 X
2 .




j Hdl = j(yéx —xay)(dxa,)

0

5
- - 5|
= '(!.de =(xy), o= 10

[Ha= ?(yéx —xay)(dxay)

-2
6

= J xdy = —[Xy]f2
-2

=—[5><6—(5><—2]=—40

=-(5y)",

x=5

[dI= (s, —xaxa.)
£3 5

=(6x))=-30

y=0

0
=Iydx = [yx]z
[e— 5_2 -_ -_ -
J-H.dl = 'f(yax —xay)(dxay)

-2
= J—xdy 0

6

del:—10—40—30:—80A

x=0

1=[J. ds= j j(—ZaZ)(dXdydz)

y==20

65
:—2jjdxdy

20

= _Z(X)Z(y)iz

=-2(5)(6+2)=-80A
Thus verified.

8. If an in rotational field F= (X+2y+ €z)a_1x +(mx—3y— z)e_1y +(4x +hy + 22)51 , Determine the constants {, m
& n for the above field.

Solution:-
VxF=0
a, a, a,
vxF=l2 2 2
ox 0Oy oz
F. E F
~ oF T _
a, & A =a, i(4x+hy+22)—£(mx—3y—z) =a (n+1)
| Oy Oz | | Oy 0z
[6F,  OF | 0 0
a, * o :ay_a—x(4x+hy+22)—£(x+2y—€z)}:ax(4—€)
[OF, oE | [o 0
a,|—t—-—=|=a,| —(mx-3y-z)——(x+2y—{z) |= +2
‘lox oy Z_@x( x-3y-2) 6z(x Y Z)} a,(m+2)

h=-1, (=4, m=+2

X +22y ay +352, Find VxH, ] &'I' passing through the surfacez=4,1<x<2 & 3<y<5in the a,
V4 V4

9. H=

direction using J



Solution:-

ax  a, a
G vxH=2 2 9
ox oy oz

Xx+2y 2

A z

—h {%QZI) - %[(X * ZY)Zzﬂ ta, [%(211) - 0} +a, {%[(x + 2y)z’2] —0}

vxi=2002 1
Z Z

(i) VxH=J

3

J=2(X+2ngx tLa = A/
V4 V4

I= jj.ds = (M;x + Lzazjdxdydz
z

Z3

10. H=xa, +2yz a, +(—x)a,A/m. Find the ‘J° at point (i) (2, 3, 4) (ii) p=6, p=45°, z=3 (iii)
r=3.6, 0=60° ¢=90°

Solution:-

Given H=x’a,+2yz a,+(-x>)a,

a, a, a,
VxH=1J= 64 I
ox Oy o0z
x> 2yz —x°

oy
J=—2ya, +2xa,

—a | L= 2 9 L 9 oyp-Lx2
—a{ (-x?) ax(zyz)}a{ax(x) Pt )}a{ax(zyz) o >}

AtP(2,3,4) =-23)ax +2(2)a, =—6ax +4ay A/ m’

At (6, 45°, 3)
X =pcosd, y =psin¢
X =6c0s45°, y =6sin45°

x=4.242 y=4.242



V xH=-2ya, +2xa,
=-2(4.242)a, +2(4.242)a,
V xH=-8.484a, +8.484a,

(iii) At (3.6, 60°,90°)

X =rsinBcosd =3.65in60°cos90° =0
y =rsinfOcos¢d =3.65in60°sin90°=1.8R3=3.117
zZ=rcos0 =3.6co0s 60° =1.8

VxH=-2(3.117)a +2(0)ay
=-6.234a, A/m’

11. H=—y(x> +y»)a, + x(x> +y>)a, A/ min the z = 0 plane for -5 < x, y < 5. Calculate the current passing
thro z = 0 plane & through the region -1 <x<1 & -2<y<2.

Solution:-
a’x aY aZ
JovxH=| < o 9
ox oy oz

—y(x*+y?) x(x*+y>) 0
_ 0 5 2 0 2 3
=2, (0-0)-a,(0-0)+a,| — (X +xy)——(-Xy+y)
| ox oy
=3x’+y) + x> +3y> =4(x> + y)a,A/m’

I:I(VXH).ds:jids

21
J.J.4(x2+y2)dxdy
-2-1
ol 4x’ 1
=I{—+4y2x} dy
3 -1

-2

2
4 4
= ||| =+4y’ |[+=+4y* |d
_2|:[3 YJ 3 y } y

|
—

_o| 8,041 14 ga
3 3 3

Problems on magnetic flux and magnetic flux density
1. If H=rsinda, +2.5rsinOcosdasA/m exists in a medium p_=3, determine B.
Solution:-

H= rsind)a_l, + 2.5rsinecos¢5¢A/m &p =3
B=pH=ppuH=41x107 x 3[rsin¢£r +2.5rsin ecos¢£¢]

B =3.77rsinda, +9.42rsinOcos pas Wb/ m’

2. IF E:Z.Ssinn—;e’zyz_leb/mz,ﬁnd the flux for z=0, y>0&0<x <2m.



Solution:-
¢=[B. ds

_I(Z 551n?e >a j (dxdya )

0

:I .fZ.SSin%e’zydxdy

x=0y=0

2 2y I®
= 2.5{—0032} {e }
2 | 2 o

_ -0 0
:2'5{ cosz+cosO]{e_2i2}
A 5 _

:2.5><2X2Xl
2

I
=1.592Whb.

3.If H=2.39x10" cos d)QpA/ m. Determine the flux defined by 0<¢ < 7T4& 0<z<2m.

Solution:-

o= IB ds—juourH 4n><10’7_|' I [%Xmﬁcosd)e_lp j(pdd)dzz_lp)

0 $=0

$=239x10° x4rx107 [sin ¢]/* 2]
=2.39x4mx10” [ sin 7/ ~sin0 2]
$=4.24Wb

4. Given B= psin ¢£¢ Wb/ m’. Determine total flux crossing the surface defined by

1<p<2,="T &0<7<5.
Solution:-

B= psind)gq,

b= j Bds = i j (psind)£¢)(dpdz£¢,)

z=0p=1

At ¢=T/.6 5][—— }sm45° 5></2><——5303Wb

5. Given B= (%)Eﬂ. Determine the magnetic flux ¢ crossing the plane defined by
0.5<p<25m & 0<z<3.

Solution:-

o= [—mj (dpdza,)

2npl. [,

6In[2.5]=9.66k /b

6. Given mean circumference /=1.2m & area of 8cm> N = 480turns. = 2A, ¢ =1 Wb. What is the
permeability



Solution:-

4:1.2m,A=8x(10-2), I1=2A
N=480turn ¢=1Wb

[ 1 100x10°

=2 —= =1250Wb/m’
a 8x10 8
B=pH=p,u H
o N _380X2 oA —T/m.
/ 12
B 1250

K, =0.124x10’

TWH  4nx107 x800
7. Calculate b, due to a coil N = 1000 A- T, area = 100 cm> & h = 10m.
Solution:-

NI = 1000Ampere turns h = 10m, area = 100x 10

nma’ =100x10™ = a =5.64cm.

—2\2
1 1000x(5.64x10) - =1.59x10°°

2[100+(5.61><10’2)2]A
B=uH=1.59x10" x4 x107 x1




UNIT 1II
STATIC MAGNETIC FIELD
BIOT - SAVART’S LAW VECTOR FORM:-
State Biot — savart’s law in vector form?

The magnetic field intensity at any point at a distance r from a current carrying conductor is directly
proportional to

1) The current flowing through the conductor
(i) The infinitesimal length of the conductor
(iii) The sine of the angle between the conductor and line joining the conductor with point ‘P’ where the
magnitude field intensity is to be calculated.
@iv) And is inversely proportional to the square of the distance between them

Hool
dl
sin®
1
rZ
1dlsin®
o Oty

rZ

T kI dl 2sin 0
r

K :% = constant of proportional
T

ﬁ:I dl sin®

4nmr?

The direction of the magnitude field intensity is perpendicular to the plane containing the conductor carrying
current the line joining the conducts to the point P where magnitude field intensity to be calculated.
— Idlsinf-

H=———a;
47r?

BIOT SAVARTS law in vector form H=I C}: ><2ar — (1)
r

o T /| ;r = i
f— i
We know that

[l =x

dl xr
nr’

We know that H=I

Let us a rectangular sheet of width ‘v’ and sheet current density k, then the total current I is kb.




Idl=Kds=]dv

ﬁ=m szar ds
< 4nr

ﬁ:uj ]XazR dV
v 4nR

Determine that magnetic field intensity due to finite and infinite wire carrying a current I:

AT
Due to infinite wire:-
(09 09 Z)
//
dl |
R
I
% >
p P
R=P-dl v
= pap -za,
- IaxaR
41R?

dl=dz a,
~ R pan-zas

an = X _ P2 72
CRC ez

_ldz a, x(pa, —za,)

dH=
An(p® +2%) \/p2 +7z
— Ipdzaz xa,—1z dz a, xa,
ar= %
4n(p® +z°)?
m: Ipdza¢ 7
4n(p* +2)?
Z
tan G:E:z:pt )
p
dz =psec’6 d6 P
When
z:+c>o,9:+E
2
n



—  Ip(p sec’0)do ay

dH
4n(p’+p? tan’ 9)%
. 2 2 _
- Ip” sec”6d6 . a
47[[ *(1+tan® G)J ?
JdH—Ip sec Odef
i 4np® sec 9
dH= Lcos 0 do a,
4mp
_ % ]
H= I ——cos 0dO a,
w, ATp
%
I (. %
=—[sin0] 72
- [sm ]7% as
— I —
H=—x2 Ay
4np
H=-L a
2mp
Due to finite wire:- A7
7,
d |
Z A
A, ‘ P >Y
a’]
X

Let us consider a current carrying conductor of length z. Let us consider z1 and z2 inclined at o, and a,

— IdlxaR
H_J 47R?

z

_[ i1dz a, x (pa, — za,)

L An(pt + 27 )P + 2

J-Ipdzaz xa,—1z dz a, xa,
% An(p® +z )/

_ Ipdlgq,
2 An(p + zz)%

Ip? sec® o da ag

° An(p® +p’ tan? (x)%



z=ptan a

dz=psec’a da

H:wz Ip> sec’a do. -

ap
o An(p® +p” tan’ oc)%
J-Ip sec’ o do 3
4n(p’sec’ )

=—Icosada ay
™

= I . . -
H :R[sm o, —smaz] ay

Determine the magnetic field at the centre of a circular wire carrying a current i in the anti — clockwise direction.
The radius of the circle is ‘a’ & the wire is in XY plane:-

a=90°

zZ

The field intensity at O is given by H= [ﬁdH , where dH is the field intensity at O due to any current element Idl.

The direction of dl at any point P on the circular wire is given by the tangent at ‘P’ the direction of current flow.

The unit vector at P directed towards the centre ‘0’ is obviously along the radius p0, so that a = 90°

! 5 sin90°
4na’

_Idl
4na’

[dH| =

The direction of the vector dH is given by dl x ar, along z — axis in the positive direct

Hence, I dl

Hea, jdl

4na®

Consequently, H=a,

5 (2ma)

mTa

Determine the magnetic field at any point on the line through the centre at distance ‘h’ from the centre
and perpendicular to the plane of a circular loop of radius of radius ‘a’ & current I.



O\ T
1
ar
h
90°
dl’ dl

0

1

Consider P as the point distant h from the plane of the loop.
To find the field intensity at P:-

Consider two diametrally opposite elements of the wire loop dl & d1'. The field intensity at P at distant at r from
the current element Idl is given by

Idixa:

dH=—"
4mr

As the vectors dl and a, are perpendicular the value of dH is given by

dH:ilzar. sin90°
nr

dH - I dl2

4nr
This field is oriented at an angle Q to the plane of loop. The diametrally opposite element Idl will also produce
a field of magnitude equal to dH.

dH = Idl 51?9
4nr
Where sin 6= #] and r?=a’+h?
(a> +h?)”

The resultant field intensity at that point is given by integrating the z — component of the field contributions of
all the current elements



Idl a
H, =[[|[dHz = .
P m “ mé}n (@>+h?) (a2 +h2)%

— 2 _fa
M@+N/$
2
HPZLXZTM
4n(a® + h2)?
Ia®
H=-—2
P 2(a®+h?)”

As the field is directed along z — axis

Ia® -
H=-— a

2(a® + h?)”
If h = 0, P continues with 0,the centre of the wire — loop.

Ia® I -

H= —a,
2a° 2a

Derive the expression for the magnitude field intensity due to a rectangular loop:-

45° T

S

— ~

A

Consider a rectangular loop ABCD carrying a current I through the loop. Let ‘L’ be the breadth of the loop.
Magnitude field intensity H due} I

=——(sina, —a
To and AB at ‘0’ np( 20)

. L
Substitute p = E; o, =0, =45°

—sin(—45°)]

A
%Jiz-(éﬂ
“5il%)

I

«/EM

Similarly “H’ to arm CD at 0’} =

\/_TCZ

Magnitude field intensity due to 21 21
= +
Arm Ad & BC|  2nt  \2mb

el



szﬁl[m}

2n /b
H:ﬁl[€+b}
b ¢b

The above expression can be deduced to a square by substituting /=b=a

Y

T a

HZZ\/EI
mTa

Magnetic field intensity due to a rectangular loop:-
Consider a rectangular loop (PQRS) located in XY plane which carries a current I. ‘H’ is found at on 0.
Let ‘L’ = length b rectangular ‘b; = breadth of rectangular.

Each side of rectangular is treated as finite length current element.

— V/
Consider PS, H due to finite length wire, A
= I .. . |
H=——[sin 6, +sin6, |P S ~ d
4nd -
L — I . . - 39
d=3, H1=ﬁ[sm 0, +sin 62]a¢ d 4 v
0,
From symmetry of rectangular, for QR A 0,
T s P )
H. = ZT[—L[sm 0, +sin 62]a¢

Similarly H due to finite length RS & PQ

I . .
H3:H4:ﬂ[sm 0, +sin 0, |
- = I . .
H3 :H4=ﬁ[51n 63 + SIn 64]
ﬁ:ﬁ1+ﬁ2+ﬁ3+ﬁ4
I{1,. . 1,. .
== f(sm 91+sm62)+g(5m63+sm64)

T

Determine the expression for the magnitude field intensity due to a square loop:-

P Q

S R

Consider a square loop PQRS of side ‘a’. A current “I’ flows through the loop



H= %[sin a, —sina, |

4xT  4x\21 2421

H due to all the four sides = =
\/Erca 2ma na

Derive the expression for the magnitude field intensity due to a solenoid:-

A helical coil or solenoid is usually used to produce a magnetic field. Let us calculate the magnetic field of such
a coil.

A coil of wire wound its the form of a cylindrical as shown in fig. Let us assume there the turns in the windings
are closely and ever spaced so that the number of turns per unit to of the solenoid is constant N. The path of the
current through the coil is helical

OQOO00000O0 OOOOO,Q
a 49 ,_dx("é;’
i S Z ::’_'319’_’_ 4-- _'_ ___________
r
4 o
: - [ONeNONONCIONONONONONONONONONe]
(b) Cut view of solenoid

(a) Solenoid

A

A

rd—e =sin 0
dx

fde =dx
sin 6

Nrdo
sin

If ‘N’ is the number of turns, Ndx = and the total current element in the solenoid

INrdo
sin©

Idx =

pla® _pa® INrdo

DBx=——="—.—
2r° 2r°  sin 0
2
. a a
sinf==; r’=——
r sin” 0

pa’INd® pa’INdOsin’0 pIN

dBx =——— = o
2r’sin 6 2a°sin 6

sin 6 do

Bx = [dBx ::j: “IzN sin 0 dO

Bx= HIZN [Cos 6, —cos ez]éx

Case 1: In case the solenoid considered to be long and the point P lies in the muddle.



Q,=0&Q,=n

p=t IzN[Cos 0—cos]
B:%[l—(—l)]:pIN

Case ii:- If the point lies at one end of the solenoid. Q, =0 &Q, =g

B=HIZN|:COS 0—cos %J
n

=" 12N Jesla

From the alone equations, it is clean that the magnitude field is one half at one end than at centre.

> > > » Direction of field

f

Bmax
Centre of solenoid

b

Derive the expression for the magnetic field intensity due to a toroid:-

Assuming diameter of the core is small and compared to the diameter of ring the circular paths through the core
will be approximate of same length 27 1.

Ampere’s circuital law,
[Hdl= NH
H[dl = NI= 27r (H) = NI
T

g NL_NI
2nr 14

Where L — mean circumference b the Toroid.
B=pH

E: HNI
i



State and proof Ampere’s circuital law?

Ampere’s circuital law:-

The law states “ the line integral of the magnetic field intensity (H) around a closed path is the ssame as the net
current Ienc enclosed by the path

[ﬁﬁ dl=I,. ie, D]ﬁ dl =1 — general form
Ampere’s law is easily applied to determine H when the current distribution is symmetrical
By applying stoke’s theorem

=[[JH.dl =[|(VxH).ds — (1)

But I, =[f)J.ds — (2)

Comparing (1) & (2), VxH =] — point form or differential form

JIH dI =[f)(V<H).ds=[f]] .ds integral form of ACL

So, VxH =] #0
So magnetic field is not conservative.

PROOF:-

Consider an infinitely long straight conductor carrying current I placed along z — axis consider a closed circular

path of radius r. The point P is at a perpendicular distance ‘r’ for the conductor. Consider dl at point P which is

in a¢ direction.

NANMN AN R RRR RRNY

dl=rd¢ ad

H obtained at point P from BIOT savart’s law due infinitely long conductor is

Tl

=——ay

2nr

H.dl= !

I
2400

2n

Bjﬁ.cﬂ I—d¢2— 5:1
U‘jﬁ.dl:l

Explain in detail about the Applications of Ampere’s circuit law:-



Amperes law is used to find H for symmetrical current distributions. For symmetrical current distribution H is

either parallel or perpendicular todI .

When H is parallel to di,

H| = constant.

Applications of Ampere’s circuit law:-

Case i:- Infinite line current (or) H due to infinitely long conduction. Consider an infinitely long straight
conductor placed along Z — axis carrying current I. considers a point P on the closed path at which His to be
obtained. The radius of path is ‘r’ and hence P is a perpendicular distance ‘r> from the conductor. Consider di at
point ‘P’ in a, direction i.e, H,

ﬁ = H¢ ;iq, I dd) ;¢
According to Amperes circuital law,

fiH =1

UjH¢5¢. rda,=1

TH¢r dp=1
0

_ L
¢ 2nr

H, r[o]" =1=H
H at point P is given by H=H,a,

A= 2, A/m
2nr

Case ii:- H due to cylindrical conductor (or) co — axial cable

R

Conductor
Consider a cylindrical conductor of radius R carries an unitorm current of I amperes. It is placed along z — axis
and has finite length.

His to be obtained considering two regions.

Region 1:- With the conductor, r <R.

According to ampere’s law, Ujﬁ dl=1,.

As current I flows uniformly, it flows across the cross sectional area nR”, while the closed path enclosed only

part of current which passed across the cross sectional area nR”.

TlZI'2

RZ

Hence current enclosed by path, I, =1



I?I:H¢ ay, dl=r d¢ ad
Hdl=H, a, rdpa¢="H, rd¢

2n 2
r Ir
H, rd¢=1.— H,=——
_[[ ¢ q) RZ ¢ 2TER2
— Ir —
H=——ap A/m.
2nR? oA/

Region 2:- Outside the conductor, r > R

The conductor is infinite length along z — axis carrying a current I,

I?I:L;‘b r>R
2nr

. = 1
Outside the conductor, H oo~
r

H= L On the surface
2nr

Formulae:- Curl, distance & gradient in all the three system of co — ordinates.

Co — ordinate
system Cartesian Cylindrical Spherical
VxA= 1 i(Hd)sime)—aHe ar
rsin@| 00 0,
1[ 1 oH, o -
= ———=*-—(H,)|ae
a, a, a, a a a r|sin® op 0,
0 0 o 5 15 2
Curl VxA VxA=— — — VxA=|— —=— — N ATl )
ox oy oz dp pop oz rlo, ¥ 0
A, A, A, A, A, A,
10, , 1 0 .
VD=—=—(D,)+ — (D, sin6
rzar( ) rsinGGO( 0 )
i 1 oD
Divergence + ¢
oD, 0D, oD, oD ~
vd=2 y oY, V.D:li(pD)+1 s 0D, rsin® o
ox oy 0z pop. ' pob oz




' - - - ov- lov- 1 ov-
ox % oz V.V:@apntlﬁa(p -9——6‘731Z Vv=—ar+——ar+—————a
Gradient op p O oz or r 00 r sin0 o¢

PROBLEMS UNIT - IIT

Problems in BIOT — SAVARTS LAW:-

1. A steady element of 107a, A. m s located at origin in free space (i) What is the magnetic field intensity
due to the current element at (1, 0, 0) & at (0, 0, 1).

Solution:-
dﬁ: Idl><a;z
4nR
3 - -3 _
:10 azz><ax :10 a,A/m
4n(1)=(1) 4r
dﬁ _ IleaR _ 107352 Xaz

4nR® 4n()’(D)

2. Find the magnetic field intensity at the origin due to a current element Idl =3n(a, +2a, + 32_lz)pAm at (3,

4, 5) in free space.

Solution:-
AZ
(3.4,
1dl
R
»Y
(0,0, 0)
X
dH = Idl x 212R
4nR
= _ R _—(as+4a,+5a,)
“ IR Jo+16+25

a, =—0.424a -0.565a, - 0.707a,



Idl= 3n(£x +2ay + 3££)x 10°

a a a

X y z

Idixag =| 3= 6m 91 |x10°
0424 —-0.565 -0.707

=(2.661ax —5.339a, +2.67a,)x10°
—  (2.66la, —5.339a, +2.67a,)x 10

dH = -
()

dH =4.24a, —8.51a, +4.25a,nA

3. Find the inenemental strength at P2 due to the current element 2ma,uA.m at P1. The co — ordinates of
P1 and P2 are (4, 0, 0) & (0, 3, 0).

Solution:-

According to B.S.L, the inenemental field strength at P2 due to the current element 2n£zuA.m at Plis

H :M:R_m:(O—@; +(3—0)ay, +0a, = —da, +3a,
4nR
| Z
Py(0, 3, Ly
Ldl,
""" Rp
X 1(4’ 0» O)
- R, -4a.+3a, —4a,+3a,
ari2 = = =
R, 16+9 5
Idl, =2na, pAm
a a, a,
Idl, xarz=| O 0 27
-4/ 3
¥ U 0
=(F5x2m)a (Y5 2m)a,
=27
=T[3ax+4aJ
ﬂ[SZH&%J
dH,=—=—— =

4n(5)°
dH, =-12a_—16a,nA/m

4. A filamentary current of 10a is denoted inward from infinity to the origin on the positive x — axis &
then outward to infinity along positive y — axis. Find ‘H’ at p(0, 0, 1).

Solution:-



=, DR 4. 1dl=10dxa,
4nR 4R
_Eo dxa, x (—xa, +a,) _—_Sj- dxa,

4nd [mT _2nm(1+xz)%
0

X =23 A/m
2n1+x2|, 2n

1

H, =5 [yay)x(-ya, +a.)

L]

H=H,+H, =079, +a, |A/m

5. a wire carrying a current of 8A is formed in the circular loop. If ‘H’ at the centre of the loop is 40A /m.
What is the radius of the loop if the loop has (i) Only one turn (ii) 10 turns

Solution:-

ITI = iaz
2p

If there are ‘N’ turns,

FEnl
2p
2H 2x40
(ii) N = 10
10x8
p= =1m
2x40

6. a circular loop located on x’ +y”> =4, z=0 carries a direct current of 7A along a, . Determine H at o,
0,5) & (0, 0, -5).

Solution:-
Equation of circle is x*+y*=a’= x> +y* =2’

From the above equation, p=2,I=7A,h =5

— 2 p— p—
H= Ip Traz = Tx4 T8z
2op+n?)E 24+25)

H=90a,mA/m

7. A thin of radius 5 cm is placed on a place z = 1cm so that the centre is at (0, 0, -1) cm. If the ring carries
50 ma along 5¢ , determine H at (0, 0, -1)cm (i) (0, 0, 10)cm.

Solution:-



2

ITI :Lyaz
2(p* +h?)2
50x107(5x107%)? -
y az
2[(5x107)+(2x107)* |2
25x10™* x5%x107°
3,
2[25><10’4 +4><10*4]4

=400.23a, mA /m

(i1) At (0, 0, 10)c,, h =9cm
50x107° x25%x107™* -
2(5> +9%)2 x10°°
H=57.26a,mA /m.

H=

z

8. Determine the current density for H=28sinxa,A/m

Solution:-
VxH=]J
a, a, a,
i 3 i :aX(O—O)+ay(0)+a,[i(285inx)}
ox oy oy Lox
0 28sinx O

=28cosxa,A /m’

9. In cylindrical co- ordinates, H = 2p- p2)£¢ A/m for 0 < p<1. (i) Determine the current density as a

function of p within this cylindrical (ii) What is the total current passing through surface z =0, 0 < p in

a, direction? (iii) Verify the same using stoke’s theorem.

Solution:- H=(2p—p*)asA/m0<p<1

a, p€;¢ gz
T=vxH=L2 o O 0
plop ob 0z
0 p@2p=p’) 0
1 0 2 %:| 0 2 3\,
=—la (0——@2p"—p’) |+0a, +—(2p" —p)a
p_p( aZ(p P o ap(p p)
:l[4p—3p2}52
P
J=(4-3pa,

(i) 1=[7 &:TJZ pdp do
s 0

2n 1

= [ J@=3p)pdp do
00

= Td¢j(4 —3p)p dp
0 0

e[ %030
= (9, ( 3 ]0

=2n(2-1)=2n

I=628A



(i) [H. di= [(2p-p")as pdda,
£ 0
=2n(2-1)=2n=6.28A

10. The H= [YCOS(OLX)]E_IX +(y+e“)a,A/m. Determine the current density over the yz plane.

Solution:-
a, a, a,
Jevxna-| 292 2
ox dy Oy

ycos(ox) 0 y+e'
=a, i(y+ex)—0 +{£(ycos(ax)—£(y+e*)}+ O—E(ycos((xx) a,
oy 0z ox oy
J= a_+ (—e")ay —CcosoXa,

Since x =0, on yz plane ,

J=a, —e’a, —cos(0)a,

J=a,—a, —a,A/m’

11. a flat perfectly conducting surface in xy plane is siluated in a magnetic field,

J— _x N >
H {3cosxa Fzcosxay, 2= 0} , find ‘J’ on the conductor surface.

0 , z<0
Solution:-
ax a, a,
J=VxH= i i i:ax[O—g(zcosx)}+a 0—3(3cosx) +a, i(zcosx)_—a(3cosx)
Ox oy 0z oz Y oy Ox oy

3cosx zcosx O
=a (—cosx)+a (0)+a,(-zsinx)

J= —cosXxay —zsinxa,, z=0
0 , z<0

12.If H= yax —xaya/m on plane z = 0, (i) Determine J (ii) Verify Ampere’s law by taking the circulation

of H around the rectangular path withz=0,0<x<5 & -2<y<6.

