
 

 

IC8451 CONTROL SYSTEMS 
 

SYLLABUS 

COURSE OBJECTIVES 

The student should be made to:   

 To understand the use of transfer function models for analysis physical systems and introduce the 

control system components. 

 To provide adequate knowledge in the time response of systems and steady state error analysis. 

 To accord basic knowledge in obtaining the open loop and closed–loop frequency responses of systems. 

 To introduce stability analysis and design of compensators 

 To introduce state variable representation of physical systems 

 

UNIT I SYSTEMS AND REPRESENTATION       9 

Basic elements in control systems: – Open and closed loop systems – Electrical analogy of mechanical and 

thermal systems – Transfer function – AC and DC servomotors – Block diagram reduction techniques – Signal 

flow graphs. 

 

UNIT II TIME RESPONSE          9 

Time response: – Time domain specifications – Types of test input – I and II order system response – Error 

coefficients – Generalized error series – Steady state error – Root locus construction- Effects of P, PI, PID 

modes of feedback control –Time response analysis. 

 

UNIT III FREQUENCY RESPONSE        9 

Frequency response: – Bode plot – Polar plot – Determination of closed loop response from open loop response 

- Correlation between frequency domain and time domain specifications 

 

UNIT IV STABILITY AND COMPENSATOR DESIGN      9 

Characteristics equation – Routh Hurwitz criterion – Nyquist stability criterion- Performance criteria –Effect of 

Lag, lead and lag-lead compensation on frequency response-Design of Lag, lead and laglead compensator using 

bode plots. 

 

UNIT V STATE VARIABLE ANALYSIS        9 

Concept of state variables – State models for linear and time invariant Systems – Solution of state and output 

equation in controllable canonical form – Concepts of controllability and observability. 

L   T   P   C 

3    2    0    4 

TOTAL (L: 45+T:30): 75 PERIODS 

COURSE OUTCOMES 

 

At the end of the course, the student should have the: 

 Ability to develop various representations of system based on the knowledge of Mathematics, Science 

and Engineering fundamentals. 

 Ability to do time domain and frequency domain analysis of various models of linear system. 

 Ability to interpret characteristics of the system to develop mathematical model. 

 Ability to design appropriate compensator for the given specifications. 

 Ability to come out with solution for complex control problem. 



 

 

 Ability to understand use of PID controller in closed loop system. 
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Unit – I 

SYSTEMS COMPONENTS AND THEIR REPRESENTATION 

Part – A 

1. What is control system? Nov/Dec 2016 

A system consists of a number of  components connected together to perform a specific function. In a  

system when the output quantity is controlled by varying the input quantity then the system is called control system 

 

2. Define open loop control systems Nov/Dec 2017 

The control system in which the output quantity has no effect upon the input quantity is called open loop control system. This 

means that the output is not feedback to the point for correction 

 

3. Define closed loop control systems Nov/Dec 2017 

The control system in which the output has an effect upon the input quantity so as to maintain the desired output values are 

called closed loop control systems 

 

4. What are the components of feedback control system? Nov/Dec 2016 

The component of feedback control system are plant, feedback path elements, error detector actuator and controller 

 

5. Distinguish between open loop and closed loop system May/June 2013, 2016, Nov/Dec 2019  

S.No. OPEN LOOP CLOSED LOOP 

1. Inaccurate Accurate 

2. Simple and economical Complex and costlier 

3. The changes in output due to external 

disturbance are not corrected 

The changes in output due to external disturbance 

are corrected automatically 

4. Always stable Generally great efforts are needed to design a 

stable system 

6. Define transfer function              Nov/Dec 2011& April/May 2017 

The transfer function of a system is defined as the ratio of the Laplace transform of output to Laplace transform of input with 

zero initial conditions. 