Solution:-
a, a, a,
jmvxn=l< 2 2
ox 0Oy oz
y —X

) —afo- - 90
(i) =a,[0-0]+a,[0 o]+a{ax( x)ay}

=—2a,A/m’

(ii)}[ﬁ.az['[ o] o] ]ﬁa

‘1 £2 £3 14



'\
PE
Ly Ar I,
0 >
5 X
2 >
I

jﬁ.dl = j[(yéx —xay)(dxa,)

£1 0
5
— — 5 —_
= _([ydx =(xy), o= 10

[Ha= j(yéx —xay)(dxay)

=-(5y)",

x=5

6
= [xdy=-[x]’,
=—[5x6—-(5x-2]=-40

IH.dl = j(yax —xay)(dxax)
£3 5

ydx =[yx]]| =(6x)?=-30
0

y=

D —

j Hdl = ]z(yéx —xay)(dxay)
‘4 6

= ]Z—xdy 0
6

del:—10—40—30:—80A

x=0

1=[i. &= |

y=—

5
_[ (—2a,)(dxdydz)
20

65
:—2.”dxdy

20

=-2(x), ()5,

=-2(5)(6+2)=—-80A
Thus verified.

13. If an in rotational field F= (x+2y+ €z)e_1x +(mx—3y— z)e_1y +(4x +hy + 22)2_1Z , Determine the constants {,

m & n for the above field.
Solution:-

VxF=0



_ o T _
a, & A =a, i(4x+hy+22)—£(mx—3y—z) =a (n+1)
| Oy Oz | | Oy oz
[OF, OF | 0 0
ay_a—x—g_:ay_a—x(4x+hy+22)—§(x+2y—€z)}:ax(4—€)
[OF, oE | [o 0
a,|—Y—-—=|=a,|— -3y-z)-—(x+2y-{z) |= +2
oy | az_ax(mx y—2) aZ(x y z)} a (m+2)

h=-1, (=4, m=+2

14. H= > ay +252, Find VxH,J &'T' passing through the surfacez=4,1<x <2 & 3 <y < 5in the a,
VA V4

direction using J

Solution:-
ax ay 52
(i) VxH= o 9 29
ox oy oz
0 x+22y 2
zZ z
_ 6 —1 a 2 a -1 a -2
_ax[a—y(Zz )—E[(x+2y)z ﬂ+ay{a—x(22 )—0}+a{a—x[(x+2y)z ]—O
vxHE=224 2L 1o
zZ z
(i) VxH=J

3

J=2[X+2yj5x+i2éz=A/m2
Z Z

I= Ij.ds = [MEX + Lzz;z)dxdydz
z z

15. H=xa, +2yz a, +(—x>)a,A/ m. Find the ‘J* at point (i) (2, 3, 4) (ii) p=6, p=45°, z=3 (iii)
r=3.6, 0=60° ¢=90°

Solution:-

Given H=x’a,+ 2yz. e_ly + (—XZ)E_J.Z

a, ay a,
vxa=j-| 2L 2 2
x oy oz

2 2

X 2yz —Xx



=a, {%(—;ﬁ) _%(2yz)} +a, {%(_Xz) _%(xz)} +a, {6%(2},2) —%(XZ)}

J=-2ya, +2xa,

AtP(2,3,4) =-2(3)ax +2(2)a, =—6ax +4ay A/ m’

At (6, 45°, 3)
X =pcos ¢, y =psind
X =6c0s45°, y =6sin45°
x=4.242 y=4.242

VxH= —2y2_lX + 2)(5y
=-2(4.242)a, +2(4.242)a,
V xH =-8.484a, +8.484a,

(iii) At (3.6, 60°,90°)

x =rsinBcos = 3.6s5in 60°cos 90° =0
y =rsin0Ocos¢ =3.65in60°sin90°=1.8R3=3.117
zZ=rcos0 =3.6cos 60° =1.8

VxH=-2(3.117)a +2(0)ay
=-6.234a, A/m’

16. H=—y(x> +y’)a, + x(x> + y*)ay A/min the z = 0 plane for -5 < x, y < 5. Calculate the current passing
thro z = 0 plane & through the region -1 <x<1 & -2<y<2.

Solution:-
ax aY aZ
Jovxu=| < O o
ox oy oz

—y(x*+y?) xx*+y) 0
_ 0 5 2 0 2 3
=a (0-0)-a,(0-0)+a,| — (X +xy)——(Xy+y)
1 ox oy
=G>+ y) + X +3y =4(x* + yD)a,A/m

I:I(VXH).ds=jjds

I
—_—
e —

N
=

>

N

+
<

N
N

o

>

o
<«



17. The portion of the sphere is specified by r = 4,
0<6<0.11,0<$p<0.3m. H= 6rsin¢5r71,18rsin6cos¢5¢ A/m. Determine the current.

Solution:-

a, ra, rsin0a,
1 o 0 0

r’sin@| or 0 %

VxH=

H, rHy rsinBH,
Problems on magnetic flux and magnetic flux density

20. If H=rsinda, +2.5rsinOcospasA/m exists in a medium u, =3, determine B.

Solution:-

H =rsin¢5, + 2.5rsinecos¢2_1¢A/m &p, =3
B=pH=puH=41x10" x 3[rsin(1)£r +2.5rsin Gcosd)gd

B =3.77rsinda: +9.42rsin Ocos pa, Wb/ m*

21. radius = 2cm B = 10Wb/m’. If the plane of the coil is perpendicular to the field, determine ¢ .

Solution:-

¢=BA

=10x 7’ =10x (2% 107%)?
¢=12.56mWb

22. B= 2.5sin%e*2y;zw1)/m2 , find the flux for z=0, y>0&0<x <2m.

Solution:-

2 -2y 1”
=2.5|:—COSB:| {e }
2 ] 2 -0

_ -0 0

:2.5{ cosz+c050]{e2 ez}
é T

2.5x2

=—X

i
=1.592Wb.

2><l
2

23. H=2.39x10" cos ¢a, A/ m. Determine the flux defined by 0<¢<7/, & 0<z<2m.

Solution:-



%
o= IE ds = Iu(,urﬁ =4nx 10’7j f [%Xlo{scosd)gp J(pdd)dzz;p)
s s 0 ¢=0

$=2.39x10°x4nx10” [Sin d)]? [z]z
=2.39x4mx10” | sin ™/, ~sin0 2]
=4.24Wb

24. Given B = psin¢a, Wb/ m’. Determine total flux crossing the surface defined by

1<p<2,="T &0<7<5.
Solution:-

B= psind)gd,

= Iﬁ.ds = .Sf _2[ (psin ¢5¢)(dpdz£¢)

2=0p=1

o= [z]f{%} sin¢

1

At ¢=T/.6 5][—— }sm45° 5></2><——5303Wb

25. Given B = (%)Eﬂ. Determine the magnetic flux ¢ crossing the plane defined by

0.5<p<2.5m & 0<z<3.

Solution:-
b= _[ (_atbj (dpdzas)
005
=2[Inpl;[2];

=6In[2.5]=9.66k /b

2.5

26. Given mean circumference /=1.2m & area of 8cm> N = 480turns. I = 2A, ¢ =1 Wb. What is the

permeability

Solution:-

£=12m, A:8><(10‘2), I1=2A
N =480turn ¢ =1Wb

6 1 100x10°

B="= — = =1250Wb/m’
a 8xI10 8

B=pH=p,uH

=802 _g00A-T/m.
14 1.2

urzB— 1250 =0.124x10’

wH  4rx107 x800

27. Calculate b, due to a coil N = 1000 A- T, area = 100 cm”> & h = 10m.
Solution:-

NI = 1000Ampere turns h = 10m, area = 100x10™

na’ =100x10™* = a =5.64cm.



1000 (5.64x107)?
3
2[100+(5.61x10*2)2]4
B=uH=1.59x10" x4mx107 x1

H= =1.59x107"

UNIT III
State and prove point from of ohm’s law.

Point form of ohm’s law:-

Ohm’s law is given by V = IR where ‘R’ is the resistance of the given medium. Let S and S’ be two surface with
potential V and V + AV . The plate are separated through a distance A?.

Izﬂ].Nds

If there is a charge —q, it will experience a force.
F=-qE
In free space, the electrons would get accelerated and its velocity would continuously increase.

In the crystalline material, the progress of the electron is impeded by its continual collisions with the thermally
excited attained is drift velocity.

Vy=—pE — (1)
The electron velocity is in a direction opposite to that of the electric filed.
We know that J=p V, — (2)
Sub (1) in (2), we get

]: —Pe MeE
J=0cE

Point form of ohm’s law.



UNIT -1V
MAGNETIC FORCES AND MATERIALS
PART-A
1. State Farad’s law of electromagnetic Induction

The total electromagnetic force in a circuit is equal to the time rate of decrease of total magnetic flux in the
circuit.

_do
dt

2. State Lenz law:-

It states that the current in the loop is always in the such a direction as to opposite the change of magnetic flux
produce it.

3. What is transformer emf?

The emf induced in a stationary conductor due to the change in flux linked with is called transformer emf (or)
static induced emf

emf = —H % ds . eg. Transformer.

4. Find the displacement current density for the field
Solution:-

ob 0O 0
1, = =S (eB)=Z(e e E
Cat at(g ) ot (0e.E)

:aﬁ[s.ssm 1072 x1x 300sin10° t]
t

=8.854x107"?x300x10° cos10°t
=8.854x0.3 cos10°t
J,=2.6562c0s 10° tA/m’

5. The parallel plates in a capacitor have an area of Sem” & separated by 0.5cm. A voltage of 10sin 10° t v
is applied to the capacitor. Find the displacement current with & =35 .
Solution:-

Given d=0.5cm

A=5cm=5%x10" m?
e, =5, v=10sin10’t

oD OE ¢gg ov
Jd = =g—=—"t
ot oo d ot
I,=],xA
_&EA dV



-12 -4
_ 885410 "x5x5x10 d g 0%

0.5x107* dt
12 4 3
_8.854x10 xzx5xl0 X107 10x10° xcos10°t

=8.854x5%x107 cos10°t
I,=44.27cos 10’tnA
10 area of the plates 0.01m’, d = 0.5mm & v = 200 sin

6. Find displacement current density (Jd) with &=
200 t.

Solution:-

1, =D _EE) &g dv
Ca o d dt

B 8.854x107"?x10 d
T 005x10°  dt
_ 8.854x 107" x10x200x 200cost
- 5x10°
=8.854x8x107 cos 200t

=70.832¢c0s200t mA / m’

(200 sin 200t)

7. A Cu wire carries conduction current of 1A. determine the displacement current at IMHz. For Cu,

e=g, & 6=58x10"s/m

Solution:-
I =J.xA
=cExA
gL
cA
oD _ 0(eE)
Jy=—>=
ot ot
o . I
Since azjm, T, :oosE:msoa
I
J,=2nf g,—=
d OGA
I =T xA
:2ch8°—IC><A
cA
_ 2x3.14x1x10°x8.854x10"
5.8x107

I,=9.585x10" A

8. Define Magnetic moment:-

Magnetic moment is defined as the maximum torque on loop per uniform magnitude flux density

In case of magnitude dipole, magnetic moment is given by m= Qm . L
Qm = charge ; L =length

In case of current loop m = 1A



I = current; A = area of the loop.
9. Define magnetic dipole moment
Magnetic dipole moment
m=Q,_/
Consider a far magnet of length € and area of cross section A.

Magnetisation is define as the net dipole moment / per unit volume

M=ol
Vo Al
M:g&
A

10) Define magnetic susceptibility
Magnetic susceptibility (Xm)

B=p,(H+M)
M
:HOH(]‘ + ﬁ]
B ZHOH(l + Xm)

X, = % = Magneticsusceptibility

B=pou, H
where p =1+X_

11. A current sheet, k =8.5a, A/ m, at x = 0 separated region 1, x < 0, where H, =20a,A/m & region2,x >
0 find H.atx =0

Solution:-
Given H, =20a,A/m in region 1
The normal component is in z — direction. Hnl=Hn2 > 0 & Bn1=Bn2>0

(H,—H,)xam: =k
(20a, —H_,a,)xa, =8.5a,
(20—H ,)ayxa, =8.5a,
(20-H ,)(-a,)=8.5a,
—20a, +H,a, =8.5a,
H,,=285a, A/m

12. Find the maximum torque on a 75 turn, rectangular coil, 0.5m by 0.6m carrying a current of 4A in a
magnetic filed of B = 5T

Solution:-

Given (=0.5m w=0.6m 1=4A, N=75 B=5T
T=NBIAsin9

Maximum torque is obtained when 6=90°

T, = NBI({w)
=75x5%x4x%(0.5%0.6)



Tonax=450

13. A 200 turn coil of 30cm x 15cm with a current of 5A is placed in a uniform field of flux density B =
0.2T. Determine the magnetic moment m & maximum torque.

Solution:-

Given /=30cm=30x10"; w=15cm=15x10"; I1=5A, N=200; B=0.2T

m=NIA =200x5%x30x15x10™*
=45A.m>
T, =mB=45x0.2

T, =9Nm

14. A square coil of 200 turns & 0.5 m long sides is in a region of uniform field with density 0.27T. If the
maximum torque is 4 x 10”N. m , what is the current?

Solution:-
Given A=a>=(0.5)"=0.25m
N=200, B=0.2T T, =4x10~

rrmax =NIAB
4x10°
200x0.25%0.2
[=4%x102A =0.4mA

4

15. Find Ic in a circular conductor of radius 4mm if the current density varies to J = 1—az A/m’
p

Solution:-

I = Ij d. = T 0.(_)[04(£ aZJ(p dp d¢ 52)

$=0 z=0 p
I, =10* (0.004)(21)=807A.

16. In a cylindrical conductor of radius 2mm, J =10’ ¢ ** a,A/m find Ic.

Solution:-

27 0.002

L= d=] [ a0e*"a,).(pdpdo a,)
s 0

0

2n 0.002

:J‘d¢ J' 103p64(x)p dp
0 0

_ a0 70002
=27 x10°| Pt £
400 (-400)° |,

3
O o
I, =7.51mA
17. Find Id. where &= 1006 A=001m* d=0.05x10" & v=100sin 200 7t
. ’

Solution:-



o BA _100g,x0.01 8.854x107"* x10” x10”
d 0.05x10° 5x10x-5

=1.7708 %1077 =0.1771uF

dv

o
=0.1771x10° x100x 2007 x cos 2007t
=0.3542x10*tcos 2007t

I, =(11.13cos 200 ntt) mA

I,=C 0.1771xlO"’di(IOOsinZOORt)
t

e, N 2 2 . _
18. Find the electric flux density & volume charge density if E=2x"ax+dy’ay+2z°a, v/m; g =4
Solution:-
E=2x%a, +4y’a, +2z%a, v/m

D=¢E=¢gE
=8.854x107"? x4x (2x%a, +4y’a, +27%a,)
D =70.83xa, +141.66y%a, +70.83z%a, pc/m’

p,=V.D
oD, 0D, @D,
=—%4+—L4—2
ox 0y 0z

=141.66x +283.32y +141.662pc / m

19. A rectangular coil carrying a current of 5A is placed in the magnetic field of flux density
B=0.3(a. + e_ly YWb/ m’. The coil is lying the yz plane & has dimensions 0.8m x 0.4m. Find the torque on
the coil.

Solution;-
I=5A B=03(a, +a,)Wb/m’

A=(08x0.4)a, =0.32a,m’

t= 5 X ]§
T=5(0.32a,)x0.3(a, +a,)
=5(0.3)(0.3)a,
=0.48a; N.m

20. A rod of length ‘0’ rotates about the z — axis with an angular velocity 10. If B =B, a,Telsa , calculate
the voltage induced.

Solution:-

EMF = j(v xB).dl

j (p(nad)xBO;z).dpap
pe

0

£
:IB() pwa, dp a,
0

£
= BOmJ. pdp
0



LV
) B()m|:p_:|
2 0

EMF = lBo(ozzv
2

PART-B
1) State and explain the Lorentz force equation for a moving charge;-
Consider that a charged particle is moving in a magnitude field of flux density B. It experience a force given by
F=Q(VxB — (1)

The force is proportional to the product of the magnitude of the charge Q, its velocity V & flux density B & to
the sine of the angle between V and b. The direction of the force is perpendicular to both V and B.

F=QvBsind — (2)
The electric force on a charged particular in the electric of intensity E is
F=QE — (3)
The force on a moving particle due to combined electric field and magnitude field is obtained
F=Q[E+(vxB)]
This force is called Lorentz force.

Obtain an expression for the force between two parallel conductors

Consider two straight, long parallel conductor P and Q separated by a distance d. Let I1 and 12 be the currents
flowing in conductors P and Q.

F] F2 Fl F2
—> <+— +— —>
I \I> 1,/ \ "
d \ d
P Q P Q

Consider a conductor P produces a magnetic field whose flux density is B at conductor

B= pl
2nd

The force on conductor Q due to P, F1 = B.
Where L = length of the conductor

pl L2

F =
2nd

If the current is flowing in the same direction, then there is force of attraction
Fz = Fl

If the currents are flowing in opposite direction, then there is force of repulsion



F,=-F,

1
Fz — _HIl IZKN
2nd

If the conductor is infinitely long, the force per unit length is,

GELLE LN
2nd

2) Explain the magnitude moment Torque on a loop carrying a current I:-

When a current loop is placed parallel to H, force at on the loop that end to rotate it. The tangential force
multiplied by the radial distance at which it at is called torque.

Unit of the Torque — Newton — metre (N — m)

Consider the rectangular loop of length ‘L’ and breadth ‘b’ carrying a current I in a uniform magnetic of flux
density B.

1
1

Axis of rotation

The force acting on the loop, F=BI L sin 6
If the loop plane is parallel to the magnetic field total torque on the loop is T.
T =2 xTorque on each side
= 2 xtangential force x radial distance
=2 x BIL x b/2
T =BIA

If the loop plane makes an angle Q with respect to the magnitude flux density B, the tangential component of the
force is F=Fcos 0.

Total torque on the loop, T = BIA
Magnetic moment, m= IA A/m’
T=BIAsin0
=mB sin 0

T =mxB

m= % [If torque is maximum, i.e Q = 90°]



Magnetic moment:-

Magnetic moment is defined as the maximum torque on loop per uniform magnitude flux density
T
m=—
B

In case of magnitude dipole, magnetic moment is given by m= Qm . L
Qm = charge ; L =length

In case of current loop m = IA

I = current; A = area of the loop.

3) Detail about the scalar and vector magnetic potential:-

The potential can be of two types

a) Magnetic vector potential (or) vector magnitude potential (A )
b) Magnetic scalar potential (or) scalar magnitude potential (Vm)

(i) magnetic vector potential:-

Scalar magnetic potential exists if there is no current enclosed (i.e) D]H.dl =0 . If current is enclosed the

potential depends upon current element (vector quantity) is no more scalar but it is a vector quantity.
Since the divergence of vector is a scalar the vector potential is expressed in curl.
Let ‘A’ be any magnetite vector potential and vector potential is expressed in curl.
VxA =B
Talking curl on the both the sides
VxVxA=VxB — (1)
By Identity,
VxVxA=V(V.A)-V’A — (2)

VxB=uJ
VxB=V(V.A)=V’A

pJ =V(V.A)-V’A

for steady d.c, V.A=0

-uJ =V?A
V2A ax +V2A, ay +V2A, a, =—p(axJ, +ay J,+ a.],)
Equating,

VA, =-u],

VA, =—u],

VA, =-u],

This is in the form of poisson’s equation.

In general, magnitude vector potential is expressed as,

_ o)
A_any; dv

AX:L (]—dev; A = ]—y v; AZ=i (]—‘Jdv
4\ r Y odmi\r 4ni\ r



r = distance between current element and the point at which A is the to be calculated.
Scalar magnetic potential:-

Ampere’s law states that the line integral of the field H around a closed path is equal to the current enclosed

ng. di=I
A

If no current is enclosed (i.e ) J =0

UjH. dl1=0
A

Magnetic field intensity can be expressed as the negative gradient of a scalar function
H=-VV,

Where V,_ = scalar magnitude potential.
vV, =-[H.dl

This scalar potential also satisfied Laplace equation

In free space VB=0=p, VH=0

But H=-VVm =y, V.(-VV_)=0
u, V2V, =0
V3V, =0

4) Explain the Force on a differential current element (or) Force on a wire carrying current I placed in a
magnetic field.

The force exerted on a differential element of charge dQ moving in a steady magnetic field is given by
dF=dQ(Vx B) — (1)

The current density ] can be expressed as

J=p, V —(2)

The differential element of charge can be expressed as
dQ=p, dv —(3)

Sub (3) in (1),

dF = p, dv (VXE)
dF=(p,VxB)dv — (4)
dF = (JxB) dv

Relationship between current elements

TdV:lst:Ia
@zfdvxgjﬁzlaxﬁ

Integrating the above F =17 xB

F=BILsin6



5) Define inductance field in magnitude materials
Inductance:-

Any conductor carrying a current produces a field around it. The lines of magnetic flux produced by a current in
a solenoid coil form closed loops. If the current in the coil is alternating with respect to times, the flux linked
with the coil also varies.

The values of the flux depend on flux density which in turn depends on the current flowing through it.
If there are N — turns in the coil, the total flux linked with the coil is called the flux linkage ( A )
A=N¢
Due to variation of current, there will be variation of flux linked with the coil which in turn induces an emf.

_-dA di
di ‘dt

do ) di
&= —[Nd—‘fjd% [+ A=N¢]

Where i = instantaneous value of the current i—A or qu) represents the of charge of flux linkage with respect

i di

to current. This quantity depends upon the geometrical configuration of the given device and is referred to an
inductor and the device which possesses this properly is called Inductor.

Derive the expression of inductance:-

The inductance is defined as the ratio of total magnitude flux linkage to the current through the coil.

Thus, L=d—A: N d¢
di di

If the flux ¢ varies linearly with i,

The negative sign indicates that the emf is set up in such direction so as opposite the changes in current
e=-V

V:+Ld.1
dt

The unit of an inductance is Henry. The inductance of coil is said to be 1Henry, if when current in the coil
changes at a rate of 1 ampere / second, an emf of 1 volt is induced in it; or if the flux linkage with the coil
changes at the rate of 1 wb turn ampere.

6) Describe the equation of solenoids
Solenoids:-

Let b is the flux density and A, the area of cross section of the solenoid, then the flux through the solenoid is
¢ =BA and the flux linkage A =N¢=NBA

Inductance is, therefore, given by

- — (1)



We know that, for long solenoid, B = Ho% —(2)

Sub (2) in (1), we get

NIA
L=N|p,— |—
(Ho €jl
2
L=# Henry

7) Derive the expression of inductance in a Toroid
Inductance in a toroid:-

When a long solenoid is bent into a circular closed on itself, a toroidal coil is obtained. If the toroid has uniform
windings, the flux is confined almost interior & the flux at the external of the coil is zero.

Let I be the current flowing in the toroid, B the magnetic field produced at every point of circular path of radius

R. _ kD

Since it has ‘N’ turns

B nNI
2nR

By Amperes circuital law,

fjB.dl =uNT
L

Bj dl = uNI
B.27R = uNI
B= HNI a
27R
NuNI |,  uNIA

Flux linkage, A=N¢=NBA=—"—_A=
27R 27R

Since toroid is a circular section, A = nr?

Ao uNIr?
2nR
1A uNIrr?
1 2nRI
L= pNr* Henry

8) Derive the expression of Toroid of rectangular

Toroid of rectangular cross section:-



Consider a toroid of rectangular cross section of inner radii ‘d’ & outer radii ‘D’.

Let N be the number of times

/B dl = NI
B. 2nr = uNI
_ uNI
T 2mr

Now consider a rectangular strip of width dr and height h at a distance r from the centre.

A
o
v

A
X

A 4

A
—

dA =Nd¢ = N.BdA
da =N*Ny g

r
uN°Thtdr _ uN’Th .
A= —= I
2nr -‘[ r 2n 8 A
_ A _ p,Nzh D
L_T_ o log AHenry

9) Derive the expression of inductance of co — axial cable

Inductance of a co- axial cable:-

k]

The magnetic flux density B at any radius ‘r

g Ml
2nr

dA =Bxdr

dr=H g
2nr

2 oul
IdA =A= IH—.dr
% 2mr
1
= 5 llog.1];

_H D - - d =i -
A= 7o log /:1 D = outer diametre; d = inner diametre.

_A_ M e D
L—T—ﬂloge /:IH/m




it (e )\
| «— 1 |

¢ Co — axial cable
_K D
L= - log, /fl
47 x107
_ D
= 2.303 log,, /:1

=2x2.303x10 7 log,, D/
=4.606x10 " log,, D/}

4606
D
=1000 x107 log, /:1

=4606x107 log,, D/}

L = 04606 log,, D/ mH / km

10) Derive the expression of inductance of a two — wire tx line

Inductance of a two wire transmission line:-

A two wire transmission line is as shown in figure whose conductor radius is d & the spacing between centre iss
R.

«— —

At any radius r from one of the conductor, the flux density B = ML
r

A=[dA= 2TB.dr < 2T 2“1 dr=2L log (R4)
d d

Lo % 3 ZLX 2.303><10g10(%)

_ 2606 107 10g, R/, =0.9219 1o uH
810 /4 1R d

Derive Energy stored in a magnetic field:- An inductor stores energy when a current through a inductance coil
is gradually changed from O to I. the energy change of it is opposite by the self induced emf produced due to this

change.

1
W= jP.dt Joules
0

P=VI
v 4
dt
juf dt

W ==LI*| Joules :%AI =

N | =




Energy density:-

Let us consider the inductance of a solenoid

L:M
¢
W:1L12
2
2
W:lHNAIZ
2 ¢
1 (NIY
=—n/—1] 9
2“(6)
Wfl H?9
M
w 1
0=—=—pH?
g 2"
1
=—BH
J

2
o= 15 Joules
2

11) Derive the mutual inductance of a coil
Mutual inductance:-

In the case of an isolated circuit, the flux produces by the current links only with that circuit. The corresponding
inductance representing the flux linkage per unit current is sometimes referred to as self inductance.

Mutual inductance is the flux linked in one coil due to the current in the second coil.

Let us consider the flux linking one of the n circuits 1,2,......n say R™ circuit.

= total flux linkage with the R™ circuit due to all the n circuits composing the system.

The e. m. f induced in the R™ circuit may be written as

-dA, -d & )
g, = dtk:E;ARl
o dA,
:_ETF
dA, dA, dI,
dt  dI,  dt

)

dA,,
Where dIk] denotes the ratio of flux linkage with R™ circuit with respect to the current in j" circuit, has the
j

dimension of inductance is therefore, referred to as mutual — inductance

M, = ldAkj k#j
ST 27 )

E. M. F induced in the R™ circuit

dI,
T

g =

If k=i



dA,  dA, dI,
dt — di, dt
dA,,

dI,

=L,.. (self inductance of the circuit)

Consider a toroid with two windings P and S the winding P has N, turns & is called primary winding and s with
N, turns is referred to a secondary winding.

Flux linkage with winding P is

LA
Ay =N, (BA)=p,N,N, ——
fm

Self inductance of coil ‘P’ is

ﬁ _ HoNfA

LH:I

[ /m =mean length of magnetic path = 27R_ ]

1 fm

Mutual inductance of switch P

A 1oINLNL A
M,, = I21: OZ 1
) m
folll
82:_M21d7t1

Self inductance of coil ‘S’ is

L22 — HOE\T;A
m

Mutual inductance of P with S

1IN, NL,A
M12: 0 [1 2
m
M,, =M,

M, =M, =L, L,
L,=L,L,=L;M,=M, =M
M*=L,L,

M=,L|L,

Suppose R; times the flux produced by I; links with secondary, then R, times the flux produced by I, with the

secondary
M N, M
L, NNM, o,
11 1 22 2
M21M21 =k.k M’ =k?