 

7. What are the basic elements used for modeling mechanical translational system May/June13/Nov/Dec16&17/April/May 19 

 Mass M,.Kg 

 Stiffness of spring K, N/m 

 Viscous friction coefficient dashpot B,N-sec/m 

 

8. What are the basic elements used for modeling mechanical rotational system? April/May 2019 

 Moment of inertia J,Kg-
2m /rad 

 Dashpot with rotational frictional coefficient B,N-m/(rad/sec) 

 Torsional spring with stiffness K,N-m/rad 

 

9. Name two types  of electrical analogous for mechanical system 

The two types of analogies for the mechanical system are 

 Force voltage analogy 

 Force current analogy 

 

10. What is block diagram? Nov/Dec 2015, April/May 2017 

A Block diagram of a system is a pictorial representation of the functions performed by each component of the system and 

shows the flow of signals. 

 



 

 

11. What are the basic component s of block diagram? April/May 2017 

The basic elements of block diagram are blocks, branch point and summing point 

 

12. What is the basis for framing the rules of block diagram reduction technique? 

The rules for block diagram reduction technique are framed such that any modification made on the diagram does not alter 

the input output relation 

 

13. What is a signal flow graph? 

A signal flow graph is a diagram  that represents of set of simultaneous algebraic equations. By taking Laplace transform the 

time domain differential equations governing a control system can be transferred to a set of algebraic equations in a s-

domain. 

 

14. What is transmittance? 

The transmittance is the gain acquired by the signal when it travels from one node to another  node is signal flow graph. 

 

15. What is sink and source? 

Source is the input node in the signal flow graph and it has only outgoing branches. Sink is a output node in the signal flow 

graph and it has only incoming branches. 

 

16. Write Masons Gain formula April/May 2015/2016, April/May 2018, April/May 2019 

Masons gain formula states that the overall gain of the system as follows overall gain, 

  K K KP
T(s)

 



  

T(s) = Transfer Function of the system  

K = Number of forward path in the signal flow  

PK = Forward path gain of the Kth forward pain  

∆ = 1- (Sum of individual loop gains) + (Sum of gain products of all possible combinations of two both touching loops) – 

(Sum of gain products of all possible combinations of three non touching loops) +…. 

∆K =  (∆ for the part of the graph which is not touching Kth forward path) 

 

17. Write the analogues electrical elements in force voltage analogy for the elements of mechanical translational system 

Force – f – Voltage, e 

Velocity, V – current , i 

Displacement, x – charge, q 

Fricitional coefficient , B – Resistance, R 

Mass, M – inductance, L 

Stiffness, K – Inverse of capacitance 1/C 

Newton’s second law – Kirchhoff’s voltage law.  

 

18. Write the analogous electrical elements in force current analogy for the elements of mechanical translational system 

Force, f – current, i 

Velocity, V – Voltage, e 

Displacement, x – flnx    

Fricitional coefficient, B – Conductance, G = 1/R 

Mass, M – capacitance C 

Stiffness, K – Inverse of inductance, 1/L 

Newton’s second law – Kirchhoff’s current law 

 

19. Write the analogous electrical elements in torque voltage analogy for the elements of mechanical rotational system 

Torque, T – Voltage, e 

Angular Velocity,   - current , i 

Angular Displacement,   - charge, q  



 

 

Frictional coefficient, B – Resistance, R 

Moment of Inertia, J– inductance, L 

Stiffness of the spring, K-– Inverse of capacitance 1/C 

Newton’s second law – Kirchhoff’s current law 

 

20. Write the analogous electrical elements in torque current analogy for the elements of mechanical rotational system 

Torque, t – current , i 

Angular Velocity,   - voltage , e 

Angular Displacement,   - flux,    

Frictional coefficient , B- Conductance , G = 1/R 

Moment of Inertia, I- capactitance, C 

Stiffness of the spring , K – Inverse of  inducatance, 1/L 

Newton’s second law – Kirchhoff’s current law 

 

21. Write the force balance equation of an ideal mass, dashpot and spring element 

Let a force f be applied to an ideal mass M. The mass will offer an opposing for 
mf  which is proportional to acceleration. 