12) Derive a Boundary condition of magnetic field
Magnetic Boundary condition:-

Figure shows an interface between two magnetic media with permeability’s p, and p,. Consider a Gaussian

surface and a closed path to the boundary between the media (1) and (2).

mB.nds:O

If B, and B, are the magnetic flux densities in media (1) and (2),

B,.n,As+B,.n,As=0



AN

O
+
Magnetic A
medium (), 24 M
e

He

Magnetic
medium (2)

Where As is the pill box surface and (n1 and n, ) are unit outward normal.

(B,-B,)n, =0
B.,-B,=0
B, =B.,
pH =0H,,
Hy_p
Ho,

Applying Ampere’s circuital law

U‘jH.cu =1

H, A/ —H,Al =k.Al
Htl - HlZ = K

If sheet current density is zero,

Hll = th

1 _ Pe
My My
By _m
B, W

13) Discuss about the nature of the magnetic material nature of magnetic material:-

Magnetic material are classified as

(i)  Dia magnetic materials
(i1) Para magnetic materials
(iii) Ferro magnetic materials

@iv) Anti Ferro magnetic materials

(v)  Ferri magnetic material

Dia magnetic material:-

These are materials which do not hare dipole moment in the absence of an external applied magnetic field. In
these materials, magnetisation is opposite is opposed to the applied field, p <,

e.g:- Silver, Lead, copper, water, Gold, Silicon.



Para magnetic materials:-

1. Permanent magnetic dipole moment
2. In these magnetisation is same dr to the applied field
3. w21

e.g:- air, aluminium, potassium, oxygen.
Ferro magnetic materials:-
1. In these materials, the dipoles interact strongly and all tend to line up parallel with the applied field.

2. p,>>1

e.g:- Iron, Nicolet, Cobalt
Anti Ferro magnetic materials:-

1. In these materials, the adjacent dipole aligns in anti parallel fashion to the applied field.
2. Magnetic moment is zero
3. Present in only temperatures

Ferri magnetic materials:-

1. Show an anti — parallel alignment adjacent atomic moments
2. Large increase in flux density

14) Explain the magnetisation curve of B — H curve
Magnetisation curve or B — H curve:-

B increase linearly with h. Till point A, it is called as easy magnetisation region, & Beyond a, it is hard
magnetisation.

Hard
magnetic

A
o]

< Maximum

Hx

Easy

magnetic

_> H
Hiysteresis:-
45
M o Initial Magnetisation
Br curve
-H < »H
-HC HC
-Br




1) On increasing the value of H to saturation & then decreasing, B decrease less rapidly.
2) When H =0, B # 0 called ass residual flux.

3) To bring B =0, it is necessary to apply a field H in the negative direction H = -Hc is called the coerctive
force.

4) Then B = -Bc at H = +Hc.

This curve is called the hysteresis curve.

15) Derive the reflection by a perfect conductors
Reflection by a perfect conductor:-

When the electromagnetic wave travelling in one medium strikes upon a second medium,, the wave will be
particularly transmitted and partially reflected. Its elepends upon types of wave incidence. The types of
incidence are normal and oblique.

(i) Wave incidence normally on a perfect conductor:-

When the plane wave is incident normally upon the surface of a perfect conductor the wave is entirely reflected.
Since there can be no loss within a perfect conductor, none of the energy is absorbed.

/ :

As a result, the amplitude of E and H are the same as in the reflected wave and differ by = .1i.e, E,=—E

r

o .. Fig (1) » Normal incidence
Let the electric field of incic

Ee™
Since attenuation constant o =0 the propagation constant y = jf y=a+iB & a=0 -y=ip
Incidence wave is Ee ™™
Reflected wave is E e ™
E.(x)=Ee ™ +Ee"™
But E,=-E, =E . (x)= Eie-iﬁx _ Eieﬂ'Bx
E.(x)=E, [e—jﬁx _e+jﬁx:|

- _Ei |:e+jﬁx _ eiiﬁx:|
E,(x) =-2jE;sinBx

Expressing in time variation,

E.(x,t) =—2jE, sin Bx e
=R, [—stin Bx[cosot + jsin ootn
E.(x,t) =2E,sin Bxsin ot

The above equations show that the incident and the reflected waves consider to produce a standing wave does
not progress.



To maintain the reversal of direction of energy propagation, H must be reflected without reversal of phase. So
incident Hi & reflected Hr are of same phase

H,(x)=H,e ™ +He"™
HT(X) — Hi (e+jﬁx + e*jﬁx)
=2H, cosfBx

If Hi is real,

H,(x,t) =2H, cospx (ej“")
H.(x,t) = 2H, cosx cos ot

The equation of E and H shows that E and H differ by % in phase.

(iii) Wave incident obliquely on a perfect conductor:-
When a wave is incident obliquely on a perfect conductor, it is necessary to consider two spherical easer.

Case(i):- The electric field vector is parallel to boundary surface (or) perpendicular to the plane of incidence.
This is called horizontal polarization.

Case(ii):- The electric vector is parallel to the plane of incidence. This is called vertical polarization.
Horizontal polarization:-
E is perpendicular to the plane of incidence.

Let the incident and reflected waves make angle 0, =6, =6 with z — axis.

The incident wave is expressed as
E, = Eie_ma'r

For the normal of the incident wave
nr= i n/ _ _
nr=x cosé +y cos(é 9)+ zcos(m—0)

=ysin0 -z cosO

- —jB(ysin0-zcsod)
E, =Ee
The reflected wave is expressed as

_ -jB(n.r)
E.=Ee

ref

nr=x cos% + ycos(% —6)+ zcos0
=y sin®+zcosO



But E ; =-E,
The total electric field

ET = Ein + Eref
_ Ei [e—jﬁ(ysine—zcoae) _ e—j]}(ysin6+zcose):|
— Ei [e—jﬁysin Ge+j[izc059 _ e—jﬁysin ee—jﬁzcose]
— Ei [e_]ﬁzcose _e*JBLCOSQJe*JByMng

=2jE, sin(Bzcos0)e”’ By y
Where [3:9=—:—
v

B, =Bcos6; B, =P sin0.

27 27 A

The velocity in ‘z’ direction A, =—= =
B, Pcos® cosB

The velocity in y direction v, = - m
B, PBsin®
v ®
vV = V=—
¥ sin@ { B}
A, =
sin®

Vertical polarization:-

The electric field E is parallel to the plane of incidence

Perfect conductor

The incident wave is expressed as

_ —jB(ysin®-zcos0)
H, =He

_ —jB(ysinB0+zcos0)
Hrcf - Hre
Since H,, =H,,

HT = Hin + Href
— Hi [efjﬁ(ysin 6-zcos0) + efjﬁ(ysin 0+zcos0) :|

— Hi |:efjﬁysin9 (efjﬁzcnse + efj[hcose) ):|
=2H, cosPzcosOe #>"°

H, =2H, cosp, ze ™

Where B, =0 cos0; B, =Bsin0



16) Derive the reflection by a perfect dielectric
Reflection by a perfect dielectric:-

When plane electromagnetic wave is incident on the surface of a perfect dielectric, part of the energy is
transmitted and part of it is reflected. A perfect dielectric is one with zero conductivity, so that there is no less or
absorption of power in propagation through the dielectric. Consider two cases.

@) Wave incident normally
(ii) Wave incident obliquely

(i) Wave incident normally perfect dielectric:-

Consider two perfect dielectric media separated by a boundary as shown in fig. Let €, and p, are permittivity ad

permittivity of the medium 1 respectively. Let €, and p, are the permittivity and permittivity of medium 2

respectively.

Let E1 be the electric field of incident wave, Er be the electric field of reflected wave and Et be the electric field
of transmitted wave

m= B &T]z: B
ug] \ng

E.
\ A i
Medium 1"
A Er €
Medium 2 "
82
v E,

E, =nH,
Er = _nl Hr
E =n, H,

H +H =H & E,+E =E,

Hi:E,H,:_Ef &HI:E
uh n N,
H,=H,+H, = (E E,)
n
E 1
—=— Ei_Er
N, Th( )
E. +E 1
- _(E -E,
N, Th( )

nE; +nE, =n,E;, —n,E,
(ﬂl +n2)Er = (le —ﬂl)Ea

5 -l ] Reflection co — efficient
E, mn,+n,
E E +E E
Also, —t =D oy e




:1+nz_n1

n2+nl

% = n, Transmission co — efficient

n tn,

Similarly for magnetic field,

Hr — _Er
H E
_ _|:n2 Ny :|
n, +n,
H _n-m Reflection co — efficient
H  n+n,
Also
H _nE
H; m, E
N, [N +M,
5 = m, Transmission co — efficient
H n-n,
n = Ho and n, = Fo Hy=Hy =Hg
8l 82
Ho Ho
E, _\& €
Ei e 1
g €,
IR
B Ll o
€ €
E, ey
. 2
Similarly, =+ = M
¢ Mty
Mo 1
Y TR o
A &
L e e
g €,
NS




H n+n,
Ko — [Ho
_ € €
By Mo

5 [Ho
H__2n _ €,
H n+n, Ho o [Ho

8l 82

(ii) Wave incident obliquely on a perfect dielectric:-

When a plane electromagnetic wave is incident obliquely on the boundary, a part of the wave is transmitted and
a part of it reflected, but in this case, the transmitted wave will be refracted. i.e, direction of propagation will be
changed.

Hy

When the wave is incident obliquely at an angle of 6, with normal part of the wave reflected at an angle of 0,

in the same of 6, in second medium.

By snell' law,

sin@; v,
sin@, v,

1 1
v, = v, =

sin0; Juzaz
sin 6, - \/E

V1= Velocity of wave in medium 1

A K28,

V2 = Velocity of wave in medium 2

Since p, =p, =u,



sinf, _ [e,

sin@, g
E2
The power / unit area = ExH =EHsin % =EH=—
n

2

p,=EH, cos6, = E—‘cos 0,

M
2
p, =E.H,cos0, = E, cos 0,
M
E 2
p, =EH, cos®, =—cos §,
M,
2 2 2
—-cos 6, =——cos 6, =——cos 6,
N M N,

By law of reflection, the angle of incidence is equal to the angle of reflection

0, =0,
2 2 2
—cosB, = E—"cosGr +E—‘coset
ut M M,
2
&SG’[Ef —Eﬂ:E—‘cosOl
M N,

Dividing by E;* on both sides
[, E}) 1E;
cos, 1-— |=——;cos0,
Uk E; 2
_E} _m, E{cosb,

l-—=—=—
E; m, E} cosH,
E? 1 nE; cos,
E; n,E; cos®,
u
n= " &n,= B ['~'H1=H2=Ho]
1 82

r

E’ B &,E; cos0,
E; Je,EZ cos6,

Horizontal polarization:-
In this case, E is perpendicular to the plane of incident and parallel to the reflecting surface,

E, +E, =E,



1+=L==
E E
E_zzl_\/g E, ) cosb,
E; \/g E, ) cos6,
2
EZ: _\/Z 1+E cos 0,
E; E, ) cos6,

1_22 €, cosb, d'_i\/gcosﬁI
E, \/;cos(%i E; \fg, cos0,

€, cosO, E, €, cosb,
- = 1+
\/; cos®, E, \/; cos b,
- \/g cos B,
E \/a cos 0,

€, cosb,

\/;cosei
E_\/;cosei— €, cos 0,
E, _\/acosﬁﬁ\/gcosel
\/gcosel: €,4/1—sin”0,

But sin@, \/Z

1

S

sin®,  \[g,

)
. g sin” 0.
s1n26‘:;
82
2
€ sin” 0
&, cos0, = fg, JI-——

€,

=4[e, —&,5in” 6,

r

Substituting this value in »

s 02
E _ Jsl cos 0, —«/82—81 sin” 6,

E  [e cosO + \/82 —g,sin’ 6,

Reflection co — efficient is given by

€ 2
cos6, — [~2—sin” 6,
ro_ 81

E, € .
" cos@, + [-2—sin’0,
81

Vertical polarization:-

In this case, E is parallel to the plane of incidence.



(E,—E,)cos6, =E, cos®,

_E, _E cos 0,
E, E cos 0,
E _ 1_E E, |cos 6,
Ei E, )cos 6,
E: €,Ecos0,
E; Je,Elcos 6,
E; _ _\/5 _Eo *cos’ 0, cos 0,
E’ \/g E, ) cos’ 0, cos 6,
_E; Je _Eo " cos 0,
E’ \/g E, ) cos 0,
E E \/g E ’ cos 0.
l—or [ 1 = N2 2 | 2220
E, E, \/g E, ) cos 6,
1+ \/5 | E, |cos 6,
gl E, Jcos 6,
E, 1+ €, cos 0, €, cos 6, 1
E, \/_ cos 0, \/g cos 0,
E, | 4/ cos O, + /g, cos O; _\/gcosei—\/acosel
E, \/—cos 0, \/gcos 0,
E \/gcos Oi—\/;cos 0,
E \/gcos 9i+\/§cos 6,
cos 0, =+/1-sin’0,
B /& cos 0, — [e (1-sin’ Gl)
E [e,cos 0, +\/el (l—sinzel)
sin 0, £
sin 0, \/g
€, sin 6,
sin O :—\/—1 !
t \/g
$in>0, = Lsin” 0,
82

Dividing numerator & denominator by

2
’ g’ .
€,c08 0, — e, —— sin’ 0,
E _ &
E

2
g’ .
Je, cos 6, +\/81 +-1sin*6,
€
2

1 2 .2
Jsz cos 6, —7'—«,8]82 —g,"sin" 6,
—L = 82
E.

1 2 (i 2
i €, cos 6, +F €€, —€,°8in" 0,
2

€, COS —sin” 6,
\l 8l
—L =
, € .
i Je, cos 0+ 22 _gin®0,
Je &

&

1




[ jcos 0, - ’ —sin 9
E Reflection co — efficient
E.

! ( jcos 0, - \/ —sin’ 0,

Brewster’s Angle:-

Brewster’s angle is a particular angle at which no reflection takes place. This occurs when the numerator of the
above equation is zero

(ijcos 0. — ’8—2 —sin’@, =0
81 81

€ g .
=2 |cos 0, = |- —sin’ 0,
8l 8l

=2 /1-sin*0, = —sin’ 6,
32 €
—;(l—sinzei):—z—sinzei
1 81
2 2
€ . g .
= —25in’6, =2 —sin”6,
8] EI 81
. €
sin® -2
8l
2
sin 6( ) €€, — ¢,
. &,(8 —¢&,)
San ei 2 1 2
81 82
. g, (g —¢,)
sin® 0, = R
(e,—€,)— (g +¢&,)
. £
sin® @, = —2
g +¢,
cos’0, =1-sin’0,
g te,—E, g
g +¢, . W

€ €
tan’0, =-2; tan’0, = [
81 81

o e
0,=tan”' |2
81

This is called Brewster’s angle at which there is no reflected ware when the incident wave is parallel polarized.
PROBLEMS ON UNIT -1V

Problems on Torque

1. A rectangular coil of area 10cm’” surrounded by uniform magnetic flux density of
B=0.6a, +0.4a +0.52a, carrying current of S0A lies on plane 2x +6y — 3z =7 such that the magnetic

moment of the coil is directed away from the origin. Determine (i) magnetic moment (ii) Torque (iii)
Maximum torque

Solution:-
Given Area A=10cm?,B=0.6a +0.4a, +0.5a,Wb/m>,I=50A

(i) Magnetic moment is



- 2a. +16a_—-3a
m=1Aa, :50(10x104)(#]

N/

3= (14.29£X +42.86a, — 21.435,)x 10°A.m?

(ii) The torque on the coil is

T=mxB
—4
= {(50)(]3—”0)(2% +6a, —3az)}>< [0.6a, +0.4a,+0.3a, |
C(50)(10x107)|
=2 6 3
6 4 5

=7.143x10™ [42£x —28a, — 452]

=0.03a, —0.02a, —0.025a,N.m

=(0.6a, +0.4a,+0.5a,)(50)(10x10™)
=3a, +2a,+2.52,%x10"

=30a, +20a, +25a, x10~
=43.87x10°N.m

2. A square coil is shown in figure in figure below is placed in the magnetic field of flux density

— a, +a s
B=0.05 L 'Wb/m
2
Solution:- 47
0.04m
a +a,
[=5A&B =005 = =S A
m=1IA
=5(0.04%0.04) >y
— 5x4x4x10 =8, o004m
T:mxﬁ

_ (8><103ax)>{0.05 At ayj X

NG

T =0.231a,mN.m

3. A solenoid 25cm long and of 1cm mean diameter of the coil turns has a uniform distribution winding of
2000 turns. If the solenoid is placed in a uniform field of flux density 2Wb/m2 and a current of 5A is
passed through the solenoid winding, determine (i) The maximum force on the solenoid (ii) torque on the
solenoid

Solution:-
Given /=25c¢cm=0.25m

d=1cm=0.0lm
I=5A N=2000 B=2Wb/m?

2
Area of solenoid loop = A =mr’ = % =0.25nx10"m*



(i) The force on the solenoid is
F=1/xB
F=BI/=2x5x%x0.25

=2.5newton/ unit

For 2000 turns, we have
F=2.5%200=5000N
For torque on the solenoid d is

T=BIA
=2x5%x02x10"* =7.85x10*N.m

For 2000 turns,

T=7.85x10"* %2000
T=1.57N.m

4. A circular loop conductor of radius 0.1m lies in the z =0 plane & has a resistance of SL. Given B = (.2
sin 10° t a, T. Find the induced emf & current.

Solution:-
Given B=02sin10’ta,Tesla, p=0.1m, R=5Q

Area of circular loop =np° =nx(0.1)> =0.01rm’

¢=BA
=0.2sin 10°tx0.017
=2msin10° mWb
g a0
dt

=2n[—cos10’tx10° x107]
g =-2mcos 10°t V.

e —2mcos10’t

k 5
I=-0.4ncos 10°t

Here, the negative sign shows current flow in opposite direction.

5. A 30cmx40cm rectangular loop rotates at 150 rad/s in a magnetic field of 0.06 wb/m?, normal to the
axis of rotation. If the loop has 50 turns, determine the induced voltage in the loop.

Solution:-

Given A=0.3x0.4m, N=50, w=150rad/s B=0.06Wb/m’

o= J.E(ﬁ = IBds cosO = Bcosej.ds

¢=BAcos0O



€= —N@ = —NE(BA cos0)
dt dt
d
=—N—(BA cos ot)
dt

= —Nu)[BA(—sino)t)]
=oNBAsin ot
=150x150%0.06x0.12sin90°
=75x6x12x107™* x10°
=75x72x107
=5400x107"

e=54v

6. Determine the emf denoted around a circular path at b = 0 with radius p =0.5m in the plane z =0 if (i)

B= o.mn{ﬂ]éﬂ B=0.1sin(377t)a,T
P

Solution:-
Given p=05minz=0

The E. M. F induced in a time varying fiels is

. ds

2|

EMF = —gj

s

Where ds = pdpdd paz
EMF=—[ %[o.1sin(377t)£z].[pdpd¢]£z

=-[fI3770.03771) p dp d§
S 0.5 21

=~37.7cos (3770) [ p dp [ dp

0 0

5 0.5
:-37.7cos(377t)[%] (o)

0

=-37.7cos(377t) {0'—225}[275]

Att=0, EMF =-29.59 v

(i) B= o.m{mt

]ép since 5,).51 =0and EMF=0
P

7. A magnetic core of uniform cross section 4cm’ is connected to a120 v, 60Hz generator as shown is
figure. Determine the induced EMF V, in the secondary coli.

Solution:-

Given V,=120v,N, =800 & N, =400



dt dt
V2 _ N2
v,ON,
v, =Ny =290 199
o' 800
V, =60v

8. An area of 0.5m2 in the z = 0 plane is enclosed by a filamentary conductor. Find the induced voltage,

given that B =0.65 cos 103t[ay—+azJT

NG

Solution:-

Given A =0.5m> B =0.65 cos 103t£ay +a JT

N

EMF:—j%B.ds ds=ds a,

= [0.65x10° sin103{ay—+az}ds 2,

2
650 . 4 650 . | 4
=—=sinl0’t | ds = —=-sin10’tx 0.5
Al A

EMF =229.81sin10°tV

9. Calculate the maximum emf induced in a coil of 4000 turns & radius of 12cm rotating at 30rps in a
magnetic field of B = 500 gauss.

Solution:-

1

p=0.12m, B =500Gauss;= 500 x 10OOOWb/ m? =0.05Wb/m?; N =4000

Given

® =27 X1ps
=2nx30=60nrad/s
EMF = g](v x B).dl
£

=B/vsin0

For maximum EMF 6=90°

% =Bvsin90°=Bv =Bpw

=0.05%x0.12x 607
=1.131V/m

For N turns,

EMF _EMF
¢

¥=4524V/m

xN=4000x1.131

10. A conductor 1cm in length is parallel to z — axis and rotates at radius of 25cm at 1200 rpm. Find the

induced voltage if the radius field is given by B=052,T



Solution:-

Given length £=0.01m, radius p =0.25m

Velocity = 1200 rpm & B=0.5a,T
_ 2mxrpm _ 27x1200

60 60
w=40nrad/s

For a rotating conductor in a stationary magnetic field, the induced emf is
EMF = [ (vxB)dl
Since the conductor is parallel to z- axis,

(ﬁ:dze_lz

EMF = I(pw d)><05ap)dz a,

j- p? -a,).dza,

0.01
:—40n;<0.25 _[dz

0

=-5n[z]," =-0.157
EMF = -157mV

11. A square coil, 0.8m on a side rotates about the x — axis at ©~ 80 rad/s

fig. find the induced voltage.
Solution:-

From the diagram, only two sides cut the magnetic field.

a=0.8m B=0.6a, w =80x

EMF = [ﬁ(v x B) dl

=vB/ sinO 0=t

am
For a square loop with sides a=0.8m, ¥~ - m/w

EMF = (%JBQa)sin 0

=mBa’sin®

=oBa’sin ot

= (80m)(0.6)(0.8)* sin (80mt)
EMF =96.46sin 807t

in a field

B=0.6a,

as shown in

12. A square loop of side 4cm with a resistor of 10Q on the side is placed in a uniform magnetic field of
50m T in the direction of x- axis. Calculator (i) the induced current at t = 1ms (ii) induced EMF at t= 3ms.
It is given that the square loop the axis of solution is perpendicular to the field. The loop lies in yz plane at

t =0.

Solution:-



Given

a=4cm=0.04

B=50x10"T

0=90°R =10Q

f =10Hz & 0 =2nf=20nrad /s

am
EMF = [f|(vxB)dl v ="
0 2

=vB/sin0
- (%)B(za)sine

=a’oBsinot
EMEF = (0.04)* x 201 x 50 x 10~ sin (207tt) = 5.03sin (207t)mV
EMF = 5.52 uV

_EMF _552x10°
R 10
p=0.552uA

EMF =5.03x10"sin (20 x107)
=55uV

v=45sin10°t a,

13. If the conductor mores with a velocity . Find the induced voltage is the conductor if

) B =0.08ay (i) B=0.08a, T

Solution:-

Given V=43sin10° ta,m/s B=0.08a,

EMF:j(va)dl
=4.55in10°t j (a,x0.08ay).dx ax

0.4
=0.36sin10° t [ (-a,).dxa.
0

=—0.365in10°(0.4)
EMF = —0.144sin10°t

(i1) Since the conductor is placed parallel the magnetic field, it does not cut any line. Hence the field is zero.



v
~<

14. The wire shown in the fig is in free space & carnes a current of I = 20 A. A 50cm long metal rod mores

at a constant velocity of v=>a;m/s find Vio .
Solution:-

Magnetic field line
Magnetic field line (into the page )
(out to the page )

B G)/ T QX B
O, Y
@ 20 A _»p ® TV
@ A\ W ®[ Metal rod ]
ON X

50 cm

Given V= 5a,m/s 1=20A

The magnetic field intensity by current carrying wire

H-—12 B=pH=tl g,
2np 2np

V,, =EMF = [(vxB).dl



20
= f[Sazx Hol a¢)(dp.ap)
o 2mp
—5“0120dp =5p,1 20
== [—==—"C[In(p)
i Jop pn L)
_—spolln(gj —5x4nx107xzoln(§j

o \70) o 70

V,, =25.06pv

15. A faraday’s copper (Cu) disc of 0.3m dia is rotated at 60 rotations / sec on a horizontal axis
perpendicular to the plane of the disc. The axis is lying in a horizontal fields 20 pT. Determine the emf
measured between the bunches.

Solution;-

d=0.3m,B=20x10"°T, ®=2xf =27(60) =1207rad /s

Given
_ 2
EMF = oBb
_ 2
_ —oBb b= radius =22 20,15
2 2
_ —120mx20x107° x(0.15)
2
=-1200mx107° x0.0225
=-2700mx107®
=-27muV

EMF = - 84. 82 MV

16. A Faraday’s Cu disc, 0.5m in dia, rotated at 1000rpm on a horizontal axis perpendicular to and thro
the centre the disc, the axis lying in a horizontal field 10mT. Determine the emf measured b/w the ????

Solution:-

= — _ -3
Given d=0.5m, v=1000rpm & B=10x10

=104.72rad /s

o 2nxrpm _ 2mx1000
60 0

—®Bb?

EMF =

~ —104.72x10%107 x (0.25)
2

EMF =-32.72mv

17. A conductor bar CD slides freely over two conducting rails as shown in fig. calculate the induced
voltage in the bar,

T 6. 2
@) If the bar is stationed at y = 10cm & B=5c0s10°t a.m Wb/m

_ — o _ — 2
(ii) If the bar slides at a velocity v=30aym/s & B=35a,mWb/m

TN n_ 6t < N\a 2
(i) If the bar slides at a velocity ¥~ 30aym/s & B=>5cos(10°t —y)a,mWb/m

Solution:-



EMF:—I%B. ds

0.1 0.08
= [ [ 5x107°x10°sin10° dxdy

y=0 0
=5%10%sin10°t x0.08 x 0.1
EMF =40sin10° tV

(i) For a sliding bar in a stationary magnetic field, the motional emf is

EMF = j(v xB). dl

= (véy X B;Z). dxa,

=-30x5%107 % 0.08
EMF = -12mV

(iii) For a sliding bar in time varying magnetic field, both transformer emf & motional emf an present.

EMF:—j%B.£+j(va).d_1

0.08 y 0
= II(5x10’3)><10"xsin(lO(’t—y)+ j [30a, x5x107 cos (10°t ) |
0 0

0.08

=400 cos (10°t —y) —400 cos10°t V
E =300sin10’t

_ : _ 7 F_
18. Given L =4sinotmA, o=4x10" s/m & & =1 ye " _ 10 rad/s. Find Id

Solution:-

I,=J.A=cEA

E:I_C
cA



I,=],A
P

ot

0
=—(E)A
at( )

= g[a_EJA
ot
OE

=gA—
ot

= SAQ(I_C)
ot\ cA

_gyg, A0l

T GA ot

_ 8.854x10™"7x1 0

T 4x10 ot

=8.854x107" x10cos ot x107°

=8.854x107" x10" cos ot x 10~
I, =8.854coswtnA

(4sinot)x107

J =5sin (ot —202)ay +cos (ot —20z)a,mA / m>

19. Given . Find volume charge density Py

Solution:-

aJ —
a, A, a,_-op,

x oy oz @&
. —0p
O+O+—sm(mt—202)x—20:7v

20sin(ot —202) = —Px
at

p, = [ 20 sin (wt—20z)dt

= _—20 —cos(ot —20z)
®

= gcos (ot —20z)c/ m®
o

20.16 7= (2yax +xzay +7°a,)sin10*tA / m> 0,t)

. Determine the volume charge density Pvjf Pv= Xy,
Solution:-

J=(2ya, +xzay +7’a,)sin10*tA / m>

Given
V)= —op,
ot
p,=—[(V.D).dt

=—_[(0+0+322)sin104 t
2
P, :3%005104t+cO

Given Pv=0atz=0



2

P, :0:%005104t+co [z=0

p, =0
p, =0.3z%cos10* tmC / m’

21.1f the £~ 10cos(wt —By)a,v /m, determine . If the same field exist in a medium, whose condutinty is

3 -1
5x10°QQ" /cm find Jc.

Solution:-

D=¢E=¢g E
=8.854x107 x1x10cos(ot —By)a,

D =10x8.854x10" cos (ot — By)a.
=8.854cos(wt —By)a,Pc/m’

oD 0

J =—=—[8.854cos(wt— 52
=8.8540 sin(ot—Py)a, pA/m’
J.=cE

=5x10"x10 cos (ot—Py)a, A/cm
=5x10° x10 cos (ot—By)a, A /cm?
=5x10°x10 cos (ot—By)a, A/m>
¢=20cm, ¢, =8 & 6=10° s/m

22. A co — axial capacitor has the parameter a = Smm, b = 30mm, Af

2. 6 N
Jo= (gjsm (10°t)apA/m determine (i Ic (ii) Jd (iii) Id

Solution:-

2 - ~ ~ ~
. J.=|Z |sin 10°0a,A/m a=5x107 b=30x10" /=02m & =8 o=10"s/m
Given c (GJ ( )ap r

(i le= [3. 4, [ds = pd ddza,

= j 2 Gin 10°1) a, pdodza,
P

210.2
= [ [ 2sin (10° 0 d¢dz

00
=2sin(10°t) [0.2][27]
=0.8x3.14sin(10° t)

I, =2.512sin(10° t) A

b 0o

(i) = 5 25(813)



_Q[EJ_C]_@%
ot\ o G ot

=ﬁﬁ(zsin (10%]5,)
ot\ p

=88 10° x 2c0s(10%)1
op
_ 16x8.854x107"% x10°
px107°

cos (10%)ta,

6 —_—
5, = 141.664cos (10 )tap A/ m?
p

_ld1.064 28.33x10° A/ m’

dm0 50107

(i) I, = [T, d,

=U‘j141'664cos 10° O)a,. p ddpdz a,

0227
=141.664 | [cos (10° ) dp dz

00
I,=178.02 cos (10° t) A
23. Given A=0.05m*> d=2x10"m ¢, =56=5%x10" s/m v=>5sin10" tV. Find L.

Solution:-

107

VoS0 L o sh0sin107 tv /m

4~ 2x10

J, = oE=5x107(250sin10" t)=125x 10 sin10” A/m’

eOE 0
J =——=¢ge —(2500sin10" t
a0 at( )

=8.854x107"*x5x2500c0s10” tx 10’
J,=1.11cos10" tA/m*
I, =J,A=1.25sin10"tx0.05 = 0.06sin10” t A
I,=J,A=1.11cos10"tx0.05=0.056cos 10" t A
I, = 1.2 + I2 =4/(0.06)* + (0.056)* = 0.08A
I, 0.08 0082

"B TE b

I =0.04x2 =0.057 A

24. A co — axial capacitor of length ¢ = 6cm with ¢ =9. The radii are 1cm & 2cm. V=100 sin (120 nt),
what is Id?
Solution:-

Given v=100sin(120wtt) v, £=6cm, £€=9,a=1cm & b=2cm



:U']é Lgp .(p dp dz gp)

0.06 2n
- 801? x100x1207cos (120m)t | dz [ d
ln(A) 0o 0
1
:gxlO_9 x9x100x1207 cos (1207) tx0.06x27
n
=107 x10% x60mcos (120m)t x6x 107

I, =360mcos(120m)t n — A

Problems on boundary condition for an EM field

1) Region 1 is defined by x < 0 & p , =4, when as region 2 is defined by x>0 & pn_, =8.If
Hi =8a, +3a, —6a, A/m for a source free boundary, determine 72 & its magnitude.

Solution:-

Given Hi =8a, +3a, —6a, A/m & the normal components are
H, =3a, —6a, & H, =8a,

For a source free interface, Hu = Hi» & B,, =B, , therefore, the tangential & normal components in region 2

(x>0) are

— - - 4 -
Ho=3a,-6a, H_ =iy - S0 Hyy=da,

2393
H: =Ho+Ha
=4a, +3a,—6a, A/m
H,|= 4 +3* +(=6)* =61 =7.81 A/m

2. A 3d space is divided into region 1 (x<0)& region 2 (x>0) where ¢, =0, =00 & Ei =2a, +4::1y +6a, V/m.
Find E: & D; assume g, =2&¢,=4

Solution:-

Ei=2a, +4ay +6a, v/m
E, =4ay+6a, & E , =2a,

D, =¢,, E, =2¢,(44a, +6a,)

E,=E, &D, =D,
- - 8rl 2
E[z :4ay +6a, Enz =—E; EnZ :Z(zax); E“z ax

nl?
r2

Ez = EnZ + Emz
E:=a, +4a,+6a,
D,=¢,E,=¢4, E:

=4, (a, +4a, +6a,)

D, =¢,(4a +4a, +6a,) ¢/m’

3. Given B, =1.2a, +0.8a, +0.4a, T in region 1 as shown in fig. Find H. & the angles between the field

vectors & a tangent to the interface



Solution:-

VA
Bi=12a, +0.8a, +0.4a, T Region 2 (i, =2)
- — — r2
B, _1.2a,+0.8a, +0.4a, 9
H]_H_1_ 1,(15) ///////////////
Region 1 (u, =15)
—2 _ _ _

H, = ! (8ax +5.33ay +2.67a,) A/ m

Mo

107 - - 107 - f)
H, = (8ax +5.33a,)H,, = (2.67a,) A\

Mo Ho

-2 _ _ _ _ -2 _

H, =——(8a, +5.33a,) Ha =L Hu= 2,19 5 672,)

Ho Mo 2y,
H,=H,+H,

107 - -

=——(8ax +5.33a,+20.03a,) A/m

Ho

0, =90°-a,
B,—a, (1.2a,+0.8a,+04a,).a,

cosa, = =

Bl 1.2 +08) +(0.4)
cos a, =0.27

o, = cos™ (0.27) =74.33

0, =90— o, =90—74.33=15.67
fan 6 _ o

tan 0, p,

1
tan6, Mo on 0, :Estan (15.67)
rl

tan0, =2.104
0, =tan™'(2.107) = 64.58

4. In region defined by z < 0, p,, =5& H, = L(().2ax +0.5a, +a,)A/m’ find H, if ©=30°

Ho

Solution:-

. 1
Given p, =5& H, =—(0.2a, +0.5a, +a,)A/ m’
Ho



oLt
4tx107
=10*(15.92a, +39.8a, +79.6a,)A /m
H, =10*(15.92a +39.8a,) H,, =10*(79.6a,)
Hi—a, 10°(15.92a, +39.8a, +79.6a,)
| 10°15.92) + (39.8)" + (79.6)°
cosa, =0.88
Q, =cos™'(0.88)=28.36°
0, =90— 0, =90—28.36 =61.64

(0.2a, +0.5a, +a,)

cosal, =

tan 0, p, tan 6, tan 61.64°

R l"LrZ = Mrl = 5 X o

tan 6, W, tan 0, tan 30

urZ = 16

Bnl = BnZ i'e’ H’rlHnl = l"lr2Hn2

Ho=Hopg = 3 10*(79.6)a, = 10*(24.87a,)
“rZ 16

H, =H, =10*(15.92a +39.8a,)
H, =10*(15.92a, +39.8a, +24.87a,) A/ m

S.Region1,z <0 has pn, =35 &region2,z>0has p,=10. Near the origin

Bi =2.4a, +10a,T & B, = 25a, +17ay +10a,T. If the interface carries a sheet current, determine its density

at the origin.

Solution:-

Given p,=3.5B:=2.4a+10a,T region 1

u,, =10B, =25a, +17a, +10a,T region 2

H = ! B, = (2.4a5 +10ay)
Mok 3.51,
H, = L (0.692, +2.86a,)A / m
Ho
1 — I8 - -
H, = B, = (25ax —17ay +10a,)
HoH,y 10y,

H, = i(z.séx ~1.7ay +a,)A/m

Mo

k=(H,—H,)xaln12

= i(0.69£X +2.86ay —2.5a, +1.7ay —a,)
Mo

_ l(_1,515x +4.56a, —a,)xa,

0

= i(—1.51(—ay) +4.56(a))

Mo

-7
_ (1.51a, +4.56a )x10 A
4

=1

/m

Problems in potential functions

1. If the related scalar electric potential v-(x-Vot) & the vector magnetic potential A= [1 - t}_lx where
v0

v, is the velocity of propagation. Then determine (i)V.A,(ii) B,H,E&D (iii) Also STV.A = ¢, % in free

space



Solution:-

Given V=x-vt &A:[i—tjax

Vo

0A
() V.A=%+—y+%

ox oy Oz

Vo Vo
a, a, a,
i)y B=vxa=| & 2 9
0x Oy oz
X ¢ 0 o
V()
=ax(O)—ay{O—Q(L—t]}az[m—(l_tﬂ
Z\ Vq X\ V,
B=0; H=0
E——VV—%
ot
ov o x
=——a, ——|——t|a,
Ox ot v,
o _
=——(X—vVv,t)a, +ax
ax( 0) X

(i) V=x—v,t

@—g(x—v t)y=—v
&t ot 0 o

v
HoBo —~ = Vo X Ho&g

ot
1

ov -1
g,—=—=V.A
lflooat vi

ov
VA=—ng,—
l”‘ooat



UNIT -1V
MAGNETIC FORCES AND MATERIALS
State and explain the Lorentz force equation for a moving charge;-
Consider that a charged particle is moving in a magnitude field of flux density B. It experience a force given by
F=Q(VxB — (1)

The force is proportional to the product of the magnitude of the charge Q, its velocity V & flux density B & to
the sine of the angle between V and b. The direction of the force is perpendicular to both V and B.

F=QvBsind — (2)
The electric force on a charged particular in the electric of intensity E is
F=QF — 3)
The force on a moving particle due to combined electric field and magnitude field is obtained
F=Q[E+(vxB)]
This force is called Lorentz force.

Obtain an expression for the force between two parallel conductors

Consider two straight, long parallel conductor P and Q separated by a distance d. Let I1 and 12 be the currents
flowing in conductors P and Q.

F] F2 Fl FZ
—>  — -« —
Il 12 Il/ \ IZ
& < N
d d
P 0 P 0

Consider a conductor P produces a magnetic field whose flux density is B at conductor

_ pl,
2nd

The force on conductor Q due to P, F1 = B.
Where L = length of the conductor

nL L/
2nd

E =

If the current is flowing in the same direction, then there is force of attraction
Fz = F]
If the currents are flowing in opposite direction, then there is force of repulsion

F,=-F

2 1
Fz — _HIl IZKN
2nd



If the conductor is infinitely long, the force per unit length is,

L LN
2nd

Explain the magnitude moment Torque on a loop carrying a current I:-

When a current loop is placed parallel to H, force at on the loop that end to rotate it. The tangential force
multiplied by the radial distance at which it at is called torque.

Unit of the Torque — Newton — metre (N — m)

Consider the rectangular loop of length ‘L’ and breadth ‘b’ carrying a current I in a uniform magnetic of flux

density B. F

0wt

£ Axis of rotation

The force acting on the loop, F=BI L sin 6
If the loop plane is parallel to the magnetic field total torque on the loop is T.
T =2 xTorque on each side
= 2 xtangential force x radial distance
=2 x BIL x b/2
T =BIA

If the loop plane makes an angle Q with respect to the magnitude flux density B, the tangential component of the

force is F=Fcos 0.

Total torque on the loop, T = BIA

Magnetic moment, m= IA A/m’
T=BIAsin0

=mBsin6

T=mxB
T . . .
m= B [If torque is maximum, i.e Q = 90°]

Magnetic moment:-

Magnetic moment is defined as the maximum torque on loop per uniform magnitude flux density



T
m=—
B

In case of magnitude dipole, magnetic moment is given by m= Qm . L
Qm = charge ; L =length

In case of current loop m = IA

I = current; A = area of the loop.

Detail about the scalar and vector magnetic potential:-

The potential can be of two types

a) Magnetic vector potential (or) vector magnitude potential (A )
b) Magnetic scalar potential (or) scalar magnitude potential (Vm)

(1) magnetic vector potential:-

Scalar magnetic potential exists if there is no current enclosed (i.e) D‘jH.dl =0 . If current is enclosed the

potential depends upon current element (vector quantity) is no more scalar but it is a vector quantity.
Since the divergence of vector is a scalar the vector potential is expressed in curl.
Let ‘A’ be any magnetite vector potential and vector potential is expressed in curl.
VxA =B
Talking curl on the both the sides
VxVxA=VxB — (1)
By Identity,
VxVxA=V(V.A)-V’A — (2)

VxB=uJ

VxB=V(V.A)-V?A

uJ=V(V.A)-V’A

for steady d.c, V.A=0

- =V’A

VZA a +V2 A ag+ V2 A, a,=—p(aJ, +ay ], +a.],)

Equating,
VA =-u],
2 _
VEA, =-u],
VIA, =-u],

This is in the form of poisson’s equation.

In general, magnitude vector potential is expressed as,

_ kol
A=l o

AX:L (]—dev; AV=i ]—V v; AZ=i (LJdV
4n\r 7 o4ni\r 4\ r

r = distance between current element and the point at which A is the to be calculated.



Scalar magnetic potential:-

Ampere’s law states that the line integral of the field H around a closed path is equal to the current enclosed

ng. di=1
A

If no current is enclosed (i.e ) J =0

D‘jH. dl=0
A

Magnetic field intensity can be expressed as the negative gradient of a scalar function

H=-VV,
Where V_ = scalar magnitude potential.

vV, =-IH.dl
This scalar potential also satisfied Laplace equation
In free space VB=0=p, VH=0

But H=-VVm =y, V.(-VV, ) =0
HO V2\/111 = 0
VvV =0

Force on a differential current element (or) Force on a wire carrying current I placed in a magnetic field.
The force exerted on a differential element of charge dQ moving in a steady magnetic field is given by
dF=dQ(Vx B) — (1)

The current density ] can be expressed as

J=p, V -2

The differential element of charge can be expressed as
dQ=p, d&v =)

Sub (3) in (1),

dF =p, dv (VxB)
dF=(p,VxB)dv — (4)
dF = (JxB) dv

Relationship between current elements

Tdv=12ds=la
@zfdvxgjﬁzlcﬁxﬁ

Integrating the above F =1/ xB

F=BILsin®



Define inductance field in magnitude materials
Inductance:-

Any conductor carrying a current produces a field around it. The lines of magnetic flux produced by a current in
a solenoid coil form closed loops. If the current in the coil is alternating with respect to times, the flux linked
with the coil also varies.

The values of the flux depend on flux density which in turn depends on the current flowing through it.
If there are N — turns in the coil, the total flux linked with the coil is called the flux linkage ( A )
A=N¢
Due to variation of current, there will be variation of flux linked with the coil which in turn induces an emf.

_-dA di
di ‘dt

do ) di
&= —[Nd—‘fjd% [+ A=N¢]

Where i = instantaneous value of the current i—A or qu) represents the of charge of flux linkage with respect

i di

to current. This quantity depends upon the geometrical configuration of the given device and is referred to an
inductor and the device which possesses this properly is called Inductor.

Derive the expression of inductance:-

The inductance is defined as the ratio of total magnitude flux linkage to the current through the coil.

Thus, L=d—A: N d¢
di di

If the flux ¢ varies linearly with i,

The negative sign indicates that the emf is set up in such direction so as opposite the changes in current
e=-V

V:+Ld.1
dt

The unit of an inductance is Henry. The inductance of coil is said to be 1Henry, if when current in the coil
changes at a rate of 1 ampere / second, an emf of 1 volt is induced in it; or if the flux linkage with the coil
changes at the rate of 1 wb turn ampere.

Describe the equation of solenoids
Solenoids:-

Let b is the flux density and A, the area of cross section of the solenoid, then the flux through the solenoid is
¢ =BA and the flux linkage A =N¢=NBA

Inductance is, therefore, given by

= — (1)



We know that, for long solenoid, B = Ho% —(2)

Sub (2) in (1), we get

NIA
L=N|p,— |—
(Ho €jl
2
L=# Henry

Derive the expression of inductance in a Toroid
Inductance in a toroid:-

When a long solenoid is bent into a circular closed on itself, a toroidal coil is obtained. If the toroid has uniform
windings, the flux is confined almost interior & the flux at the external of the coil is zero.

Let I be the current flowing in the toroid, B the magnetic field produced at every point of circular path of radius

R. _ kD

Since it has ‘N’ turns

B nNI
2nR

By Amperes circuital law,

fjB.dl =uNT
L

Bj dl = uNI
B.27R = uNI
B= HNI a
27R
NuNI |,  uNIA

Flux linkage, A=N¢=NBA=—"—_A=
27R 27R

Since toroid is a circular section, A = nr?

Ao uNIr?
2nR
1A uNIrr?
1 2nRI
L= pNr* Henry

Derive the expression of Toroid of rectangular

Toroid of rectangular cross section:-



Consider a toroid of rectangular cross section of inner radii ‘d’ & outer radii ‘D

Let N be the number of times

< d >
/B dl = NI
B. 27r = uNI < D =I
_ uNI
2nr < >

Now consider a rectangular strip of width dr and height h at a distance r from the centre.

dA =Nd¢ = N.BdA

an =NEN g gy

r
_ uN?lh ¢ d pNIh D
A= 2nr -[ g%i

L= A = LlogD/ Henry
I 2n d

Derive the expression of inductance of co — axial cable
Inductance of a co- axial cable:-

The magnetic flux density B at any radius ‘r’

g M
2nr

dA = Bxdr

ar=t g
mr

2
jdA_A_lznr.dr

D

I
L [loge r]d

= log% D = outer diametre; d = inner diametre.

_A_M D
L—T—z—nloge AH/m




M 100 D
L_znlog‘?A

4nx107
- D,
- 2.303 log,, A

=2x2303x107 log,, D/
=4.606x10 7 log,, D/}

=4606x107 log,, D/}

L = 0.4606 log,, D/ mH / km

Derive the expression of inductance of a two — wire tx line

Inductance of a two wire transmission line:-

A two wire transmission line is as shown in figure whose conductor radius is d & the spacing between centre iss

R. e
[€©)

» S

«— -

At any radius r from one of the conductor, the flux density B = W

2nr

R R I I
A:IdA:Z!B.dr:Z.Eidr:ﬁlogc(%)

Lo % - ZL;X 2.303><10810(%)

4606
==5—x10 "log,, R/ =0.9219 log,, B/ uH

Derive Energy stored in a magnetic field:- An inductor stores energy when a current through a inductance coil

is gradually changed from O to I. the energy change of it is opposite by the self induced emf produced due to this
change.

1
W= IP.dt Joules
0

P=VI

v 4
dt
1
W:juﬂdt
P at

W= lLIZ Joules :lAI = 1
2 2 2

Energy density:-

Let us consider the inductance of a solenoid



L=
¢
w=lrp
2
ZEHNZAF
2 ¢
1 (NIY
=—u/—1 9
2“(€j
1
W ==-uH?39
oM
W o1 .,
o=—=—pH
g 2"
1
- —BH
2B

2
o =—— Joules
2

Derive the mutual inductance of a coil
Mutual inductance:-

In the case of an isolated circuit, the flux produces by the current links only with that circuit. The corresponding
inductance representing the flux linkage per unit current is sometimes referred to as self inductance.

Mutual inductance is the flux linked in one coil due to the current in the second coil.

Let us consider the flux linking one of the n circuits 1,2,......n say R™ circuit.
=2 Ay
j=1
= total flux linkage with the R™ circuit due to all the n circuits composing the system.

The e. m. f induced in the R™ circuit may be written as

dA, A&
e ;AR’
_ Z“:dAkj
~ " dt
dA, _dA, dI,
dt  di dt

dA, . . . N Cth o
Where K]" denotes the ratio of flux linkage with R™ circuit with respect to the current in j™ circuit, has the
j
dimension of inductance is therefore, referred to as mutual — inductance

M,. = ldAki k=#j
L T

E. M. F induced in the R™ circuit

dl.

]

f= My gy

If Kk =j



dA,  dA, dI,
dt — di, dt
dA,,

dI,

=L,.. (self inductance of the circuit)

Consider a toroid with two windings P and S the winding P has N, turns & is called primary winding and s with
N, turns is referred to a secondary winding.

Flux linkage with winding P is

LA
Ay =N, (BA)=p,N,N, ——
fm

Self inductance of coil ‘P’ is

ﬁ _ HoNfA

LH:I

[ /m =mean length of magnetic path = 27R_ ]

1 fm

Mutual inductance of switch P

A 1oINLNL A
M,, = I21: OZ 1
) m
folll
82:_M21d7t1

Self inductance of coil ‘S’ is

L22 — HOE\T;A
m

Mutual inductance of P with S

1IN, NL,A
M12: 0 [1 2
m
M,, =M,

M, =M, =L, L,
L,=L,L,=L;M,=M, =M
M*=L,L,

M=,L|L,

Suppose R; times the flux produced by I; links with secondary, then R, times the flux produced by I, with the

secondary
M N, M
L, NNM, o,
11 1 22 2
M21M21 =k.k M’ =k?

Derive a Boundary condition of magnetic field
Magnetic Boundary condition:-

Figure shows an interface between two magnetic media with permeability’s p, and p,. Consider a Gaussian

surface and a closed path to the boundary between the media (1) and (2).

mB.nds:O

If B, and B, are the magnetic flux densities in media (1) and (2),

B,.n,As+B,.n,As=0



AN

O
+
Magnetic A
medium (), 24 M
e

He

Magnetic
medium (2)

Where As is the pill box surface and (n1 and n, ) are unit outward normal.

(B,-B,)n, =0
B.,-B,=0
B, =B.,
pH =0H,,
Hy_p
Ho,

Applying Ampere’s circuital law

U‘jH.cu =1

H, A/ —H,Al =k.Al
Htl - HlZ = K

If sheet current density is zero,

Hll = th

1 _ Pe
My My
By _m
B, W

Discuss about the nature of the magnetic material nature of magnetic material:-

Magnetic material are classified as

@) Dia magnetic materials
(i1) Para magnetic materials
(iii) Ferro magnetic materials

@iv) Anti Ferro magnetic materials

(v)  Ferri magnetic material

Dia magnetic material:-

These are materials which do not hare dipole moment in the absence of an external applied magnetic field. In
these materials, magnetisation is opposite is opposed to the applied field, p <,

e.g:- Silver, Lead, copper, water, Gold, Silicon.



Para magnetic materials:-

1. Permanent magnetic dipole moment
2. In these magnetisation is same dr to the applied field
3. w21

e.g:- air, aluminium, potassium, oxygen.
Ferro magnetic materials:-
1. In these materials, the dipoles interact strongly and all tend to line up parallel with the applied field.

2. p,>>1

e.g:- Iron, Nicolet, Cobalt
Anti Ferro magnetic materials:-

1. In these materials, the adjacent dipole aligns in anti parallel fashion to the applied field.
2. Magnetic moment is zero
3. Present in only temperatures

Ferri magnetic materials:-

1. Show an anti — parallel alignment adjacent atomic moments
2. Large increase in flux density

Define magnetic dipole moment, magnetic susceptibility
Magnetic dipole moment

m=Q,_/
Consider a far magnet of length € and area of cross section A.

Magnetisation is define as the net dipole moment / per unit volume

M=ol
VoAl
m=23,
A

Magnetic susceptibility (Xm)

B =p,(H+M)

M
:HOH(]‘ + ﬁ]

B ZHOH(l + Xm)

X, = % = Magneticsusceptibility
B=pou, H
where p =1+X_

Explain the magnetisation curve of B — H curve
Magnetisation curve or B — H curve:-

B increase linearly with h. Till point A, it is called as easy magnetisation region, & Beyond a, it is hard
magnetisation.



Hard
magnetic

< Maximum

Hx

Easy

magnetic

_> H
Hysteresis:-
A5
M o Initial Magnetisation
Br i
curve
-H < »H
-HC HC
-Br

1) On increasing the value of H to saturation & then decreasing, B decrease less rapidly.
2) When H = 0, B # 0 called ass residual flux.

3) To bring B =0, it is necessary to apply a field H in the negative direction H = -Hc is called the coerctive
force.

4) Then B = -Bc at H = +Hc.

This curve is called the hysteresis curve.

Explain in detail about polarization and its types?
Polarization:-

Polarization of a uniform plane wave refers to the time varying behaviour of the electric field strength vector at
some fixed point in space.

Consider a uniform plane travelling in z — direction with e and H vectors lying in the x- y plane.

If Ey = 0 and Ex is present, the wave is said to be polarized in the x — direction. If Ex = 0.Ey = is present, the
wave is said to be polarization in the y — direction.

(i) Linear polarization:-



If both Ex and Ey are present and are in phase, the resultant electric field has a direction at an angle of

tan‘( % ) . If the direction of the resultant vector is constant with time, the wave is said to be linearly

polarized.

E4 E

yp--- - - - - - - - - — -

E= B +E

(i) Circular polarization:-

If Ex and Ey have equal magnitudes and a II phase difference, the locus of the resultant ‘E’ is a circule and the
wave is said to be circularly polarized.

If Ex and Ey have same magnitude Ea and differ in phase by 90°.

The resultant electric field in vector form is
E=a.E, +ja,E,

The corresponding time varying field is
E, =£_1an cosmt —z_lyEa sin ot

The component are

E =E, cosot E, =-E, sinot

E; +E; =E]

The equation shows that the locus of the resultant e is circle whose radius is Ea.

E
E

a

E

X

(ii) Elliptical polarization:-

If Ex and Ey hare different amplitude and a II phase difference, the locus of electric field is an ellipse and the
ware is said to be elliptically polarized.

Let Ex has magnitude A and Ey has magnitude B and differ 90° in phase.
The resultant electric field in vector form
E=a.A+ja,B

The corresponding time carrying field is



E =axAcos ot +ayBsin ot

The components are

E =Acosot& E =-Bsinot
E E
X =cos ot & —L=-sinot
B
E> E’
|
A A?

The equation shows that the locus of the resultant E is an ellipse

Fig:- Elliptical polarization
Derive the reflection by a perfect conductors
Reflection by a perfect conductor:-

When the electromagnetic wave travelling in one medium strikes upon a second medium,, the wave will be
particularly transmitted and partially reflected. Its elepends upon types of wave incidence. The types of
incidence are normal and oblique.

(i) Wave incidence normally on a perfect conductor:-

When the plane wave is incident normally upon the surface of a perfect conductor the wave is entirely reflected.
Since there can be no loss within a perfect conductor, none of the energy is absorbed.

/ :
As a result, the amplitude of E and H are the same as in the reflected wave and differ by n.1ie, E, =-E

r

o .. Fig (1) » Normal incidence
Let the electric field of incic

Ee™

Since attenuation constant o =0 the propagation constant y = jf vy=o+jp & a=0 .y=jB
~ipx

Incidence wave is E.e

+jpx

Reflected wave is E.e



E,(x)=Ee ™ +E "™
But E, =-E, = E (x)=Ee ™ -Ee"™

E,(x) =E, [e’jﬁx - e*jﬁx]
--E, |:e+.iﬁx _ eaiﬁx:|
E,(x) =-2jE;sinBx

Expressing in time variation,

E.(x,t) =—2jE, sin Bx e/
=R_ [—stin Bx[cos ot + jsin cot]]
E.(x,t) =2E,sin Bxsin mt

The above equations show that the incident and the reflected waves consider to produce a standing wave does
not progress.