   2 2

mf f Md X / dt    

 Let a force f be applied to an ideal dashpot, with viscous frictional coefficient B. the dashpot will offer an opposing 

force 
bf  which is proportional to velocity. 

                                            b

dX
f f B

dt
    

Let a force f be applied to an ideal spring, with spring constant K. The spring will offer an opposing force 
kf  which is 

proportional to displacement. 

        
kf f K X    

22. Why negative feedback is invariably preferred in closed loop system? 

The negative feedback results in better stability in steady state and rejects any disturbance signals. 

 

23. State the principles of homogeneity (or) superposition 

The principles of superposition and homogeneity states that if the system has responses   

y1(t) and y2(t) for the inputs x1(t) and x2(t) respectively then the system response to the linear combination of the individual 

outputs a1x1(t) + a2x2(t) its given by linear combination of the individual outputs a1y1(t) +a2y2(t) where a1 ,a2 are constant. 

 

1 2 1 2

1 1 2 2

y (t) and y (t) for the inputs x (t) and x (t) respectively then the system respsonse to the linear combination of the 

individual outputs a x (t) a x (t)is given by linear combination of the individua 1 1 2 2 1,l outputs a y (t) a y (t) where a
 

2a  are constant   

24. What are the basic properties of signal flow graph? 

The basic properties of signal flow graph are 

 Signal flow graph is applicable to linear systems 

 It consists of nodes and branches 

  A node adds the signal of all incoming branches and transmits this sum to all outgoing branches. 

 Signals travel along branches only in the marked direction and is multiplied by the gain of the branch. 

 The algebraic equations must be in form of cause and effect relationship 

 

25. Define non touching loop 

The loops are  said to be non touching if they do not have common nodes 

 

26. List the advantages of closed loop system?    Nov/Dec 2015 & April/May 2017 

It is accurate.  



 

 

The change in output due to external disturbances are corrected automatically. 

 

Part B and C question &  Answers 

1. Explain the features of closed loop feedback  Control  system                       May/ June 2015 

Control system in which the output has an effect upon the input quantity in order to maintain the desired output values 

are called closed loop systems. 

 

 

      

 

 

 

 

 

 

 

 

The open loop system can be modified as closed loop system by providing a feedback. The  provision of feedback 

automatically corrects the changes in output due to disturbances. Hence the closed loop system is also called automatic control 

systems 

The general block diagram of an automatic control system is shown in fig. In consists of an error detector, a controller, plant 

and feedback path elements. 

The reference signal (or input signal) corresponds to desired output. The feedback path elements samples the output and 

converts it to a signal of same type as that of reference signal. The feedback signal is proportional to output signal and it is fed to the 

error detector. 

The error signal generated by the error detector is difference between reference signal and feedback signal. The controller 

modifier and amplifies the error signal to produce better control action. The modified error signal is fed to the plant to correct its 

output. 

 

Advantages of closed loop system: 

1. The closed loop systems are accurate. 

2. The closed loop systems are accurate even in the presence of non linearties. 

3. The sensitivity of the systems may be made small to make the system more stable 

4. The closed loop systems are less affected by noise. 

Disadvantages of closed loop systems. 

  

1. The closed loop systems are complex and costly 

2. The feedback in closed loop system may lead  to oscillatory response. 

3. The feedback reduces the overall gain of the system 

4. Stability is a major problem in closed loop system and more care is needed to  design a stable closed loop system 

2.Compare open loop and closed loop control system    Nov/Dec 2016, Nov/Dec 2018 

S.No. Open Loop Closed loop 

1. Any change in output has no effect on the input 

(i.e.) feedback does not exists 

Changes in output, affects the input which is 

possible by use of feedback 

2. Output measurement is not required for operation 

of system 

Output measurement is necessary 

+ 

Controllers Open loop system plant  

Feedback 

Error detector 

Reference 

Input r(t) 

 

Output c(t) 



 

 