To maintain the reversal of direction of energy propagation, H must be reflected without reversal of phase. So
incident Hi & reflected Hr are of same phase

H,(x)=H,e ™ +H "™
H,(x)=H (e+jBx n e—jBx)
=2H, cosPx

If Hi is real,

H, (x,t) = 2H, cosx ()
H,(x,t) = 2H, cosfx cos ot

The equation of E and H shows that E and H differ by % in phase.

(iii) Wave incident obliquely on a perfect conductor:-
When a wave is incident obliquely on a perfect conductor, it is necessary to consider two spherical easer.

Case(i):- The electric field vector is parallel to boundary surface (or) perpendicular to the plane of incidence.
This is called horizontal polarization.

Case(ii):- The electric vector is parallel to the plane of incidence. This is called vertical polarization.
Horizontal polarization:-
E is perpendicular to the plane of incidence.

Let the incident and reflected waves make angle 6, =6, =6 with z — axis.




The incident wave is expressed as
E,= Eie_jﬁa'r
For the normal of the incident wave

nr=x cos%+y cos(%—6)+zcos(n—9)

=ysin0—z cosO

_ —jB(ysin 6—zcsob)
Ein - ]—Eie
The reflected wave is expressed as

_ | a-iBOD
Eref _Ere

nr=x cos% + ycos(% —6)+ zcos0

=y sin®+zcosO

But E ; =-E,
The total electric field

ET = Ein + Eref
_ Ei [e-jﬁ(ysine-zcme) _ e—j]}(ysin6+zcose):|

=E [e—jﬁysin ee+j[izc059 _e—jﬁysinee—jﬁzcose]
i

—E [ej]}zcose _e—jBLcoseJe—jBysinQ
i

=2jE, sin(Bzcos0)e”’ By y

Where [3:9:—:—
v

B, =BcosO; B, =P sinO.

21 27 A

The velocity in ‘z’ direction A, =— = =
B, Pcos® cos6

The velocity in y direction v = - m
" B, Psin®
Y% ®
V. = V=—
¥ sin@ { B}
A, = L
sin®

Vertical polarization:-

The electric field E is parallel to the plane of incidence

»
»

Perfect conductor




The incident wave is expressed as

_ —jB(ysinB-zcos0)
H, =He

— —jB(ysin0+zcos0)
Href - H]'e
Slnce Hiﬂ :Hrcf

HT = Hin + Href
— Hi [e—jﬁ(ysin 6—-zcos0) + e—jﬁ(ysin 6+zcos 9)j|
— Hi |:e—j[iysin9 (e—jﬁzcose + e—jﬁzcose) ):|
=2H, cosPzcosfe PV’

H, =2H. cosp, ze ™

Where B, = cos6; B, =Psin6

Derive the reflection by a perfect dielectric
Reflection by a perfect dielectric:-

When plane electromagnetic wave is incident on the surface of a perfect dielectric, part of the energy is
transmitted and part of it is reflected. A perfect dielectric is one with zero conductivity, so that there is no less or
absorption of power in propagation through the dielectric. Consider two cases.

@) Wave incident normally
(ii) Wave incident obliquely

(i) Wave incident normally perfect dielectric:-

Consider two perfect dielectric media separated by a boundary as shown in fig. Let €, and p, are permittivity ad
permittivity of the medium 1 respectively. Let €, and p, are the permittivity and permittivity of medium 2

respectively.

Let E1 be the electric field of incident wave, Er be the electric field of reflected wave and Et be the electric field
of transmitted wave

m= B &T]z: N
ug] \ng

E.
vy M
Medium 1"
A Er €
Medium 2 2
S2
vE,

E, =nH,

El’ = _nl Hr
E =n, H



H +H =H, & E,+E =E,

Ho="tp = gm =t
ot n, n,

H,=H,+H, =—(E, ~E,)

n

E 1

— = Ei_Er

n, rll( )

E+E 1

——— =—(E,-E,

n, Th( )

nE +nE, =n,E, —n,E,
(n,+1,)E, =(n,-n,)E,

E — . ..
Ze TN Reflection co — efficient

E m,+nm,

E, E +E E
Also, =t =—"—-"L=1+—"
E E. E

i i i

:1+le_111

n, + 1M,

E_ 2n,

t

= Transmission co — efficient
E. m+n,

Similarly for magnetic field,

H__E
H E

_ _|:n2 - :|

n, +n,
H _n-nm Reflection co — efficient
H1 n] + nz
Also

H _mE
H, n,E

R &I: 2n, jl

N[N+ M,

5 = m, Transmission co — efficient
H n-n,

n = /b and n, = ) W=, =H,
8l 82



E _\& Ve

LT [ Y
81 g2
I

E_e a _ya-{&

L \/EJF\/Q
€ €,

E_Ja -y

E, J;+J§

. 2
Similarly, = M
i NN,
Ho 1
o R N
S
o, b e
81 82
E,_ 2y¢
El 8]+\/g
H n-n,
H. m+n,
Ko |Ho
81 82

¢ +
2 [Ho
H_ 2n _ €
H n+n, Ho o [Ho
"C‘I 82

(ii) Wave incident obliquely on a perfect dielectric:-

When a plane electromagnetic wave is incident obliquely on the boundary, a part of the wave is transmitted and
a part of it reflected, but in this case, the transmitted wave will be refracted. i.e, direction of propagation will be

changed.

A
Ky
€
0,1 6, m
0 M,
€
M,




When the wave is incident obliquely at an angle of 8, with normal part of the wave reflected at an angle of 0,

in the same of 6, in second medium.

By snell' law,

sin@;, v,

sin 0, - v,
1 1
vi= vV, =
VHE VH28,
sin®, \/uzaz
sin 6, (e,

V1= Velocity of wave in medium 1

V2 = Velocity of wave in medium 2

Since p, =p, =p,

sin@; g,
sin@, g
P =P +P,

2

The power / unit area = ExH=EH sin% =EH= E
n

2

E,
p; =E,H,cosB, =——cos 6,

M
E 2
p, =E,H,cos0, =—-cos 6,
M
E 2
p, =EH, cos6, =—cos 6,
M,
2 2 2
E—icos 6, = E, cos 0, = E—‘cos 0,
ut uh 0,

By law of reflection, the angle of incidence is equal to the angle of reflection

6, =0,
.2 E 2 E 2
——cos0; =—-cos0, + ——-cos6,
M M UP!
) E’
&SQ’[EIZ —Eﬂ:—‘coset
uh M,

Dividing by E;” on both sides

cosO,(, EZ) 1E!
n (1—Ej:n—E—;COS6t
1 i 2 B

_Ef _n E’ cos®,

- =T =
E; m, E cosb,
E’ 1 n,E; cos0,

E_iz n,E] cos6,



n,=[>2 [ =, =1y

Eg 1 \/gEgcosel
E; \/gEi cos 0,

Horizontal polarization:-

In this case, E is perpendicular to the plane of incident and parallel to the reflecting surface,

E +E, =E,
1+E=E

E E
E_zzl_\/g E, | cos,
E; J; E, ) cosO

2 2
E;: _\/Z 1_‘_Er cos B,
E; E, ) cosO,

1_E: €, cos0, +E«/€cos&
E, \/;cos(%i E; \fg, cosb,

Er_\/acosei— €, cos 0,
E, \/;coseﬁ\/gcosel
\/gcosel: €,4/1—sin”0,

But sin0, \/5

sin®, ,sl

.2
. g sin” 0.
sin’ @, = ——1
82
= 2
€ sin“ 0
1,820089[2 g, Jl-—1—

€,

= /&, —&sin’ 0,

r

Substituting this value in

i



)
E:Jsl cosei—«/%—slsm 0,
E; e cosb, +\/s2 —¢g,sin’ 6,

Reflection co — efficient is given by

’s .
cos0, — [~2 —sin® 6,
E €

E, € .
" cosO, + [~2—sin’0,
€

Vertical polarization:-
In this case, E is parallel to the plane of incidence.

(E, —E,)cos6, =E, cos,
_E_E s,
E, E, cosb,
E

E _ 1_& cos 0,

Ei E, Jcos 6,

\/gEzcose

\/_E cos 6,
E_f_1_£ _Eo coszeixcosel
cos® 0, cos 6,

bt

E, ) cos 6,

E E «/82 E 2cos 0.
l——t || 14— = 1— == i
E, E, ng E, ) cos 6,
1+ E _ \,82 {1_£Jcos 0,

E, Jcos 6,

._.

€, cos 0, 1 €, cos 6,

{ \/_cose \/g_cosel_
\/_cose +\/gcos6 :\/gcosei—\/acosel
\/_COSG \/acose‘

\/gcosﬁ \/—cose
\/gcose +\/_cos(9

cos 0, =+/1-sin’0,

mm m|m m|ﬂm

E, & cos0 - g (1-sin’0, )

E JJe, cos 0, +\/e1 (l—sinzel)

sin O, \/g

sin 0, N \/g

sin 0, = —\/gsin ®,
Jg

sin 9 =-Lsin 9
82

82

.2
g, 08 6, — g, ——>sin"6,
E_ &

El

2
g’ .
Je, cos 6, +\/81 +-L-sin”0,
€
2




1 -
&, cos 0, ———[e,e, — g sin” 6,
E, ‘,/82

E 1 .
i €, 008 0, + ——/g,g, —¢,’sin” 0,
\ISZ
€
€, cos 0, ——~
E_ Ve
Ei 81

€
€, €08 0, +
Ve V&

o . g
Dividing numerator & denominator by £
8l

€ €, .
=2 |cos 0, — -2 —sin”
E g g . .
E‘ = Reflection co — efficient
C 22 lcos 0, — |22 —sin®0,
81 81

Brewster’s Angle:-

Brewster’s angle is a particular angle at which no reflection takes place. This occurs when the numerator of the
above equation is zero

—= |cos B, —

—= |cos B, =

.2 2 2\ 2
sin ei(sl —82)—8182—82

. g,(e,—¢,)
sin® @, = 25122
& — &
. g, (g —¢,)
Sanei = 2\"1 2
(e, —¢g,)— (g +¢&,)
. £
sin® 0, = —2
g +¢,
cos’0, =1-sin’0,
g te,—E, g
g +¢, g +¢,
€ €
tan’ 0, =-%; tan’Q,= |2
8l 8]

o e
0,=tan”' |2
81

This is called Brewster’s angle at which there is no reflected ware when the incident wave is parallel polarized.



PROBLEMS ON UNIT -V
Problems in Faraday’s law, motioual EMF & transformer EMF

1. A circular loop conductor of radius 0.1m lies in the z =0 plane & has a resistance of SL. Given B = 0.2
sin 10 t a, T. Find the induced emf & current.

Solution:-
Given B=0.2sin10%ta,Tesla, p=0.Im, R =50

Area of circular loop =mp”° =nx(0.1)> =0.0lmm’

»=BA
=0.2sin 10°tx0.017
=2msin10° mWb
c=d0
dt

=2n[—cos10’tx10° x107%]
g=-2mcos 10°t V.

(=& _ —27cos 10°t
k 5

I=-0.4mcos 10°t

Here, the negative sign shows current flow in opposite direction.

2. A 30cmx40cm rectangular loop rotates at 150 rad/s in a magnetic field of 0.06 wb/m?, normal to the
axis of rotation. If the loop has 50 turns, determine the induced voltage in the loop.

Solution:-
Given A=0.3x0.4m, N =50, w=150rad/s B=0.06Wb/m?*

o= J‘Ecﬁ = IBds cosO = Bcosejds

¢=BAcos0O

NI
dt

€ :—Ni(BA cos0)
dt

= —NE(BA cos mt)
dt

= —Nu)[BA(—sino)t)]
=oNBAsin ot
=150x150%0.06x0.12s5in90°
=75x6x12x107™* x10°
=75x72x107
=5400x107"

e=54v

Problems in Transformer EMF:-

3. Determine the emf denoted around a circular path at b = 0 with radius p=0.5m in the plane z =0 if (i)

B= 0.1sin(ﬂ]£pT B=0.1sin(377t)a,T
P

Solution:-



Given p=05minz=0
The E. M. F induced in a time varying fiels is

EMF:—D] . ds

s

2|

Where ds = pdpdd pz_lz
EMF=—[ 3[0.1sin(377t)£z].[pdpd¢]£z
ot
=-[[]3770.03771) p dp d§
S 0.5 2n

=-37.7cos (377t)_[ p dpj do
0 0

5 0.5
:-37.7cos(377t)[%J (o)

0

=-37.7cos(377t) {0'—225}[275]

Att=0, EMF =-29.59 v

(i) B= o.mm(mt

]ép since Ep.az =0and EMF =0
P

4. A magnetic core of uniform cross section 4cm? is connected to a120 v, 60Hz generator as shown is
figure. Determine the induced EMF V, in the secondary coli.
Solution:-

Given V,=120v,N, =800 & N, =400

Vl__Nl((ii_T V, == 2((11_(1)
Y, _N,
Vi N,
v, &Vlzﬂ 120
) 800
V, =60v

5. An area of 0.5m2 in the z = 0 plane is enclosed by a filamentary conductor. Find the induced voltage,

iven that B =0.65 cos 10°t| 2272 |T

g [ =

Solution:-

Given A =0.5m’ B=0.65cos 10°t] 22 |1
2

EMF:—I%S.ds ds=ds a,



= [0.65x10° sinlo%(ay—*a’}ds a,

NG

= 0n10° [as = Slsin10'tx0.5

7 7
EMF =229.81sin10°tV

Motional EMF problems

6. A conductor of length 100 cm mores at right angles to a uniform field of strength 10000 lines/ Cm” with
a velocity of 50m/s. Determine the induced EMF when the conductor mores at an angle of 30° the
direction of the field.

Solution:-

Gi ¢=100cm=100x10"m, B =10000linesC/m’ =1Wb/m’
1ven

v=50m/s&0=30°
EMF = [ﬁ(v x B).dl
)

=B/ vsin0=1x1x50xsin30°
EMF =25V

7. Calculate the maximum emf induced in a coil of 4000 turns & radius of 12cm rotating at 30rps in a
magnetic field of B = 500 gauss.

Solution:-

1
. =0.12m, B =500Gauss;=500x ——Wb/m? =0.05Wb/m?*; N =4000
leen p 10000

®=27mX1Ips
=2nx30=60xnrad/s
EMF = [ﬁ(v xB).dl
i

=B/vsin6

For maximum EMF 0.=950°

# =Bvsin90°=Bv =Bpo

=0.05%x0.12x 607
=1.131V/m

For N turns,

#:#xN:4000X1.13I

¥=4524V/m

8. A conductor 1cm in length is parallel to z — axis and rotates at radius of 25cm at 1200 rpm. Find the
induced voltage if the radius field is given by B=052,T
Solution:-

Given length £=0.01m, radius p =0.25m



Velocity = 1200 rpm & B=0.5a,T

_ 2nxrpm _ 21x1200
60 60
®=40mrad/s

For a rotating conductor in a stationary magnetic field, the induced emf is

EMF = [ (vxB)dl
Since the conductor is parallel to z- axis,

chzdzgZ

EMF = I(pw d)><05ap)dz a,

j- p? -a,).dza,

0.01
:—40n;<0.25 _[dz

0

=-5n[z]," =-0.157
EMF = -157mV

9. A rod of length ‘£’ rotates about the z — axis with an angular velocity 10. If B =B, a,Telsa , calculate the
voltage induced.

Solution:-

EMF:IWXB)M

j (pma¢ ><B0£z).dpap

0

o

o‘—.x

=|B, pcoap dp ap

2
= BO“).[ pdp
0

P £
=B, L
2 0

EMF:%&@WV

10. A square coil, 0.8m on a side rotates about the x — axis at ©~ 807 rad/s in a field B=06a. as shown in
fig. find the induced voltage.
Solution:-
z
A
From the diagram, only two sides cut the magnetic field. /)
—_ 1
a=0.8m B=0.6a, w=80n !

EMF = m@xB)m

,\<V

=vB/ sinO0 0=t




For a square loop with sides a = 0.8m,

EMF = (%jB(Za)sine

=oBa’sin0

=oBa’sin ot

= (80m)(0.6)(0.8)” sin (80mt)
EMF =96.465sin 807t

11. A square loop of side 4cm with a resistor of 10Q on the side is placed in a uniform magnetic field of
50m T in the direction of x- axis. Calculator (i) the induced current at t = 1ms (ii) induced EMF at t= 3ms.
It is given that the square loop the axis of solution is perpendicular to the field. The loop lies in yz plane at

t =0.

Solution:-

Given
a=4cm=0.04
B=50x10"T
0=90°,R =10Q2

f =10Hz & ®w=2nf=20nrad /s
am
EMF =[[|(vxB)dlv=—
I ;

=vB/#sin®

- (EJB(Za)SinG
2

=a’oBsin ot

EMEF = (0.04)* x 201t x 50 x 10~ sin (207tt) =5.03sin (207t)mV

EMF =5.52 pV

_EMF _5.52x10°°
R 10
p=0.552pA

EMF =5.03x10sin (20t x107)
=55uV

- 0 10%t @
12. If the conductor mores with a velocity ¥~ 4.5sinl0’t a, . Find the induced voltage is the conductor if
() B =0.08ay (i) B=0.08a, T

Solution:-

Given V=43sin10° ta,m/s B=0.08a,



EMF:J.(va)dl
=4.5sin10°t j (a,x0.08ay).dxax

0.4

=0.36sin10° t [ (-a,).dxa;
0

=-0.36sin10°(0.4)
EMF =—-0.144sin10°t

(i) Since the conductor is placed parallel the magnetic field, it does not cut any line. Hence the field is zero.

N

\4
<

v}

N\

13. The wire shown in the fig is in free space & carnes a current of I = 20 A. A 50cm long metal rod mores

at a constant velocity of v=>a;m/s find Vio .
Solution:-

Magnetic field line
Magnetic field line (into the page )
(out to the page )

O)
\

B X B
O, X
ol — R T
© ) ® [ Metal rod ]
© X
< —»> |

|A
tem |‘ 50 cm '|

Given V= 5a,m/s 1=20A

The magnetic field intensity by current carrying wire



I N

H=— a, B=p,H=—""a,
2mp
V,, =EMF = [(vxB).dl
20
= j(Sa; j(dp ap)
=Sp,l dp =5p,1 20
=— [===—"[In(p)
271: 7J.0p 2TC [ p]70
_ Sl (20) —5x4nx107xzoln(§]
2 \70 2n 70
V,, =25.06pv

14. A faraday’s copper (Cu) disc of 0.3m dia is rotated at 60 rotations / sec on a horizontal axis
perpendicular to the plane of the disc. The axis is lying in a horizontal fields 20 pT. Determine the emf

measured between the bunches.
Solution;-

d=0.3m,B=20x10"°T, ®=2xf =27(60) =1207rad /s

Given
2
EMF — ®»Bb
2
= «Bb b—rad1us—03—015
2 2
_ —120mx20x 107° % (0.15)2
2
=-12001x107° % 0.0225
=-2700nx107®
=-27tuV

EMF = - 84. 82 MV

15. A Faraday’s Cu disc, 0.5m in dia, rotated at 1000rpm on a horizontal axis perpendicular to and thro
the centre the disc, the axis lying in a horizontal field 10mT. Determine the emf measured b/w the ????

Solution:-

— — _ -3
Given d=0.5m, v=1000rpm & B=10x10

=104.72rad /s

_ 2nxrpm _ 2nx1000
60 0

_ —104.72x10x107 x(0.25)
2

EMF=-3272myv

16. A conductor bar CD slides freely over two conducting rails as shown in fig. calculate the induced

voltage in the bar,

i) If the bar is stationed at y = 10cm & B =5c0s10°t a,m Wh/m®



_ " o _ - 2
(ii) If the bar slides at a velocity v=30aym/s & B=5a,mWb/m

—20)a R_ 60 < N\a 2
(iii)  If the bar slides at a velocity ¥ =-0&m/s & B=5cos(10°t —y)a,mWb/m

Solution:-

EMF = —ja—B. ds
ot
0.1 0.08

= I ij10’3><106sin106t dxdy

y=0 0
=5%x10%sin10°t x0.08 x 0.1
EMF =40 sin10° tV

(i) For a sliding bar in a stationary magnetic field, the motional emf is

EMF = j(v xB). dl

(véy x Ba, ) dxa,

(vxB)dx

T ey © 1 ey ©

vB[x]]
=-vB/
=-30x5x107%0.08

EMF = -12mV

(iii) For a sliding bar in time varying magnetic field, both transformer emf & motional emf an present.

EMF:—J.%B.£+J.(VXB).5

0.08 y 0
= [ [(5x107)x10°xsin(10°t - y) + | [30a, x5x10 cos(10°t ~y) |

00 0.08

=400 cos (10°t —y) — 400 cos10°t V

Displacement current problems

_ 100
1. Find the displacement current density for the field E=300sin10t

Solution:-
oD 0 0
Jd = E = a(SE) = 5(8081,E)
0

:5[8.854x10"2 x1x300sin10° t]

=8.854x107%x300x10° cos10°t
=8.854x0.3 cos10°t
J,=2.6562cos 10° tA/m’

2. The parallel plates in a capacitor have an area of 5cm” & separated by 0.5cm. A voltage of 10sin 10° t v
is applied to the capacitor. Find the displacement current with & =3 .
Solution:-

Given d=0.5cm



A=5cm=5%x10"* m’

g, =5, v=10sin10’t

=L _ew v

ot o0 d ot
I, =J,xA

_&&A dV
¢d dt

-12 -4
_ 885410 "x5x5x10 d g i 10°)

0.5x107* dt
12 4 3
_8.854x10 sz5X10 A0 10%107 x cos10°t

=8.854x5%x107 cos10’t

I,=44.27cos 10’ tnA

3. Find displacement current density (Jd) with & =10 area of the plates 0.01m? d = 0.5mm & v = 200 sin

200 t.
Solution:-

;=D _EE) &g dv
Ca o d dt

_ 8.854x10™"7x10 d
T 005x10°  dt
~ 8.854x107 x10x 200 x 200cos t
- 5x107°
=8.854x8x107 cos 200t

=70.832c0s200tmA / m*

(200 sin 200t)

4. A Cu wire carries conduction current of 1A. determine the displacement current at 1IMHz. For Cu,

e=g, & 6=58x10"s/m

Solution:-
I.=J.xA
=cExA
E= L
cA
oD O(eE)
Jd = — = —
ot ot
o . .
Since 7 =jo, J, =weE =ng, oA

IC
J,=2nft SOGA
I,=J,xA

EPLILENN
cA

_ 2x3.14x1x10°x8.854x10™"
5.8x10’
I,=9.585x10" A




I =4sinot mA, o=4x10" s/m &

5. Given ¢ g =L If w = 10 rad/s. Find Id

Solution:-

I.=J.A=cEA
gl
cA

I,=],A
D

ot

0
=—(EBE)A
at( )

= 8[6—EJA
ot
OE

=eA—
ot

ZSAQ(I_CJ

Ot\ cA
_gyg, A0l
T GA ot
_ 8.854x10™"7x1 0
T ax107 ot
=8.854x107" x10cos ot x10~
=8.854x107" x10" cos ot x 10~

I, =8.854coswtnA

(4sinot)x107

6. Find Id, where &= 10050 A=0.0lm* d=0.05x10" & v=100sin 200 nt

Solution:-

o BA _100g,x0.01 _ 8.854x10 " x10” x10°
d 0.05x10° 5x10x-5

=1.7708 %107 =0.1771uF

I, = Cd—V = 0‘1771x10_6i(1008in200m)
dt dt

=0.1771x10° x100x 2007t x cos 200t
=0.3542x107>tcos 2007t
I, =(11.13cos 200 t) mA

T _nv2a 2 2 . _
7. Find the electric flux density & volume charge density if E=2x"a,+4yay+2z°a, v/m; g =4

Solution:-
E=2x%a, +4y’a, +2z%, v/m

D=¢E=¢gE
=8.854x1072 x4x (2x%a, +4y’ay +27%a,)
D =70.83x%a, +141.66y’a, +70.83z%a, pc/m’

p,=V.D
oD, 0D, D,
=—2r4 T4z
ox Oy 0z

=141.66x +283.32y +141.662pc / m*

_ . _ - _ N 2
8. Given J=>5sin (et —20z)a, +cos (wt —20z)a.mA/m . Find volume charge density Py



Solution:-

X z

ox oy oz ot

0J —
LN N P /o1

0+0+—sin(wt—202)x—202%
t

20sin(ot —207) = —Px
ot
p, = [-20 sin (wt—20z)dt

= _—20 —cos (ot —20z)
o

2
= —Ocos (ot —20z)c/ m*
o)

_ - - 3 . 4 2 _
9. If T=Q2yax +xza, +2°a,)sin10"tA/m . Determine the volume charge density Pvije Pv= (x,%,0.0

Solution:-

Given 1 =(2yax +x2a, +7'a,)sin10'tA / m’

vy="P
ot
p,=—[(V.D).dt

=—j(0+0+3z2)sin104t
2
P, :3%005104t+cO

Given Pv=0atz=0

2
P, :0:13%<:05104t+cO [z=0
p, =0
p, =0.3z%cos10* tmC / m*

10. If the E S40%a(gt —PRa. v/ m, determine . If the same field exist in a medium, whose condutinty is

3 -1
5x10°QQ" /cm find Jc.

Solution:-
D=¢E=¢gE

=8.854x107 x1x10cos(wt —Py)a,

D =10x8.854x10" cos (ot — By)a.
=8.854cos(wt —By)a,Pc/m’



I, = aﬁ_lt) = §[8.854cos(mt— By)la.
=8.854w sin(wt—py)a, pA/m’
J.=cE
=5x10’x10 cos (ot—Py)a, A/cm
=5x10° x10 cos (ot—By)a, A /cm?

=5x10°x10 cos (ot—Py)a, A /m>

_ _ 106
11. A co - axial capacitor has the parameter a = Smm, b = 30mm, £=20cm, & =8 & 6=10" s/m

2. 6.\
- (gjsm (10°0apA /M getermine G e (if) Jd (iii) Id

Solution:-

2. - ~ B )
Given ch(gjsm (10°t)a,A/m a=5x10" b=30x10" £=02m ¢, =8 c=10"s/m

(i le= [3. 4, [ds = pdddza,

= j 2 gin 10°0) a, pdodza,
P

210.2

= [ [2sin (10°0 d¢dz

00
=2sin(10°t) [0.2][27]
=0.8x3.14sin(10° t)

I, =2.512sin(10° t) A

[5) DG,
(ii) Ja =20 25(813)

_i[gl_c]_%%
ot\ o c ot

=ﬁﬁ[zsm (10%}5p
G ot\ p
=880 109 20810t
op
16x8.854x107* x10°
px107°

cos (10%)ta,

6 —_—
5, = 141.664cos (10 )tap A/ m?
p

d(max) = % = 2833)( 103 A / In2
5%10

(i) 1, = [J, d,

=[ﬁ141'664cos 10° O)a,. p ddpdz a,

022n

=141.664 [ [ cos (10° 1) df dz

00

I,=178.02 cos (10° t) A

JIf



- 4 -
12. Find Ic in a circular conductor of radius 4mm if the current density varies to J = gaz A/m’
p

Solution:-

27 0.004

L={Td=| j(%azj(pdpdd)a_lz)

$=0 z=0

I, =10* (0.004)(2n)=80TA.