3. Feedback element is absent Feedback element is present 

4. Error detector is absent Error detector is necessary 

5. It is inaccurate and unreliable Highly accurate and reliable 

6. Highly sensitive to the disturbances  Less sensitive to the disturbances 

7. Highly sensitive to the environmental changes   Less sensitive to the environmental changes   

8. Bandwidth is small Bandwidth is large 

9. Simple to construct and cheap Completed to design and hence costly 

10. Generally are stable in nature  Stability is the major consideration while designing 

11. Highly affected by non linearities Reduced effect of non linearities 

Mathematical Models of Electrical Systems 

 The basic elements of electrical system are resistor, inductor, capacitor 

 The differential equations of the electrical systems can be formed by applying Kirchoff’s laws 

  

 

Problems 

1. Obtain the transfer function of the electrical network shown in fig. 

 

 

 

COMPONENTS VOLTAGE ACROSS THE 

ELEMENT 

CURRENT THRO’ THE 

ELEMENT 

Resistors  

 

            i(t)      R 

 

V(t) Ri(t)  

 

V(t)
i(t)

R
   

Inductor 

      V(t)        

     i(t)             L 

 

 

 

di(t)
v(t) L

dt
  

 

1
i(t) v(t)dt

L
   

Capacitor 

      V(t)        

 

        i(t)       C 

 

 

1
v(t) i(t)dt

C
   

 

dv(t)
i(t) C

dt
   

      V(t)      

  

+ 

+ 

1R   

C1 C2 2v (t)   e(t) 

R2 

~ 

 

 



 

 

 

 

 

Input – e(t) 

Output – V2(t) 

Transfer function   =  2V (s)

E(s)
  

 

Using source transformation technique, voltage source is converted into current source. 

    

 

 

Apply KCL at node 1,  

1 1 1 2

1

1 2

V dV V V e(t)
C                    (1)

R dt R R


  

  

Apply KCL at node 2 

2 1 2
2

2

V V dV
C 0                                (2)

R dt


    

Equations (1) and (2) forms differential equations/mathematical form of the electrical network shown in fig, 

To find transfer function 
2V (s) / E(s)   

Apply Laplace transform to eqn (1) 

1 1 2

1

1 2 2 1

2

1 1

1 2 2 1

V (s) V (s) V (s) E(s)
C sV(s)

R R R R

V (s)1 1 E(s)
V (s) sC (3)

R R R R

   

 
    

 

 

Apply Laplace transform to eqn (2) 

1C

  

C2 2v (t)   

2R   

1R   

V1 V2   

e(t)

R
  



 

 

 

2 1

2 2

2 2

2 2 1

2 2

1 2 2 2

V (s) V (s)
C sV (s) 0

R R

1 1
V (s) C s V (s) 0

R R

V (s) 1 sC R V (s) (4)

  

   
      

   

  

  

 

 

2
2

2

L x(t) X(s)

dx(t)
L sX(s)

dt

d x(t)
L s X(s)

dt

X(s)
L x(t)dt

s



 
 

 

 
 

 

  
 

 

Substituting for 
1V (s) from (4) in (3), we get   

  2

2 2 2 1

1 2 2 1

V (s)1 1 E(s)
V (s) 1 sC R sC

R R R R

 
     

 
 

  2 1 1 2 1 1

2 2 2

1 2 1 2 1

R sC R R R R E(s)
V (s) 1 sC R

R R R R R

   
    

   

 

  2 2 2 1 1 1 2 1

2

1 2 1

1 sC R R R sC R R R E(s)
V (s)

R R R

    
 

 
 

  
2 2

2 2 1 2 1 1 2 1

V (s) R
(5)

E(s) 1 sC R R R sC R R R


   
 

Eqn (5) Is the required transfer function 

2. Obtain the transfer function of the following n/w 

 

 

 

 

 

 

 

 

 

 

 

Input  ie (t)  

R2 

L2 
1R   

1L   

ei(t) 

i(t) 

2
i (t)  

C 

0e (t)   



 

 

 Output 
oe (t)   

 Transfer function = 0

i

E (s)

E (s)
  

Applying KVL to mesh 1, 

 

 