13. In a cylindrical conductor of radius 2mm, J =10’ ¢ ** a,A/m find Ic.

Solution:-

21 0.002

I, =gj3. d, =j j 10°e™a,). (p dp d a,)
0

s 0

2n 0.002
= Idd) I 10°p e dp

0 0

0.002
—400p
— _ c
=27‘E><103|: P o400 :|

400 (—400)° |,
2x10° ~ 0.002
= TeorL e 400p+D
I, =7.51mA

14. Given A=0.05m> d=2x10"m & =506=5x10" s/m v=>5sin10" tV. Find I,
Solution:-

v _5sinl0’t
d 2x107

J.=cE=5x107"(250sin10" t)=125x10"sin10" A/ m’
e0E

0
J =""=¢ge —(2500sin10’ t
" °r6t( )

=8.854x107" x 5% 2500c0s10” t x 10’
J,=1.11cos10" tA/m®
I =J A=125sin10"tx0.05=0.06sin10" t A
I,=J,A=1.11c0s10"tx0.05=0.056co0s 10" t A
I =12 +12 =(0.06)* +(0.056)> =0.08A
I, 008 0082

=BT E b

E= =2500sin10" tv/m

I =0.04x~2=0.057A

15. A co — axial capacitor of length ¢ = 6cm with ¢ =9. The radii are 1cm & 2cm. V=100 sin (120 =t),
what is Id?
Solution:-

Given v=100sin(120wtt) v, £=6cm, £=9,a=1cm & b=2cm



:U']é Lgp .(p dp dz gp)

0.06 2n
- 801? x100x1207cos (120m)t | dz [ d
ln(A) 0o 0
1
:gxlO_9 x9x100x1207 cos (1207) tx0.06x27
n
=107 x10% x60mcos (120m)t x6x 107

I, =360mcos(120m)t n — A

Problems on boundary condition for an EM field

1) Region 1 is defined by x < 0 & p , =4, when as region 2 is defined by x>0 & pn_, =8.If
Hi =8a, +3a, —6a, A/m for a source free boundary, determine 72 & its magnitude.

Solution:-

Given Hi =8a, +3a, —6a, A/m & the normal components are
H, =3a, —6a, & H, =8a,

For a source free interface, Hu = Hi» & B,, =B, , therefore, the tangential & normal components in region 2

(x>0) are

— - - 4 -
Ho=3a,-6a, H_ =iy - S0 Hyy=da,

2393
H: =Ho+Ha
=4a, +3a,—6a, A/m
H,|= 4 +3* +(=6)* =61 =7.81 A/m

2. A 3d space is divided into region 1 (x<0)& region 2 (x>0) where ¢, =0, =00 & Ei =2a, +4::1y +6a, V/m.
Find E: & D; assume g, =2&¢,=4

Solution:-

Ei=2a, +4ay +6a, v/m
E, =4ay+6a, & E , =2a,

D, =¢,, E, =2¢,(44a, +6a,)

E,=E, &D, =D,
- - 8rl 2
E[z :4ay +6a, Enz =—E; EnZ :Z(zax); E“z ax

nl?
r2

Ez = EnZ + Emz
E:=a, +4a,+6a,
D,=¢,E,=¢4, E:

=4, (a, +4a, +6a,)

D, =¢,(4a +4a, +6a,) ¢/m’

3. Given B, =1.2a, +0.8a, +0.4a, T in region 1 as shown in fig. Find H, & the angles between the field

vectors & a tangent to the interface



Solution:-

VA
Bi=12a, +0.8a, +0.4a, T Region 2 (i, =2)
- — — r2
B, _1.2a,+0.8a, +0.4a, 9
H]_H_1_ 1,(15) ///////////////
Region 1 (u, =15)
—2 _ _ _

H, = ! (8ax +5.33ay +2.67a,) A/ m

Mo

107 - - 107 - f)
H, = (8ax +5.33a,)H,, = (2.67a,) A\

Mo Ho

-2 _ _ _ _ -2 _

H, =——(8a, +5.33a,) Ha =L Hu= 2,19 5 672,)

Ho Mo 2y,
H,=H,+H,

107 - -

=——(8ax +5.33a,+20.03a,) A/m

Ho

0, =90°-a,
B,—a, (1.2a,+0.8a,+04a,).a,

cosa, = =

Bl 1.2 +08) +(0.4)
cos a, =0.27

o, = cos™ (0.27) =74.33

0, =90— o, =90—74.33=15.67
fan 6 _ o

tan 0, p,

1
tan6, Mo on 0, :Estan (15.67)
rl

tan0, =2.104
0, =tan™'(2.107) = 64.58

4. In region defined by z < 0, p,, =5& H, = L(().2ax +0.5a, +a,)A/m’ find H, if ©=30°

Ho

Solution:-

. 1
Given p, =5& H, =—(0.2a, +0.5a, +a,)A/ m’
Ho



oLt
4tx107
=10*(15.92a, +39.8a, +79.6a,)A /m
H, =10*(15.92a +39.8a,) H,, =10*(79.6a,)
Hi—a, 10°(15.92a, +39.8a, +79.6a,)
| 10°15.92) + (39.8)" + (79.6)°
cosa, =0.88
Q, =cos™'(0.88)=28.36°
0, =90— 0, =90—28.36 =61.64

(0.2a, +0.5a, +a,)

cosal, =

tan 0, p, tan 6, tan 61.64°

R l"LrZ = Mrl =JX o

tan 6, W, tan 0, tan 30

urZ = 16

Bnl = BnZ i'e’ H’rlHnl = l"lr2Hn2

Ho=Hopg = 3 10*(79.6)a, = 10*(24.87a,)
“rZ 16

H, =H, =10*(15.92a +39.8a,)
H, =10*(15.92a, +39.8a, +24.87a,) A/ m

5. A current sheet, k=852, A/ m, at x = ( separated region 1, x < 0, where H = ZOz_lyA/ m & region 2, x >
0 find H:atx=0

Solution:-
Given H, =20a,A/m in region 1
The normal component is in z — direction. Hn1=Hn2 > 0 & Bn1=Bn2>0

(H,—H,)xam =k

(20a, —H ,a,)xa, =8.5a,
(20—H ,)a, xa, =8.5a,
(20-H ,)(-a,)=8.5a,
—20a,+H,a, =8.5a,
H,,=28.5a, A/m

6.Region 1,z <0 has pn =3.5 &region2,z>0has pn,=10. Near the origin

Bi =2.4a, +10a,T & B,= 25a, +17ay +10a,T . If the interface carries a sheet current, determine its density

at the origin.

Solution:-

Given p,=3.5B:=2.4a+10a,T region 1

u,, =10B, =25a, +17a, +10a,T region 2



1

H, = B, = (2.4a, +10a,)

Mokt 3.5,

1 — —
H, =—(0.69a, +2.86ay)A /m

Mo

1 — 1 - - -

H, = B, = (25ax —17ay +10a,)

oy 10,

H, = i(z.séx ~1.7ay +a,)A/m

Mo
k=(H,—H,)xaln12

= i(0.69£x +2.86ay —2.5a, +1.7a, —a,)
Ho

- i(_1,515x +4.56a, —a,)xa,

0

= i(—1.51(—ay) +4.56(a))

Mo
-7
(1.5 lay +4.56a )x10 A
4n

l;:

/m

Problems in potential functions

1. If the related scalar electric potential v-(x-Vot) & the vector magnetic potential A= [i - tja_lx where

Vo

v, is the velocity of propagation. Then determine (i)V.A,(ii) B,H,E&D (iii) Also STV.A= —L€ XN in free

space

Solution:-

Given V=x-vt &A:[l—tjax

Vo

0A
)] V.AzaA"+—y+aAZ
ox o0y oz
vaA_ox |1
ox 0x| v, Vo
a, a, a,
(i) B=VxA= F © 29
ox Oy oz
-t o0 o
V()
:ax(O)—ay{0——(i—t]:|+a{0—i(i—t]:|
z\ v, X\ v,
B=0; H=0
E-_vy_A
ot
ov of x
=——a ——| ——t]|a,
ox é’t{vo ]
=——(x—vyt)a, +ax



(iii) V=x-v,t

ov_0
E = a(x = Vo) ==V,

v
Ho€g a ="V X8

=V X—
0
ov -1
g,—=—=V.A
Ko "5t )
ov
VA= g, —
Mo 05t

Problems in pointing theorem & pointing vector

1. In free space E(z,t)=60cos (wt—Bz)z_le/ m . Find the average power crossing a circular area of radius
4m in the plane z = const

Solution:-

E = 60cos (ot —Bz)a, =60e" P a,v/m

n=EoH=Laxp=Y
H 1207

Mo

j(<ulfﬁ7)ax

(a,)xe

1 -
H= 2—eJ("’"ﬁ”ayA /m
n

Power density = %Re (E xH *); = %(60)(y2n)5Z = %aZW /m?

15
Pave = (;j x1(4)* = 240W

2. When a plane ware trends in free space, it has an average power density of 40W/m2. Calculate E&B
Solution:-

The average power density

_IEf

- 2n,

__[EF
2x1207

avg

= E’>=80x120n

E’ =9600n

E =+/96007; |E|=173.62v/m

[E| _ 4rx107x173.62
o 1207
B=0.58uWb/m’

B=p,H=p,

3. A forward travelling plane wave in free space is E_=cos(4nx10’t—Bz)v/ m . Calculate the

instantaneous and time average pointing vector

Solution:-

Given E, =cos(4nx10"t—Bz)v/m



E 1
H =—= cos (4nx10"t—Bz)A/m
n, 120m

4mx10
Here o=4nx10"rad /s B:QZLO:OAZrad/m

¢ 3x10°

- - - E -
p=ExH=E axxH a,=E ay,x—a,
Mo

cos>(4nx 107t —0.422)a,

" 120m
1
1+cos2(4mx107 —0.42
[120 (1+cos2(4mx z))}

P, —1 1 a, =1.326a,mW / m’
¢ 120

4. In free space, =100 sin(wt — Bz)ax v/ m. Calculate the total power passing through a rectangular area

of sides 30mm x 10mm is z = 0 plane. Assume 7, = % &n, =120n

m

Solution:-

E =100(sinot — Bz)a,v/m

] —
= ﬂsin (ot—Pz)ayA/m
Mo

= 100cos (ot ~ Bz~ ¥))a, =100e" 725,

T

ool

Itlzl—cos(mt—ﬁz /)a) = 100 e /)
MNo Mo
H* _ @ej(ﬂiwrnz)ay
Mo

avg

100 i(<pz=14)— i(Bz+4) =
:_(100)( ; j l:eJ(B A)axxexﬁ A)ay:|
0

P :%RC(EXH*)

1 a,=13.27a,W / m*

2 1207

Total power = Average power x Area
=13.27a, x10x10%%x30x107

P =398 mW

5. If the field vector of a wave in free space an given by
E=50 cos(mt+ 4?71:)()5.2\/ /m
H=cos (ot+ 4—;x)£me

Determine the pointing vector & calculate power crossing 10m” plate of the yz plane.

Solution:-



e a ay
120n 1207
4= X — 4n X —
P, =-R[E H*]_lsoxso ej[3] 7><e[3] a,
£ 2 120m
2 —_— —_—
= (50) (-ay)=-3.31a,W/m’
240m
Total power = |P,, | x Area =3.31x10=33.1W

6. A uniform plane wave with 10MHz frequency has average pointing vector 4W/m”’. If the medium is
perfect dielectric with n_=2, ¢ =3. Determine (i) Velocity (ii) wavelength (iii) intrinsic impedance (iv)

r.m.s value of E
Solution:- P, =4W/m’ f=10x10°Hz
For a perfect dielectric =0, pu, =2, ¢, =3

(i)Alternation constant & phase constant are

a=0

B = onfliE = oyfimes,

1

=(2nx10x10°%) 47r><1077><2><—9><3
36mx10
=0.5133rad / m
6
Gi) v = Qo2 _2mxdOx10T s 4108 mis
"B 0.5133
) 2
(iii) M= \/E - /%: fﬁ /&:12071\/: =307.6Q
€ €4€, g, \ &, S
2
@(iv) P, _1E,
2n

E, =/2n(p,,,) = V2x307.6x4 =49.6v/m
g _E._496

-5

7. Find the pointing vector on the surface of along straight conducting wire of radius b & conductivity o

=35.07v/m

that carries a direct current of I verify poynting’s theorem.

Solution:-




The axis of the wire coinides with the z — axis

LV Bl
omb’  2mb ¢ 200 "

—Dsj[_).ds: —[!‘](f) . ap)(ds. ap)

IZ

fpds=1] — :Iz(i =I'R
4 onb GA

The above result shows that the negative surface integral of the pointing vector is exactly equal to I R power
loss in the conducting.




UNIT V
TIME VARYING FIELDS AND MAXWELLS EQUATIONS
PART- A

1. Write down the wave equations for E and H is free space (non - dissipative) medium.

O°E
VE-pe,—-=0
“U 0 atz
0"H
VH-pe,——=0
Ho€o o

2. Write down the wave equations for E and H is a conducting medium.

0°E OE
VE-pe— —po—=0
H ot K ot
H oH
V?H - e —uc—=0
Hooe Mo

3. Define a Wave.

If a physical phenomenon that occurs at one place at a given time is reproduced at other places at later times, the
time delay being proportional to the space of phenomenon constitutes a wave.

4. Mention the properties of uniform plane wave.

(i) At every point in space, we electric field E and magnetic filed H are perpendicular to each other and to
the direction of the travel.
(ii) The fields vary harmonically with time and at the same frequency everywhere in space.
(iif) Each field has the same direction magnitude and phase at every point in any place perpendicular to tthe

direction of wave - travel.

5. Define skin depth (or) depth of penetration.

Skip depth (or) depth of penetration (6) is defined as that of depth in which the wave has been attenuated to 1
e

or approximately 37% of its original value. & = 1 i for good conductor
o \joo

6. Define polarization:
Polarization of a uniform plane wave refers to the some fixed point in space
7. Define Linear polarization.

If Xand Y component of electric field Ex and Ey are present and are in phase, the resultant electric field has a

y

E
direction at an angle of tan™ E— and if this angle is constant with time the wave is said to be linearly polarized.

X
8. Define circular polarization.

If X and Y component of electric field Ex and Ey have equal amplitude and 90°. Phase difference, the low of the
resultant electric field E is a circle and the wave is said to be circularly polarized.

9. Define Elliptical polarization.



If X and y component of electric field Ex and Ey have different amplitude and 90° phase difference, the lows of
the resultant electric field E is a ellezise and the wave is said to be elliptically polarized.

10. State Snell’s law.

When a wave is travelling from one medium 1 to another medium, the angle of incidence is related to angle of
sin°¢, n €
—— == = (1 =1y =)
sin°g, \m, &

¢; is angle of incidence

reflection.

Where,

g, is dielectric constant of medium 2.
g, is dielectric constant of medium 1.

11. What is Brewster angle:

Brewster angle is incident angle at which there is no reflected wave for parallel polarized wave.

0=tan” [2
81

g, is dielectric constant of medium 1

Where,

g, is dielectric constant of medium 2.
12. State pointing theorem

The theorem states that the vectors product of electric field intensity E and the magnetic field intensity H at any
point is a measure of rate of energy flow per unit area at that point. The direction of the power floe is

perpendicular to the direction of the E and direction H and its is given by the vectors ExH.
13. Write the Maxwell IV eqn integral form & complex form.

Maxwell I eqn:-

Integral form: IH dl=I= m[] + %) ds

Point form: VXH=]+@:GE+E@
ot ot

Complex form: VxH=cE+joEe

Maxwell II eqn:-

Integral form= JEe dl= _% - _m(%j ds



Point form=V xE = _oB = —H@
ot ot

Complex form= V xE = —jopH
Maxwell III eqn:-

Integral form = [ﬁﬁn ds=Q= J'Hpvdv.

Point form= V.D=p

Maxwell IV eqn:-

Integral form = mg.n. ds=0

Point form = V.B=0

14. Find the force on the charged particle of mass 1.7x10*" kg and charge 1.602 x 10"¢, if it enters a field
of flux density B = 10 mw b/m’ with an initial velocity of 90 km/s.

Solution:-
B =10 m w b/m’
Q=1.602x 10"°C
v =90 km/s

Assume v & B are perpendicular

F=QvB
=1.602x107" x90x10*x10x10™°
=1.602x107° x9x10* x1x107>

F=14.418 x10" N

15. A point charge of 4c moves a velocity of Sa + 65,/ —7a, m/s . Find the force exerted if the flux density

is 5a +7a,+9a,Wb/m”’.
Solution:-

Q=4c B=5a,+7a,+9%, & v=>5a, +6a, —7a,
Fn=Q(vxB)



= ay[54+49] - a,[45+35] +a.[35-30]
=103a, —80a, +5a,
F. =Q(vxB)=4(103a, —80a, +5a,)
F, =412a, —320a, +20a, N.
[F,|= J(412)2 +(=320)* +(20)*
|F,|=522.05N

16. If the magnetic field intensity is H = [(0.01) / HOE_IX JA / m. What is the force on a charge of 1 pc moving

with a velocity of 10°a, m/sv

Solution:-

. = 0.01 )- -
Given Hz{ ]ax A/m Q=1pc=10""C &v=10%,m/s

Mo
F, =QvxB
0.01)-
B:“onuo[ jax
Mo
B=0.0lax
a, a, a,
vxB=| 0 10 0]|=a,(10°x0—0x0)—a,(0—0)+a.(0x0—10%0.01)
001 0 0

=-0.01x10%, = —1x102x10° =—10*a,
F. =Q(vxB)=10"2x(-10*)=-10"a,N

Force on differential current element

17. A magnetic field of flux density B=4.5x102a,Wb/m? exerts a force on a 0.4m long conductor along x

— axis. If a current of 10A flows in a, direction, determine the force that must be applied to hold
conductor in position.

Solution:-
GivenI=10A, ¢ =—04a, & B=4.5x10">a, Wb/ m®
The force exerted on a straight conductor is
F=I/xB
=10(-0.4a,)x (4.5x102a,)
=—4x4.5x(-a,)

F=18a,N

18. Calculate the force on a straight conductor of length 30 cm carrying of 5a in a magnetic field along the

z — axis. The magnetic flux density is B=3.5x10" (a_lx —gy)Wb /m’, where a, and E_Iy are unit vector.

Solution:-



Given  ¢=30cm=30x10"m=0.3a,,1=5A,B=3.5x10"(a, —ay)

F=1/xB=5x0.3a,x3.5x107(a, -a,)
=1.5x3.5x10" xa, x(a, —a,)
F=5.25a, +5.25a,mN

=5.25{1+1x107

F=7.42mN

19. Consider two long parallel wires 2m apart carry current of 50 A and 100 A in the same direction.
Determine the magnitude and direction of force between then / unit length.

Solution:-

I,=50A I,=100A d=2m

F_ LI, 4nx107x50x100
¢ 2nd 21t x2
_ 2x5x10™

=5x10™"

=0.5mN/m a,

e | gt

20. Consider two long parallel conductor carry 80A. If they are separated by 3mm, find the force / m of
each conductor if the current flowing through them in opposite direction

Solution:-

Given I ,=1,=80a d=3mm=3x10"

F_pll,_4mxi07x80x80_ 2x 64 QLIDX10" .
¢ 2nd 2rx3x107 b4
=42.22x107%=0.42N/m

As per currents are in opposite direction, the two conductors will repel with equal force.
21. A conductor of length 100 cm mores at right angles to a uniform field of strength 10000 lines/ Cm?2 with a
velocity of 50my/s. Determine the induced EMF when the conductor mores at an angle of 30° the direction of

the field.

Solution:-

Gi ¢=100cm=100x10"m, B =10000linesC/m*=1Wb/m’
iven

v =50m/s&0 =30°
EMF = [ﬁ(v xB)dl
)

=B/vsin0=1x1x50xsin30°

EMEF =25V



PART-B
1) Sate and prove the Faraday’s law of electromagnetic inductor?
Faraday’s law:-
The total electromotive force (e. m. f) induced in a circuit is equal to the circuit

—d¢
dt

Where
¢ = E. M. F induced in the circuit (volts)
¢ = total flux (klebers)
t = time in seconds

if the circuit refers to a multiple — turn loop with, say, N turns

€= —N@
dt
_—dA
dt
Where A=No¢

= total flux linkage (Wb — turns)

Consider a closed circuit made of a single turn loop as shown in fig (1). If the field is normal to the plane of the
loop & increasing, an e. M. F is induced in the circuit and current flows in the circuit.

The induced current is always so directed as to produce a flux opposing the charge in the magnetic field (B/H)

We know that the e. m. f in a circuit can be represented as the line integral of the electric field around the closed
path.

& =[f[E,.dl

B
Where E, is an E.M.F producing electric field caused by the varying magnetic field.



Now the total flux through a circuit is equal to the integral of the normal component of the flux density B over
the surface bonded by the circuit. Total flux is, therefore given by

o= J.J.B.n ds

-d¢ -d
g:Tj:E J]B.n ds

e= U]Ee. dl=—”%. nds
B']Eeldl = ﬂcurl E.nds
J;jcurl E.nds= —H% .nds

0B . o
curlE, = ot for stationary circuits
This relation is referred to Maxwell’s equation in differential form.

e= mEe.dl =— H% .nds

This is known as transformer E.M.F.

Let us consider a charge dQ moving with a velocity V in a field with flux density b is given by

dF =dQ9%xB
EezﬁzSXB
dQ

If the charge — element is isolated in a conductor, the EMF induced is a netional EMF & the equation isd given
by

&= [E.dl=[(9xB).dl
2) Explain in detail the Maxwell’s II equation in integral & point form
Maxwell’s II equation in integral form from Faraday’s law:-
fIE.dl=[[(VxE).ds
0B
VxE)ds=—-||—nd
[j( xE,).ds J;-[Btn s

Ver:—@
ot

Conduction current:-

Let I be the current in the conduction of area A. When we say that a current in flowing from a to b, it means that
the potential of a is higher than b.

Work is done when charge is carried from the point b which is at a lower potential to the point a which is at a
higher potential, against a field E. If Vba is the potential difference between the two points then

V,, =B/ =IR

Where R = resistance between a and b



! a b
oA 78 1
| >
Where o = conductivity |< T V|
—_
E
E( = I[[J
cA
11
A'c
A
SR
[}

»
»

Conduction current

Where J1 may be referred to as conduction current density which is directly proportional to E.
Displacement current:-
In the case of a capacitor, the current flow can be constant only when the voltage is changing rather than steady.

If Ic is the capacitor current, it is given by

L _d0_ dv
dt dt
A
tl
_sAdv
ot dt
_eAt'dE
t' dt
IC:sAd—E
dt
I .
XC = currrent density =],
dD
J, = it

Therefore J=], +],=cE+ C:T]?

3) Discuss about the inconsistency of ACL & derive modes of it
Inconsistency of Ampere’s circuital law:-

We know that the equation of continuity,

—op
V.= Y
J ot




We also know that the Ampere’s circuital law,

fiHAL=1=[f]j.ds

VxH=] — (1)
Now talking divergence on both the sides,
V.(VxH)=V.]=0 — (2)

But we know V.J = ;—f — (3)

Equation (2) & (3) is contracting. Thus Ampere’s law is inconsistency.

Modified form of Ampere’s circuital law:-

@H.dl—l—@(]+2t)j. ds — (1)

Applying stokes theorem,

U‘jH.dl =[fl(v < H).ds —(2)

s

Equating (1) & (2), we get

[ﬁ(v xH).ds = m(] + %)ds Integral form of Maxwell I equation

s S
oD . , .
VxH=]+ = point form of Maxwell’s I equation

4) Discuss the Maxwell’s Four equation in integral form, point or differentiation form:-
Equation I:- From Ampere’s circuital law.

The line integral of the magnetic field intensity around a closed path (contour) is equal to the current enclosed
by the path

.[H.dl =I= [ﬁ(] + %) ds Integral form

Applying Stoke’s theorem,

[Hdl=[f)(VxH).ds

m(VxH)ds=DS](]+%I:)ds

S
D )

VxH=J+ cE+
ot ot

VxH=cE+ % Point form Maxwell’s I equation.




Maxwell’s II equation:- (Faraday’s law electromagnetic induction)

The total electro motive force induced in a circuit is equal to the time rate of decrease of total magnitude flux
linking in the circuit.

~dé
e= F ¢ = J‘SJ‘BndS
—d
€= a‘[‘[Bn ds
> . 0B
Integral form of Maxwell’s II equation g= J'Ee.dl = fJ'J'a nds — (1)

Maxwell’s II equation in integral form applying stoke’s theorem on the LHS,

j E.dl =[f|(VxE)ds —(2)

Us‘j(v xE).ds = _Lj[‘gf]_ nds

VxE= %ZB Point form of Maxwell’s II equation

Maxwell’s III equation: (From Gauss law) for electric field

The surface integral of the electric flux density vector D is equal to the charge enclosed

mﬁn ds =Q — Integral form of Maxwell’s equation
S

Ujﬁ.n ds=Q= J._”p dv
S v
Applying divergence theorem,

mﬁ.n ds= m V.Ddv= J'ﬂp dv
S A% v
Point form of Maxwell’s equation

Maxwell’s IV equation:- (From gauss’s law for magnetic field)
The surface integral of the normal component of magnetic flux density vector B is equal to the zero.

mB.n ds=0
S

mB. n ds :IJJ(V.B) Integral form Maxwell’s equation
S v

V.B=0 Point form of Maxwell’s equation IV

Maxwell’s Four equations summery

Equation Law from which the equation is derived Integral form Point form Complex form




number

[!jH.dI:I:[!j[Ha;}ds

VxH=]+ D
I Ampere’s circuital law ot | VxH=oE+jop
Faraday’s law of electromagnetic mEe'dl = mﬁ.ds VxE= —0B )

1T induction ; . ot ot VxE=—jop

mﬁ nds=Q
111 Gauss’s law for electric field s V.D=p VD=p

mﬁ n ds=0
13\ Gauss’s law for magnetic field 5 V.B=0 V.B=0

5) Derive the equation of electromagnetic power poynting theorem and poynting vector:-

The theorem states that the vector product of the electric field intensity vector (E) and the magnetic field
intensity vector (H) is equal to the measure of the rate of energy flow per unit area at that point. The direction of
power flow is perpendicular to e and H in the direction of the vector Ex H.

P=ExHVA /m? or Watts / m”

Let us consider Maxwell’s second equation

oD
VxH=J+— — (1
xH=J+—=— (1)

IZVXH—% —(2)

Multiply the above equation with E,

oD
EJ=E.(VxH)-E.—
J=E(VxH)-E.S

By identity, V.(ExH)=H(VxE)—E(VxH)

E.]:—V(EXH)+H(V><E)—E%
=—V(E><H)—H@—8E6—E
ot ot

oH OE

EJ=-V(ExH)-pH—-¢E—
T =X GO — - - eE—

O0H _1poH® OE _1&0B’

= £ = —
ot 2 ot? ot 2 ot?

2 2
EJ=-v(ExH) [ HL
ot 2 2

_ 2 2
_V(ExH)=EJ+_0| BE, ¢E°
ol 2 2

Integrating the above equation throughout the volume V,

2 2
v (ExH)dV:mE.]dH[ﬁﬁ BHD BT
v v votl 2 2

Applying divergence theorem to the left hand side,




o (uH?  €E
DSjExH :DVjE]dwgvjat(”z +‘°’2 jdv

I term II term III term

D‘j(ExH).ds = I term = In going power flux in the surface S.
S

Dj(E.])dv = II term = Total power generated or dissipated within volume v at any instant
v

%(% uH? + %8]52] dv =III term = The time rate of increase of total electromagnetic energy within the volume

Thus the total power flowing into the volume V is equal to the total power flowing out of the volume V.
2 2
~fiP.ds =[f|(E.J)dv+ jﬁ LIS
< v ot 2 2

6) Explain the instantaneous, Average & complex power instantaneous, Average and complex poynting
vector:-

The instantaneous power Pinst is always given by the product of the instantaneous voltage Vinst and
instantaneous current linst. i.e,

Pt = Vinse-Lingt
Vi =R, {Ve™}
= Re{ e .ej“’t}
=R, {\V\ ej(wnev)}
=R, {|V|cos (ot +6v) + jsin (ot + 6v)}
‘V,-nst =V, cos(ot+ GV)‘
And
L =R {le""}
=R, { .| €™ .ej""}
=R, {m ei(mt+ei)}
I, =1, cos(ot+ Gi)‘

P, =|VollL|cos (ot + 6v) cos (ot+ 61)

=|V[|L,| {E[cos(cot +0v —ot+0i) + cos(ot + OV + o t+ Gi)]}
_ Volltof i .
= [cos (B — 6i) + cos(2mt+ O v+ Bi) |

st w[cose +cos(2mt+ 0 v+0i)]
The above equation has an arrange part and an oscillating put

P :‘ % cos0

And also the reactive power



Preact = ‘VUHIU‘ Slne
2

Since 6 is the phase angle, P, and P, are the impulse and out of phase components of the volt ampere

product.
Now let us consider the complex power P, defined as one — half the product of v and the complex conjugate of 1.

P:EVI*
2

= %‘V‘ e e [|e e
—2IVile" e

:1‘\;‘ 1 i)
2

P=_|V|[e"
2

P= %Voloeje
P = Pav + jPreact

+H

inst

P

inst T

I

inst

! TP d(wt)

0

1T
Pavzﬂpdt:

= %E x H(cos0) + %E xHcos(2mt+6, —6,)

~R {3ExHe
°l2

=R, {%[E x Hei(e*'ei)]}
R, {%{E x He'™ e }}

R, [%Eejev x He'jei}

Pav Re lEinst > H;nstj|

2

Thus the complex pointing vector is given by

P

inst — I)react + ]Preact

At time independent complex pointing vector such as its real part is equal to the time — average of the usual
pointing vector associated with the electromagnetic field.



1

P= EEXH*

1 O
EV:ERJEX}{}:ERJE>dﬁVV/m2
P =51 {ExH)

T o .
PX:E(E;{Z—E;{Q
R:%@JQ—QHQ

7) Discuss about power flow in a co- axial cable:-
Consider a co- axial cable with a voltage v applied between the conductors.
The radius of inner and outer conductor are ‘a’ & ‘b’

By ACL,

mHm:I
H.(2nr) =1

H=L a<r<b
r

E due to an infinity long conductor

Ezﬁggt;\/:%ln(%)

Y
5 rln(%)
P=ExH

P =|E||H] sin®

And we know 6=90° since e and H are perpendicular

P=EH

v I

Total power = IPds

Total power :‘(]1%)111(%)

rin

Total power =V I



Summary

_—d¢
1) ¢= o

2) j H.dl:lzgj].ds

QjE.dl :—U;j%ds
Ujﬁ.nds =Q-= J”pvdv
s v
[ﬂﬁ.nds =0
VxH=] +@

ot

VxE:ﬁ
ot

V.D=p
V.B=0

3) P=ExH Wwatts / m’

8) Discuss about the wave equation of perfect dielectric
Wave equation for a perfect dielectric:-
The Maxwell’s equation for a perfect is as follows

VxH:cE+8@
ot

oH
VxE=-u—o
Mot
VD=p

VB=0

For a perfect dielectric, c=0&p=0

V><H=s@ — (1)
ot
oH
VxE=-pu— 2
xE=sp— —0Q
vD=0 — (3)
VB=0 — (4)

Talking curl of (1) & differentiating (2), we get

VxVtzsé(VxE):SVx@ — (5)
ot ot

yxE__ oH
a "o

—(6)

Sub (6) in (5), we get



2

VxVtz—psaat2

0*H

ot?

V(V.H)-V’H = —pe

o’H
-V’H=—pe e

o°'H

atZ

V?H = pe

—(7)
Similarly, talking curl of (2) & differentiating w. r. t
VxVsz—ué(VxH)
ot

VXVXEZ—H[VX%] — (8)

2

Substituting (9) in (8),
E
ot?

O°E
V(VE)-V’E= He=7

VxVxE=—pe

2
V’E = paﬁ — (10)

Wave equation for a conducting medium

VxH=0E+s@ — (1)
ot
oH
VxE=-pn— 2
xE= -1y -2
v.D=0 - (3)
V.B=0 — (4)

Talking curl of (1) & differentiating (2), we get

VxVtzc(VxE)+s(Vx%j — (5)

OE o'H
X—=—4

Sub (2) & (6) in (5), we get



2
V(V.H)—VZH:——MG@—MSa H

atZ
oH o*H
-V?H =—puo— - e
Mo TR
oH o’H
V®H = po— + e
H ot H ot?

Similarly, talking curl of (2) & differentiating (1)

VxVsz—pVx@

2
S s

+¢€
ot ot ot
2
V(V.E)-V’E* = — °E OE

Wave equation:-

2
For perfect Dielectric:- V?E = pe 9

2

'H

atZ

V?H =pe

2
For perfect conducting medium:- V’E= uc% + pg%

oH &H
V*H =po— +pue
Ho% "M

9) Explain about the wave equations in a wave equation in a phasor form:-
O°E
VZE = pe

2
Vszusa g

2

Let E=Ee™

= joEe
=joE
o _

P -o’E

V?E = pg(-o’E) = V’E + 0’ueE =0
V?H = pe(-0*H) =V’ H+ o’ueH =0

Wave equation for a perfect dielectric

V’E+o’ueE=0
V’H+o’usH=0



ot ot

+
ot or?
V’E = jopoE + jo’ueR
V’E = jopE (o + joe)
V?H = jopH (6 + joe)

V’E - jopu(o +jog)E=0
V’H - jop (o + joe)H=0

Velocity of the wave:-
62
VZE = l«lg?

For free space p, =¢, =1

2

O0°E
VZE =M€y ?

1
36mx10°
1 ©OE

T 9x10%° at®

1 0°E

(3 % 108)2 ot

=4nx107 x

VZE =

We know that the velocity of light = =3x10°m /s

1 &E
VE-ga
1 &°E

1 °H _

Similarly V’H - =0

9 ot

Where

1
§ =He€y =

1

m m/s

10) Discuss about the uniform plane wave uniform plane wave:-

9=

If the phase of a wave is the same for all points on a plane surface, it is called a plane wave.
If the amplitude is also constant, then the wave is called an uniform plane wave.

The following are properties of uniform plane waves.



1) At every point in space electric field (E) * magnetic field H are perpendicular to each other and to the direction
of barel.

If the electric field is in x - direction and the magnetic field in y - direction, then the wave is travelling in z -
direction.

The wave equation for free space is given by,

0°E
VZE =pe—
H ot?

0*E 0*E 0%E 0°E

o=
o oy o T or

Consider E varies along ‘x” only & independent of y and z, then

FE_ GOF CE_GE_
ox’ ot? oy> o7’

2 2 o%E o’E 2 2
asz:“Easz, ZY:uE 2}’,. aEzz:“EaE21
ox ot ox ot Ox ot

VD=¢eVE=0 VE=0

0E, OB, GE,
+ +

ox oy oz

For a uniform plane wave, ‘E’ is independent of y & z.

J0E

Then —x=0
Oox
’E
Differentiating the above, —* =0
ox

If requires that either Ex be zero or constant therefore an uniform wave propagating along x - axis does not have
an Ex component.

Similarly,
VB=uV.H=0
VH=0
oH, OH, oH,
—=+ + =
ox 0y 0Oz
2
oH, _ 0& 0 IE‘ =0
ox 0x

Since Hx is constant, hx must be zero.

11) Explain the characteristics impedance

Characteristics impedance or intrinsic impedance:-

Consider the plane wave propagating in x - direction the wave equation for free space is

O°E O’
e M



The general solution of the differential equation is in the form
E=£ (x—vot)+£,(x+v,t)
Where

1

Vozm

f, and £, are any function of (x—v,t)&(x+v,t) respectively.

The solution of wave equation consists of two waves; one travelling in positive direction and other travelling in
the negative direction consider the wave travelling in positive direction above

E=f(x—-v,t) [ £y (x + vot) =0]
a, a, a

V<E= Yoy oo
E E E

ie, E =H, =0& E_E_,
oy o0z
a, a, a,
VXE=%X 0 0
0 E, E

— — oE —
VxE= °E, ay+—ra, —(1)
ox ox

Similarly
- - OH -
VxH= °H, ay+—ra. —(2)
Ox
But VxH= sa—E —(3)
ot

Comparing (2) & (3), we get

z

—0H,- OH, - {6EV GE}

ay + a;=¢g|—ay + a
ox ox ot 0
—0H, _ JE, & oH, _CE,
ox ot ox ot
oH
VxE=—-p—-o
"
-0E,- ©OE - oH - oH, -
ay+—=a;=-u ay + a,
ox ox ot o
oE, __ oH, o, oH
ox ot ox ot

Let the solution of wave equation be,



E, =f(x-v,t)
OE,  of O(x —v,t)
ot d(x—vot) ot

=£'(x = vot) x (=v)
OE, . . ‘
6—t‘=—VUF [ f'(x—v,t)=F]
_6H, OB, _gH

N -

z

ox ot ox
oH

z

OX
= L eF'

N

B[

aHZ:\/%IFdx
:\/%f

E

y

— !
=v,eF

z

=

= T

z

RN

€

T

Similarly, it can be shown that,

E=E2+E & H=[H} +H

This is referred to as characteristics impedance or intrinsic impedance. It is defined as the ratio of permittivity to

=

Therefore

T

dielectric constant

‘r'l:

&

=
H
For free space € =y, =1, then the character impedance for free space is given by

Mo ZQ;%
B 47x107

36mx10°
M, =1207 / 377

Dot product and cross product of E and H:-



EH=EH, +EH,
E, E

y z

"HH
EH=nHH, -nHH,
EH=0

This proves that E and H both perpendicular to each

a, a, a, a, a, a,
ExH=|E, E, E|=|0 E, E,
H, H, H| |0 H, H,
=a.[EH,-EH,]
=a[nHZ +nH; |
ExH =nHa,

12) Derive the wave propagation in a wave propagation in a lossless medium

Wave propagation in a lossless medium:-

The wave equation for free space lossless medium is,
V’E =pe—s-
s

The phasor value of E is
E(x,t) =R [E(x)e™ |
VR, [E(x)ej‘”t] =pue ;—ZRS [E(x)ej‘”'J
V'R, [E(x)ej‘”‘] =ueR, [—szei“"J
R.[(V’E +pew’E)e™ | =0

V?E + peo’E =0
V2E+BE =0

This is called vector Helmholtz equation

[(REORTE

B=he o

Where B is called phase shift constant

The velocity of propagation is

0.
B Ve

Wave equation in a conducting medium.
The wave equation for conducting medium is

2
0 E—MG@ZO

VZE —pe—
Ko ot



The phasor form of wave equation is,

Where

V’E - j*0’peE — jopsE =0
V?E - jop(c + joe)E =0
V’E-y’E=0

y? = jou(o + joe)

y is called propagation constant

Where

y=oa+jp
o = attenuation constant

B =Phase shift

y=0+jB = \jou(s + joe)

Squaring on both sides,

o’ —B* +2jop = jop(c + joe)
o _Bz _ —wzp(n

o® 3 =ouc

We know that,

But

o2 +B = (a2 -} +4a’p?
(0217 (o

(o0 B)*=(ouo)

(XZ +B2 — '(1)4}1282 +m2u202

o? —B? = —o’ue

207 = ~0’pe +\o'n’e’ + 0’p’c’

) —(uu8+ co4u282 copc

o =
—cous mua’
’e’

To find the value of § :-



2B? = Jo'n’e’ + 0’W’c” + o’ue

2 2 2
, OHE c O°pe
= + 4 /1 + +
g 2 o’e’ 2

2 2
, OUE c
=—— 1+ -1
P 2 0’e?

2
B=o f{u o —1}

w’e

Wave propagation in good dielectric:-

< >>1 For good conductor
0

2 <1 For good dielectric
®E

. . c
For dielectrics, — <<1
we

1
1+i— 1+672 A
(1)282 (DZSZ
2
()
U1+ ——
20°e?

The attenuation factor is,
2
a=0 He 1+ c; -1

2 e
2

€ c

=0, [—|1+ -1
2 { 2%’ }

oI i o
4w°e? 4e 2 \¢

1
o T
U ‘} 1+
Pl o H{ 4w’e?
62
U ‘f 1+
pllo H‘{ 8w’e’

. C g .. 0}
Velocity of wave in dielectricis v=—



V=

[0 1 { o? }_1
pe 8w’e
1+
\/H_{ 8(,08:|
2
V:1(1_622J
\E 8w'e

G2
Vuvu{l—&ozgz

Intrinsic or characteristics impedance,

jop [ jou

R

joe

(1 + ]—Gj
2me
n=ne |:1 + ]7:|
2me

Wave propagation in good conductors:- or plane waves in good conductors

For good conductor 21
ot

]u)u (o +jwe)

Y = Jouc|45°
W.K.T
2 2
a= [ZHE g c;z—l
2 e
2
- D
2 \we
oo oMo
2

W>K>T



o © 200 20
fwuc OUc uc
2
Intrinsic impedance n = ]0).“
G+ joe

n=,/%@
(e}

In good conductor, oo and B large. Sine o is large (i.e) wave is attenuated greatly as it propagation through the

conductor.

But velocity and characteristics impedance is considerably reduced.
13) Explain skin depth or penetration?

Depth of penetration:-

In a good conductor, the wave is attenuated as it progress. At radio frequency the ratio of attenuation is very
large and the wave may penetration only a very short distance before being reduced to a negligibly small value.

The depth of penetration (3) or skin depth is defined as the depth in which the wave has been attenuated to 1
e

or approximate to 37% of its original value.

The amplitude of wave decreases by a factor e * as it propagates through a distance s.

By definition, e =g

Skin depth is the distance S through which the wave amplitude decrease to factor e i.e, about 37% of the
original value.



G
For good conductor, — >>1
e

o uﬁ(ﬁj oxo
2\ we
S= 2
2nfuc
S= !
nfuc
S= !

A / nfuc

PROBLEMS UNIT -V
Problems in pointing theorem & pointing vector

1. Determine the pointing vector & calculate power crossing 10m? plate of the yz plane.

Solution:-
4n
E= 50ej(7]x52
=20 A5 o 0 S
1207 120m
[(4n 4
T
_ (507 (=a,)=-3.31a,W /m’
2407

P

avg

Total power = x Area =3.31x10=33.1W

2. In free space E(z,t)= 6OCOS(®I—BZ)2_1XV/ m. Find the average power crossing a circular area of radius 4m in

the plane z = const

Solution:-

E =60cos (ot — Bz)aX =60e" ™ a,v/m

E 1-
T]OZEZ>H:—akXE:

Mo

0 - —
(a,)x el Pa,

| -
H= Z—eJ("’"BZ’ayA /m
n

Power density = %Re (E xH *); = %(60)(%7_5)2_12 = EaZVV/ m?
T



15
Pae = (;j x7(4)? =240W

3. When a plane ware trends in free space, it has an average power density of 40W/m2. Calculate E&B
Solution:-

The average power density

_IEf

o,

_ &
T 2x120m

avg

= E?*=80x120n

E’ =9600n

E=+/9600; [E|=173.62v/m

[E| _4nx107x173.62
Mo 1207
B =0.58uWb/m>

B=pH=p,

4. A forward travelling plane wave in free space is E, =cos(4nx10’t—Bz)v/ m . Calculate the instantaneous

and time average pointing vector

Solution:-

Given E_=cos(4nx10"t—Bz)v/m

Hy:E‘= ! cos (4nx10't—Bz)A/m
n, 120w
4rx10
Here o=4nx10'rad/s p=2=20" (: =0.42rad/m
c 3x10

=X R - E -
p=ExH=E axxH a, =E a,x—*a,
Mo

cos*(dnx107t —0.422)a,

1207

P= 1 ;(1 +c082(4nx10" —0.422))
1207

L S 1326amW
£ 2(120n

5. In free space, E =100 sin (ot — [32):?1X v/m. Calculate the total power passing through a rectangular area of

E
sides 30mm x 10mm is z = 0 plane. Assume 1, = H—“‘ &n, =120n

m

Solution:-



E =100(sinot — Bz)a,v/m

= @Sin (ot — Bz)ayA /m

H

Mo
E =100cos (ot — Bz — %);X —100e/ P27,
— 100 - 100 jepemp—
H=—-—cos(ot-Bz-"%,)ay =—e a2,

MNo A un

1 j(+Bz+75)
H*:ﬂeﬂ P Y2,

No

avg

- 1(100)(@}% [e“’ﬁz’%ﬁx x e“ﬁ“%)éy}
2 Mo

P =%RC(E><H*)

1 a,=13.27a,W /m’

2 120w

Total power = Average power x Area
=13.27a, x10x107 x30x10™

P =3.98 mW

6. If the field vector of a wave in free space an given by

E=50 cos(mt+ 4?nx);zv /m

_ 4n -
H=cos (ot+ ?nx)ame

7. A uniform plane wave with 10MHz frequency has average pointing vector 4W/m2. If the medium is perfect
dielectric with p =2, € =3 . Determine (i) Velocity (ii) wavelength (iii) intrinsic impedance (iv) r.m.s value
of E

Solution:- P, =4W/ m’ f=10x10"Hz
For a perfect dielectric 6=0,n, =2, € =3

(i)Alternation constant & phase constant are

a=0
B = 0)\/”_8 = (D\luourgogr

=(2nx10x10%), [4nx1077 x 2 x

—x3
36mnx10°
=0.5133rad /m

6
(i) v, =2 =2 201007 100 ms
"B B 05133

(iii) n = \/E = /% = /ﬁ /& = 12071\/2 =307.60
€ £4€, g, \ &, 3



_IE

(iv) P _ZT]

avg

E, ={21(p,,,) =V2x307.6x4 =49.6v/m

“En B0 55 07vim

E =
rms \/5 \/E

8. Find the pointing vector on the surface of along straight conducting wire of radius b & conductivity o that
carries a direct current of I verify poynting’s theorem.

Solution:-

T
A
-

]
The axis of the wire coinides with the z - axis i
1
1

S e
omb>  2mb . 20m%b°

The above result shows that the negative surface integral of the pointing vector is exactly equal to I2 R power loss
in the conducting.

9. A current 4m in length lies along y- axis centred at origin. The current is 10Ain Ey direction. If it

a +a,

experiences of force of 15( jN due to a uniform magnetic filed, determine B & H in free space.

Solution:-

The force exerted on straight current element in uniform magnetic filed is



F=1¢/xB

15
ﬁ(ax +a,)=[ (10)4a,)x(Ba, +B,a, +B,a, |
a, a, a,
10.61(a_+a,)=| 0 40 0
B B, B,

10.61a, +10.61a, =a (40B,)—a,(0)+a,(0—40B,)

10.61a_+10.61a, =40B,a, —40B a,

408,=1061 B, =201 0265
40

—40B, =10.61 B, =-0.265

B =-0.265a_+0.265a,
=0.265(-a, +a,)T

B _0.265(-a, +a,)

o 4mx107

H=0211x10°(-a,+a,)A/m

H=

10. A conductor of length Sm located at z = 0, x = 4m carries a current of 10A in the -a, direction. Find
the component of B in the region if the force on the conductor is 1.2x102N in the direction

(—a, +a,) /2 .
Solution:-

—a, +a;

NG

I_-7=(1.2><10'2)[ ]I:IOA /=-5a,

——50B,a, +50B,a,
1.2x107°

NA

Comparing the co — efficient

(—a,+a,)=+50(-B,a, +B a,)

_1.2x107

5002

B, =B =1.7x10"Wb/m*

11. A triangular loop of wire in free space join points A (1,0,1) B (3,0, 1) C (3, 0, 4). The wire carries a
current of 6mA flowing in the a, direction from B to C. A filamentary current of 15A flows along the

entire z — axis in the a, direction. Find the total force on the loop.

Solution:-



ZA
A6MA
15A A
A > B
» X
0

The current flowing through the loop is 6ma & the current along z — axis is I;= 15A

"B= ”oﬁ = tol, 2_1¢
2np

In rectangular co — ordinates

— —4nx107 x15x—a
B= ol (—a.)= y
21X Y 21X
— p— 76 -
B :—3X10 ay
X

The differential force along AB is

dFas = I(TIAB xB

(TIAB = dxax

p— p— p— 76 p—
dFas = Idxa, x (ﬂ}ly
X

_ —6
=(6x 105{%)&( a, xa,

~ 18 00 dxa,
X

_ 3dx o
Fas =—18j—x10 a,
X
1

=-18[In(3) —In(1)]x 10,
F,, =—19.77a,nN

The differential force along the side BC is

dFsc =IdIx B

_ _ -6
dFse =6x107dz a, x{ﬂjay
X

_ —6
zéxlozx[ﬂ}m_ax
3
—6x10dzax
4
Fac =6x107a, [dz=6x10"a,[3]
1
F,. =18nNa,

The differential force along the side CA is



dFca =1dlea x B

_ _ _ _ -6
dFca =6x107 (~dxa, - dza, x [ﬂ]ay
X

Lao 1 9 _
=18x10" Idxaz—jlgx;o ax

X
3
E., =-19.77x107a, +18x10~a,

4

l_‘l“z 1_:‘AB +I_:BC +l_:CA
=—19.77x107a, +18x10°a_—19.77x10a, +18x107a
F=36a, —39.54a,nN

X



UNIT V
TIME VARYING FIELDS AND MAXWELLS EQUATIONS
Sate and prove the Faraday’s law of electromagnetic inductor?
Faraday’s law:-

The total electromotive force (e. m. f) induced in a circuit is equal to the circuit

)
dt

Where
¢ = E. M. F induced in the circuit (volts)
¢ = total flux (klebers)
t = time in seconds

if the circuit refers to a multiple — turn loop with, say, N turns

= —N@
dt
_—dA
Cdt
Where A=No¢
= total flux linkage (Wb — turns)

Consider a closed circuit made of a single turn loop as shown in fig (1). If the field is normal to the plane of the
loop & increasing, an e. M. F is induced in the circuit and current flows in the circuit.

The induced current is always so directed as to produce a flux opposing the charge in the magnetic field (B/H)

We know that the e. m. f in a circuit can be represented as the line integral of the electric field around the closed
path.

& =[f[E,.dl

B
Where E,_ is an E.M.F producing electric field caused by the varying magnetic field.



Now the total flux through a circuit is equal to the integral of the normal component of the flux density B over
the surface bonded by the circuit. Total flux is, therefore given by
o= .UB nds

—d¢ _
T

a:[_!.]Ec.dllﬂa.nds

DjEe.dl :ﬂcurl E,nds

'fB n ds

J.J.curl E.nds= —H% .nds

—-0B
curlE, = = for stationary circuits

This relation is referred to Maxwell’s equation in differential form.

This is known as transformer E.M.F.

Let us consider a charge dQ moving with a velocity V in a field with flux density b is given by

dF=dQ39xB
E, :ﬁzng
dQ

If the charge — element is isolated in a conductor, the EMF induced is a netional EMF & the equation isd given
by

e=[E.dl=[(9xB).dl

Explain in detail the Maxwell’s II equation in integral & point form

Maxwell’s II equation in integral form from Faraday’s law:-
fIE.dl= [[(VxE).ds

{[(WEJ.ds:—jsj%nds

0B

VxE,

Conduction current:-

Let I be the current in the conduction of area A. When we say that a current in flowing from a to b, it means that
the potential of a is higher than b.

Work is done when charge is carried from the point b which is at a lower potential to the point a which is at a
higher potential, against a field E. If Vba is the potential difference between the two points then

V,, =E/=IR



Where R = resistance between a and b

! a b
oA 74 71
>
y | : |
Where o = conductivity |< T =|
—_
E
Fo- 1[@]
GA
11
A'c
A
SR
[}

»
»

Conduction current

Where J1 may be referred to as conduction current density which is directly proportional to E.
Displacement current:-
In the case of a capacitor, the current flow can be constant only when the voltage is changing rather than steady.

If Ic is the capacitor current, it is given by

| _dQ_dv
dt dt
c-
tl
eA dv
[o=——
t' dt
B sAt'dj
t' dt
I :sAd-E
dt

I
XC = currrent density =],

dD
=4
Therefore J=], +],=cE+ db
dt
Discuss about the inconsistency of ACL & derive mode?????

Inconsistency of Ampere’s circuital law:-

We know that the equation of continuity,



-p

V]=—r
J ot
We also know that the Ampere’s circuital law,

g’]Hdl =1= [ﬂ].ds

VxH=] - (1)
Now talking divergence on both the sides,
V.(VxH)=V]=0 — (2)

But we know V.J= g—f — (3)

Equation (2) & (3) is contracting. Thus Ampere’s law is inconsistency.

Modified form of Ampere’s circuital law:-
oD
Hdl=1= — | d 1
U‘j U;(] S J s — (1)

Applying stokes theorem,

fiHdl=[f[(VxH).ds —(2)
Equating (1) & (2), we get

Uj(V xH).ds = m(] + %}ds Integral form of Maxwell I equation

s S

VxH=]+ % point form of Maxwell’s I equation

Maxwell’s Four equation in integral form, point or differentiation form:-
Equation I:- From Ampere’s circuital law.

The line integral of the magnetic field intensity around a closed path (contour) is equal to the current enclosed
by the path

IH.dI =I= m(] + %t)j ds Integral form

Applying Stoke’s theorem,

[H.dl =[fj(VxH)ds

S

IV xH)ds = Q‘j[] +%)ds

S
VxH=]+22 - o+ 2CE)
ot ot




VxH=cE+ % Point form Maxwell’s I equation.

Maxwell’s II equation:- (Faraday’s law electromagnetic induction)

The total electro motive force induced in a circuit is equal to the time rate of decrease of total magnitude flux
linking in the circuit.

g= %dtd) o= ﬂB.nds

€= ;—f”B.n ds

Integral form of Maxwell’s II equation g= JEe.dl = —ﬂ% nds — (1)

Maxwell’s II equation in integral form applying stoke’s theorem on the LHS,

j E.dl =[f|(VxE)ds —(2)

s

fI(vxE).ds = —jsj[‘?fj. nds

s

VxE= —76:3 Point form of Maxwell’s II equation

Maxwell’s III equation: (From Gauss law) for electric field
The surface integral of the electric flux density vector D is equal to the charge enclosed

[ﬂﬁn ds=Q — Integral form of Maxwell’s equation
S

mﬁ.n ds=Q= H_[p dv
S v
Applying divergence theorem,

@B.nds:.[i v.de:jypdv

Point form of Maxwell’s equation

Maxwell’s IV equation:- (From gauss’s law for magnetic field)
The surface integral of the normal component of magnetic flux density vector B is equal to the zero.

mB.n ds=0
S

mB. n ds :H_[(V.B) Integral form Maxwell’s equation
S A%

V.B=0 Point form of Maxwell’s equation IV



Maxwell’s Four equations summery

Equation
number Law from which the equation is derived Integral form Point form Complex form
Hdl=I= []+—j VxH= +@ .
I Ampere’s circuital law m m T*%5 | vxH=cE+ jou
Faraday’s law of electromagnetic mEe~dl = U‘j; d VxE= —oB )

1T induction ; . ot ot VxE=—jou
mﬁ nds=Q

I Gauss’s law for electric field s VD=p V.D=p
mﬁ n ds=0

v Gauss’s law for magnetic field 5 V.B=0 V.B=0

Derive the equation of electromagnetic power poynting theorem and poynting vector:-

The theorem states that the vector product of the electric field intensity vector (E) and the magnetic field
intensity vector (H) is equal to the measure of the rate of energy flow per unit area at that point. The direction of

power flow is perpendicular to e and H in the direction of the vector Ex H.

P=ExHVA /m? or Watts / m?

Let us consider Maxwell’s second equation

VxH= ]+2 — (1)

]=VXH—%—>(2)

Multiply the above equation with E,

oD
EJ=E.(VxH)-E.—
J=E.(VxH)-E.~

By identity, V.(ExH)=H(VxE)—E(VxH)

EJ=-V(ExH)+H(VXE)- Eaa—D
-V(ExH)- H@— E@
ot ot
EJ=-V(ExH)- H@ E@
ot ot

g OH _1poH® L OE 10’
a2 ot 2 ot

2 2
EJ = —v(ExH) [ M eE
al 2 2

_ 2 2
-V(ExH)=EJ+ af[”H + SEJ

2 2

Integrating the above equation throughout the volume V,

—BjV (ExH)dv = D]E]dv+gj [“H +8]252jdv




Applying divergence theorem to the left hand side,
2 2
—fI(ExH).ds = [[I(EJ)dv + gjﬁ CLE o e
4 e ot 2 2
I term II term IIT term

m(E xH).ds = I term = In going power flux in the surface S.
S

[ﬂ(E.])dv = II term = Total power generated or dissipated within volume v at any instant
v

%(% uH? + %SEZJ dv = III term = The time rate of increase of total electromagnetic energy within the volume

Thus the total power flowing into the volume V is equal to the total power flowing out of the volume V.
2 2
~fjP.ds =[fI(E.J)dv+ ji LIS
4 v ot 2 2

Explain the instantaneous, Average & complex power instantaneous, Average and complex poynting
vector:-

The instantaneous power Pinst is always given by the product of the instantaneous voltage Vinst and
instantaneous current linst. i.e,

Pist = Vi Linst
Vi =R, {Ve™|
=R, {‘V\ e .ej"’t}
=R, {M ei(wt+9v)}
= Re{ V|cos (ot +6v) + jsin (ot + GV)}

‘Vm =V, cos(ot+ ev)]

And

Lt = R {1
=R, {XIU\ .ejei.ej‘”‘}
=R, {[ije’e e}

et =1 cOs (0t + Oi)‘

I

P, =|V,|[L|cos (ot + 6v)cos (wt+ 6i)

= ‘VOHIO‘{%[COS((MZ+ Ov — wt+ 01) + cos(ot + OV + o t+ Oi)]}

= %[cos(ev —0i)+ cos(2ot+ Ov+ Oi)]

inst = %[COSG +cos(2ot+ 0 v+ 0i)]

The above equation has an arrange part and an oscillating put

P, = ‘V‘)Hlo‘cose
2




And also the reactive power

A

react — 2 sin e

Since 6 is the phase angle, P, and P, are the impulse and out of phase components of the volt ampere

product.

Now let us consider the complex power P, defined as one — half the product of v and the complex conjugate of 1.

P:lVI*
2

— IVl e e e

:;vwa%eﬂ
zl‘v‘ 1]l
2
P =LV
2
P= %Voloeje

P = Pav + jPreact
Pt = i + Hinge

1T 1 2n
P, =—[Pdt=_-[Pd(ot)
T3 2y
1 1
=EEXH(COSG)-FEEXHCOS(Z(D’E+9X -0,)

=R {lExHej(e*’e‘)}
‘12
-R l[EXHei(ex-‘)a)]
=R.15
1 o %
R f{ExHe’ x e }
‘12

R, [%Eeje" x He ™ }

Pav = Re %Einst x H;nst:|

Thus the complex pointing vector is given by

P..=P..+jP

inst react ] react

At time independent complex pointing vector such as its real part is equal to the time — average of the usual
pointing vector associated with the electromagnetic field.



1

P= EEXH*

1 O
EV:ERJEX}{}:ERJE>dﬁVV/m2
P =51 {ExH)

T o .
PX:E(E;{Z—E;{Q
R:%@JQ—QHQ

Discuss about power flow in a co- axial cable:-
Consider a co- axial cable with a voltage v applied between the conductors.
The radius of inner and outer conductor are ‘a’ & ‘b’

By ACL,

mHm:I
H.(2nr) =1

H=L a<r<b
r

E due to an infinity long conductor

Ezﬁggt;\/:%ln(%)

Y
5 rln(%)
P=ExH

P =|E||H] sin®

And we know 6=90° since e and H are perpendicular

P=EH

v I

Total power = IPds

Total power :‘(]1%)111(%)

rin

Total power =V I



Summary

1) ¢= —d¢

dt

2) j H.dl:lzgj].ds

QjE.dl :—U;j%ds
Ujﬁ.nds =Q-= J”pvdv
s v
[ﬂﬁ.nds =0
VxH=] +@

ot

VxE:ﬁ
ot

V.D=p
V.B=0

3) P=ExH Wwatts / m’

Discuss about the wave equation of perfect dielectric
Wave equation for a perfect dielectric:-
The Maxwell’s equation for a perfect is as follows

VXHIGE-FS@
ot

cH
VxE=-p—0
“6t

VD=p
VB=0
For a perfect dielectric, 6 =0&p=0

OE

VxH=eg— 1
X Eat — (1)
oH
VxE=—-p—: 2
x no -2
VD=0 -0
VB=0 — (4)

Talking curl of (1) & differentiating (2), we get

VXVXHISE(VXE):>8VX@ — (5)
ot ot

OE o"H
X—=—4



Sub (6) in (5), we get

o°H
ot?

VxVxH=-pue

2
V(VH)-V’H= —ua%

o°H
~V’H = —pne e

o°'H

V’H = pe e — (7

Similarly, talking curl of (2) & differentiating w. r. t

0
VxVxE=-p—(VxH
xV x H@t( X )

VXVXEZ—H[VX%] —(8)

2

Substituting (9) in (8),
2

0°E
VxVxE=—ps—
Heop

O°E
V(VE)-V’E= he—g

O’

Wave equation for a conducting medium

VXHZGE+8@ — (1)
ot
oH
VxE=-p—o 2
“BS %
v.D=0 - (3)
VB=0 — (4)

Talking curl of (1) & differentiating (2), we get
VXVXHIG(VXE)+8(VX%J — (5)

JE o*H
vxE__
o Mo

—(6)

Sub (2) & (6) in (5), we get



2
V(V.H)—VZH:——MG@—MSa H

atZ
oH o*H
-V?H =—puo— - e
Mo TR
oH o’H
V®H = po— + e
H ot H ot?

Similarly, talking curl of (2) & differentiating (1)

VxVsz—pVx@

2
S s

+¢€
ot ot ot
2
V(V.E)-V’E* = — °E OE

Wave equation:-

2
For perfect Dielectric:- V?E = pe 9

2

'H

atZ

V?H =pe

2
For perfect conducting medium:- V’E= uc% + pg%

oH &H
V*H =po— +pue
Ho% "M

Explain about the wave equations in a wave equation in a phasor form:-
O°E
VZE = pe

2
Vszusa g

2

Let E=Ee™

= joEe
=joE
o _

P -o’E

V?E = pg(-o’E) = V’E + 0’ueE =0
V?H = pe(-0*H) =V’ H+ o’ueH =0

Wave equation for a perfect dielectric

V’E+o’ueE=0
V’H+o’usH=0



ot ot

+
ot or?
V’E = jopoE + jo’ueR
V’E = jopE (o + joe)
V?H = jopH (6 + joe)

V’E - jopu(o +jog)E=0
V’H - jop (o + joe)H=0

Velocity of the wave:-
62
VZE = l«lg?

For free space p, =¢, =1

2

O0°E
VZE =M€y ?

1
36mx10°
1 ©OE

T 9x10%° at®

1 0°E

(3 % 108)2 ot

=4nx107 x

VZE =

We know that the velocity of light = =3x10°m /s

1 &E
VE-ga
1 &°E

1 °H _

Similarly V’H - =0

9 ot

Where

1
§ =He€y =

1

m m/s

Discuss about the uniform plane wave uniform plane wave:-

9=

If the phase of a wave is the same for all points on a plane surface, it is called a plane wave.
If the amplitude is also constant, then the wave is called an uniform plane wave.

The following are properties of uniform plane waves.



1) At every point in space electric field (E) * magnetic field H are perpendicular to each other and to the direction
of barel.

If the electric field is in x - direction and the magnetic field in y - direction, then the wave is travelling in z -
direction.

The wave equation for free space is given by,

0°E
VZE =pe—
H ot?

0*E 0*E 0%E 0°E

o=
o oy o T or

Consider E varies along ‘x” only & independent of y and z, then

FE_ GOF CE_GE_
ox’ ot? oy> o7’

2 2 o%E o’E 2 2
asz:“Easz, ZY:uE 2}’,. aEzz:“EaE21
ox ot ox ot Ox ot

VD=¢eVE=0 VE=0

0E, OB, GE,
+ +

ox oy oz

For a uniform plane wave, ‘E’ is independent of y & z.

J0E

Then —x=0
Oox
’E
Differentiating the above, —* =0
ox

If requires that either Ex be zero or constant therefore an uniform wave propagating along x - axis does not have
an Ex component.

Similarly,
VB=uV.H=0
VH=0
oH, OH, oH,
—=+ + =
ox 0y 0Oz
2
oH, _ 0& 0 IE‘ =0
ox 0x

Since Hx is constant, hx must be zero.

Explain the characteristics impedance

Characteristics impedance or intrinsic impedance:-

Consider the plane wave propagating in x - direction the wave equation for free space is

O°E O’
e M



The general solution of the differential equation is in the form
E=£ (x—vot)+£,(x+v,t)
Where

1

Vozm

f, and £, are any function of (x—v,t)&(x+v,t) respectively.

The solution of wave equation consists of two waves; one travelling in positive direction and other travelling in
the negative direction consider the wave travelling in positive direction above

E=f(x—-v,t) [ £y (x + vot) =0]
a, a, a

V<E= Yoy oo
E E E

ie, E =H, =0& E_E_,
oy o0z
a, a, a,
VXE=%X 0 0
0 E, E

— — oE —
VxE= °E, ay+—ra, —(1)
ox ox

Similarly
- - OH -
VxH= °H, ay+—ra. —(2)
Ox
But VxH= sa—E —(3)
ot

Comparing (2) & (3), we get

z

—0H,- OH, - {6EV GE}

ay + a;=¢g|—ay + a
ox ox ot 0
—0H, _ JE, & oH, _CE,
ox ot ox ot
oH
VxE=—-p—-o
"
-0E,- ©OE - oH - oH, -
ay+—=a;=-u ay + a,
ox ox ot o
oE, __ oH, o, oH
ox ot ox ot

Let the solution of wave equation be,



E, =f(x-v,t)
OE,  of O(x —v,t)
ot d(x—vot) ot

=£'(x = vot) x (=v)
OE, . . ‘
6—t‘=—VUF [ f'(x—v,t)=F]
_6H, OB, _gH

N -

z

ox ot ox
oH

z

OX
= L eF'

N

B[

aHZ:\/%IFdx
:\/%f

E

y

— !
=v,eF

z

=

= T

z

RN

€

T

Similarly, it can be shown that,

E=E2+E & H=[H} +H

This is referred to as characteristics impedance or intrinsic impedance. It is defined as the ratio of permittivity to

=

Therefore

T

dielectric constant

‘r'l:

&

=
H
For free space ¢ =p, =1, then the character impedance for free space is given by

Mo ZQ;%
B 47x107

36mx10°
M, =1207 / 377

Dot product and cross product of E and H:-



EH=EH, +EH,
E, E

y z

"HH
EH=nHH, -nHH,
EH=0

This proves that E and H both perpendicular to each

a, a, a, a, a, a,
ExH=|E, E, E|=|0 E, E,
H, H, H| |0 H, H,
=a.[EH,-EH,]
=a[nHZ +nH; |
ExH =nHa,

Derive the wave propagation in a wave propagation in a lossless medium

Wave propagation in a lossless medium:-

The wave equation for free space lossless medium is,
V’E =pe—s-
s

The phasor value of E is
E(x,t) =R [E(x)e™ |
VR, [E(x)ej‘”t] =pue ;—ZRS [E(x)ej‘”'J
V'R, [E(x)ej‘”‘] =ueR, [—szei“"J
R.[(V’E +pew’E)e™ | =0

V?E + peo’E =0
V2E+BE =0

This is called vector Helmholtz equation

[(REORTE

B=he o

Where B is called phase shift constant

The velocity of propagation is

0.
B Ve

Wave equation in a conducting medium.
The wave equation for conducting medium is

2
0 E—MG@ZO

VZE —pe—
Ko ot



The phasor form of wave equation is,

Where

V’E - j*0’peE — jopsE =0
V?E - jop(c + joe)E =0
V’E-y’E=0

y? = jou(o + joe)

y is called propagation constant

Where

y=oa+jp
o = attenuation constant

B =Phase shift

y=0+jB = \jou(s + joe)

Squaring on both sides,

o’ —B* +2jop = jop(c + joe)
o _Bz _ —wzp(n

o® 3 =ouc

We know that,

But

o2 +B = (a2 -} +4a’p?
(0217 (o

(o0 B)*=(ouo)

(XZ +B2 — '(1)4}1282 +m2u202

o? —B? = —o’ue

207 = ~0’pe +\o'n’e’ + 0’p’c’

) —(uu8+ co4u282 copc

o =
—cous mua’
’e’

To find the value of § :-



2B? = Jo'n’e’ + 0’W’c” + o’ue

2 2 2
, OHE c O°pe
= + 4 /1 + +
g 2 o’e’ 2

2 2
, OUE c
=—— 1+ -1
P 2 0’e?

2
B=o f{u o —1}

w’e

Wave propagation in good dielectric:-

< >>1 For good conductor
0

2 <1 For good dielectric
®E

. . c
For dielectrics, — <<1
we

1
1+i— 1+672 A
(1)282 (DZSZ
2
()
U1+ ——
20°e?

The attenuation factor is,
2
a=0 He 1+ c; -1

2 e
2

€ c

=0, [—|1+ -1
2 { 2%’ }

oI i o
4w°e? 4e 2 \¢

1
o T
U ‘} 1+
Pl o H{ 4w’e?
62
U ‘f 1+
pllo H‘{ 8w’e’

. C g .. 0}
Velocity of wave in dielectricis v=—



V=

[0 1 { o? }_1
pe 8w’e
1+
\/H_{ 8(,08:|
2
V:1(1_622J
\E 8w'e

G2
Vuvu{l—&ozgz

Intrinsic or characteristics impedance,

jop [ jou

R

joe

(1 + ]—Gj
2me
n=ne |:1 + ]7:|
2me

Wave propagation in good conductors:- or plane waves in good conductors

For good conductor 21
ot

]u)u (o +jwe)

Y = Jouc|45°
W.K.T
2 2
a= [ZHE g c;z—l
2 e
2
- D
2 \we
oo oMo
2

W>K>T



o © 200 20
fwuc OUc uc
2
Intrinsic impedance n = ]0).“
G+ joe

n=,/%@
(e}

In good conductor, oo and B large. Sine o is large (i.e) wave is attenuated greatly as it propagation through the

conductor.

But velocity and characteristics impedance is considerably reduced.
Explain skin depth or penetration?

Depth of penetration:-

In a good conductor, the wave is attenuated as it progress. At radio frequency the ratio of attenuation is very
large and the wave may penetration only a very short distance before being reduced to a negligibly small value.

The depth of penetration (3) or skin depth is defined as the depth in which the wave has been attenuated to 1
e

or approximate to 37% of its original value.

The amplitude of wave decreases by a factor e * as it propagates through a distance s.

By definition, e =g

Skin depth is the distance S through which the wave amplitude decrease to factor e i.e, about 37% of the
original value.



G
For good conductor, — >>1

e
o ua(cj oxo
2\ we
S= 2
2nfuc
S= !
nfuc
S= !
«/nfucs

PROBLEMS UNIT -1V

1. Find the force on the charged particle of mass 1.7x10%’ kg and charge 1.602 x 10", if it enters a field
of flux density B = 10 mw b/m’ with an initial velocity of 90 km/s.

Solution:-
B =10 mwb/m’
Q=1.602x 10"°C
v =90 km/s

Assume v & B are perpendicular

F=QvB
=1.602x107"°%x90x10* x10x10™"
=1.602x10""x9x10* x1x107

F=14.418 x10" N

2. A point charge of 4c moves a velocity of 5a. +6a, —7a, m/s . Find the force exerted if the flux density is

5a,+7a,+9a,Wb/m”.
Solution:-

Q=4c B=5a,+7a,+%, & v=>5a, +6a, —Ta,
Fa = Q(vxB)



= ay[54+49] - a,[45+35] +a.[35-30]
=103a, —80a, +5a,
F. =Q(vxB)=4(103a, —80a, +5a,)
F, =412a, —320a, +20a, N.
[F,|= J(412)2 +(=320)* +(20)*
|F,|=522.05N

3. If the magnetic field intensity is H= [(0.01) / uoax JA / m. What is the force on a charge of 1 pc moving

with a velocity of 10°a, m/sv

Solution:-

. = 0.01 )- -
Given Hz{ ]ax A/m Q=1pc=10""C &v=10%,m/s

Mo
F, =QvxB
0.01)-
B:“onuo[ jax
Mo
B=0.0lax
a, a, a,
vxB=| 0 10 0]|=a,(10°x0—0x0)—a,(0—0)+a.(0x0—10%0.01)
001 0 0

=-0.01x10%, = —1x102x10° =—10*a,
F. =Q(vxB)=10"2x(-10*)=-10"a,N

Force on differential current element

4. A magnetic field of flux density B=4.5x10>a,Wb/m” exerts a force on a 0.4m long conductor along x —

axis. If a current of 10A flows in a, direction, determine the force that must be applied to hold conductor

in position.
Solution:-
GivenI=10A, ¢ =—04a, & B=4.5x10">a, Wb/ m®
The force exerted on a straight conductor is
F=I/xB
=10(-0.4a,)x (4.5x102a,)
=—4x4.5x(-a,)

F=18a,N

5. Calculate the force on a straight conductor of length 30 cm carrying of Sa in a magnetic field along the

z — axis. The magnetic flux density is B=3.5x10" (a_lx —gy)Wb /m’, where a, and E_Iy are unit vector.

Solution:-



Given  ¢=30cm=30x10"m=0.3a,,1=5A,B=3.5x10"(a, —ay)

F=1/xB=5x0.3a,x3.5x107(a, -a,)
=1.5x3.5x10" xa, x(a, —a,)
F=5.25a, +5.25a,mN

=5.25{1+1x107

F=7.42mN

6. A current 4m in length lies along y- axis centred at origin. The current is 10Ain Ey direction. If it

experiences of force of 15[ HX\EE jN due to a uniform magnetic filed, determine B & H in free space.

Solution:-

The force exerted on straight current element in uniform magnetic filed is

F=1¢/xB

I—J%(ax +a,)=[(10)4a,)x(B,a, +B,a, +B,a, |

a, a, a,
10.61(a, +a,)=| 0 40 0
B, B, B,

10.61a, +10.61a, =a, (40B,)—a (0)+a,(0-40B,)
10.61a, +10.61a, = 40B,a, —40B a,

208,=1061 B, =1200_ 65
40
~40B, =10.61 B, =-0.265

B =-0.265a, +0.265a,
=0.265(-a, +a,)T

B _0.265(-a, +a,)

o 4nx107

H=0.211x10°=a, +a,)A/m

H=

7. A conductor of length 5Sm located at z = 0, x = 4m carries a current of 10A in the -a, direction. Find

the component of B in the region if the force on the conductor is 1.2x10>N in the direction

(—a, +a,) /2 .
Solution:-

—a, +a;

I_-7=(1.2><10'2)[ ]I:IOA (=—5a,

5

F=1¢/xB

| 2X10*2 ax ay az
'T(—aX +a,)=/0 50 0
B, B B

X y z



= —50B,a, +50B,a,

1.2x107
~=2— (-a, +a,)=+50(-B,a +B.a,)
ﬁ ( X z 727X x“z

Comparing the co — efficient

_1.2x107

z x 50\/5

=1.7x10"*Wb/m*

8. Consider two long parallel wires 2m apart carry current of 50 A and 100 A in the same direction.
Determine the magnitude and direction of force between then / unit length.

Solution:-

I,=50A I, =100A d=2m

F_pll,  4nx107x50x100
f  2nd 2mx?2
_2x5x10™

=5%x10""

=0.5mN/m ax

e |

9. Consider two long parallel conductor carry 80A. If they are separated by 3mm, find the force / m of
each conductor if the current flowing through them in opposite direction

Solution:-

Given

I,=1,=80a d=3mm=3x10"

10°

F_p LI, _4nx107 x80x80 _ 2% 64 (21.11)x107 .
¢ 2md 2mx3x107 .S
=4222x107=0.42N/m

As per currents are in opposite direction, the two conductors will repel with equal force.

10. A triangular loop of wire in free space join points A (1,0, 1) B (3,0, 1) C (3, 0, 4). The wire carries a

current of 6mA flowing in the a, direction from B to C. A filamentary current of 15A flows along the

entire z — axis in the a,direction. Find the total force on the loop.

Solution:-

C
ZA
A6MA
15A A
A > B
» X
0




The current flowing through the loop is 6ma & the current along z — axis is I;= 15A

H= Bol, ;d)

B=w 2mp

In rectangular co — ordinates

B —Anx107 x15x% —a,

=~
B=—""'(-a )=
TEX( 2 21X
— J— 76_
B 3x10 a
X

The differential force along AB is

dﬁAB = I(TIAB xB

(TIAB = dXE_lx

[ - —_ 76 -

dFas = Idxay x (ﬂ]ay
X

_ -6
ﬂjdx a, xa,

=(6x103)(
X
=718 00 dxa,
X

— 3 dx -
Fas =—18j—x 10”a,
| X
=—18[In(3) ~In(1)]x10a,

F,, =—19.77a,nN
The differential force along the side BC is

dFsc =1dIx B
— —3%x107°
dFsc =6x107dz a, x{ﬂjay
X

A 6
=6x107 x [%jdz x—a,

=6x10"dza,
4
Foc =6x107a [dz=6x10"a,[3]
1
F,. =18nNa,
The differential force along the side CA is
dl_:c/\ = Id_ch xB
_ _ _ _ -6
dFca =6x107 (~dxa, - dza, x [ﬂ]ay
X
pdx—  £18x107° -
=18x107° I az—j ax
3 X 4 3

E., =-19.77x10"a, +18x10~a;




l_‘l“z l_:AB +I_:BC +l_:cA
=-19.77x107a, +18x10°a_—19.77x10a, +18x107a_
F=36a, —39.54a,nN

11. Find the maximum torque on a 75 turn, rectangular coil, 0.5m by 0.6m carrying a current of 4A in a
magnetic filed of B = 5T

Solution:-
Given (=0.5m w=0.6m 1=4A, N=75 B=5T
T=NBIAsin0

Maximum torque is obtained when 0=90°

T, .. = NBI(fw)
=75x5x4x%(0.5%x0.6)

T =450

12. A 200 turn coil of 30cm x 15cm with a current of 5A is placed in a uniform field of flux density B =
0.2T. Determine the magnetic moment m & maximum torque.

Solution:-

Given £=30cm=30x107; w=15cm=15x10"2; I=5A, N=200;B=0.2T

m=NIA =200x5x30x15x10™"
=45A.m’

T, .. =mB=45x0.2

T, . =9Nm

13. A square coil of 200 turns & 0.5 m long sides is in a region of uniform field with density 0.2T. If the
maximum torque is 4 x 10*N. m , what is the current?

Solution:-
Given A=a%>=(05)"=0.25m’
N=200, B=0.2T T,,, =4x107

T,.. = NIAB

max

4x10°
200x0.25%0.2
I=4x107A =0.4mA

Problems on Torque

14. A rectangular coil of area 10cm” surrounded by uniform magnetic flux density of
B=0.6a +0.4a,+0.5a, carrying current of S0A lies on plane 2x +6y — 3z =7 such that the magnetic

moment of the coil is directed away from the origin. Determine (i) magnetic moment (ii) Torque (iii)
Maximum torque



Solution:-
Given Area A=10cm’,B=0.6a, +0.4a, +0.5a, Wb/ m*1=50A
(i) Magnetic moment is

_ 2a_ +16a,6 -3
m:lAanzso@oxmﬂ(M]

NI

3= (14.29£x +42.86a, — 21.43£Z)x 10°A.m>

(i1) The torque on the coil is

T=mxB
—4
= {(50)(13—“0)(2% +6a, —3az)}x [0.6a, +0.4a, +03a, |
C(50)(10x10%)| % F
=5 |2 ¢ 3
6 4 5

=7.143x10™ [42£x —28a, — 451]
=0.03a, —0.02a, —0.025a,N.m

T, .. =BIA

max

=(0.6a, +0.4a, +0.5a,)(50)(10x10™)
=3a, +2a,+2.5a, % 107

=30a, +20a, +25a,x107
=43.87x10°N.m

15. A square coil is shown in figure in figure below is placed in the magnetic field of flux density

— a_+a )
B=0.05 Y I'Wb/m
ND)
Solution:- A7
0.04m
a, +a, A
I1=5A&B=0.05 \/5 TI=5A
m=IA
=5(0.04%0.04) >y
=5x4x4x107* ISXLJO'%‘m
T=mxB

:(8><103ax)><[0.05 I +ay] X

NG

T =0.231a,mN.m

16. A solenoid 25cm long and of 1cm mean diameter of the coil turns has a uniform distribution winding
of 2000 turns. If the solenoid is placed in a uniform field of flux density 2Wb/m2 and a current of 5A is



passed through the solenoid winding, determine (i) The maximum force on the solenoid (ii) torque on the
solenoid

Solution:-
Given (=25cm=0.25m

d=1cm=0.01lm
I=5A N=2000 B=2Wb/m?

2
Area of solenoid loop = A =nr’ = % =0.25nx10"m?

(i) The force on the solenoid is

F=1/xB
F=BI/=2x5x%x0.25

=2.5newton/ unit
For 2000 turns, we have
F=2.5%x200=5000N
For torque on the solenoid d is

T=BIA
=2x5%02x10"*=7.85x10"*N.m

For 2000 turns,

T=7.85x10"* %2000
T=1.57N.m

17. A rectangular coil carrying a current of 5A is placed in the magnetic field of flux density
B=0.3(a, +a,)Wb/m’. The coil is lying the yz plane & has dimensions (0.8m x 0.4m. Find the torque on

the coil.

Solution;-

I=5A B=03(a, +a,)Wb/m’

A=(08x0.4)a, =032a,m’

t= ax ]§
T=5(0.32a,)x0.3(a, +a,)
=5(0.3)(0.3)a,

=0.48a, N.m