1

i 1 1 1 i 2

2

2 2 2 2 1

di 1
e (t) R i L i i dt (1)

dt C

Applying KVL to mesh 2,

di 1
0 L R i i i dt (2)

dt C

    

    





 

0 2 2e (t) i (t) R (3)   

Applying Laplace transform to eqns. (1), (2)   and (3) 

 i 1 1 1 1 1 2

i 1 1 1 2

1
E (s) R I (s) L sI (s) I (s) I (s)

Cs

1 1
E (s) R L s I (s) I (s) (4)

Cs Cs

   

 
    
 

 

 2 2 2 2 2 1

1
0 L sI (s) R I (s) I (s) I (s)

Cs
     

1 2 2 2

1 1
0 I (s) R L s I (s) (5)

Cs Cs

 
    

 
 

0 2 2E (s) R I (s) (6) 

 

Expressing eqn (4) & (5) in matrix form  

 
1 1

1i

2
2 2

1 1
R L s

I (s)E (s) Cs Cs

0 1 1 I (s)
R L s

Cs Cs

 
      

     
      
  

 

 

1 1

2 2

2

1 1 2 2

1 1
R L s

Cs Cs

1 1
R L s

Cs Cs

1 1 1
R L s R L s

Cs Cs Cs

  

 

  

     
          

      

 



 

 

1 1 i

2 i

1
R L s E (s)

1Cs
I (s) E (s)

1 Cs
0

Cs

 

  



 

i
2

2 2

1 1 2 2

1
(s)

I (s) CsI (s)
1 1 1

R L s R L s
Cs Cs Cs




 
      

         
      

 

0 2 2

ii 2

2

1 1 2 2

E (s) I (s)R

11 E (s)E (s) R
CsCs

1 1 1
R L s R L s

Cs Cs Cs



 
     

         
      

    

2

2 2

1 1 2 2

2

R

R Cs L Cs 1 R Cs L s 1 1

C

     
 

2s

 

         
  

i 2

2 2

1 1 2 2

E (s)R Cs

R Cs L Cs 1 R Cs L Cs 1 1

     
 

 

0 2 s

2 2
i 1 1 2 2

E (s) R C

E (s) L Cs R Cs 1 L Cs R Cs 1 1

          

 

3. An electrical circuit is shown in fig. obtain the transfer function relating the output voltage 
oe (t)  to the input voltage 

ie (t)  in 

the form 

 

 
10

g

i 2

1 sTE (s)
K

E (s) 1 sT





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig (a)       fig(b) 

 

 

 

Sol: The components 1 1R  & C  form one parallel combination 
2 2R  & C  form are one parallel combination and representation 

in fig (b) 

iE (s)   

1Z (s)   

2Z (s)   

0E (s)   
 

C1 

oe (t)   

1R   

2R   

ie (t)   

C2 



 

 

 

 

1
1

1

1 1
1

2
2

2 2

1
R

RCsZ (s)
1 1 R C s

R
Cs

similarly,

R
Z (s)

1 R C s

  







 

By voltage division d rule, 

 

  

2

0 i

1 2

2

0 2 2 2

1 2i 1 2

1 1 2 2

Z (s)
E (s) ,E (s)

Z (s) Z (s)

R

E (s) Z (s) 1 R C s

R RE (s) Z (s) Z (s)

1 R C s 1 R C s





 




 

 

= 
 

2

2 2

R

1 R C s


   

   
1 2 2 1 1 2

1 1 2 2

R 1 R C s 1 R C s R

1 R C s 1 R C s

  

 

 

 
 

   

 2 1 1 2 1 1

1 2 2 2 1 1 1 2 1 2 1 1 2 2

R 1 R C s R 1 R C s

R 1 R C s R 1 R C s R R R R C s R R C s

 
 

     
 

 
 

 

2 1 1

1 2 1 1 2 2
1 2

1 2

R 1 R C s

R R C s R R C s
R R 1

R R




 
  

 

 

 

 

2 1 10

3

i
1 2 1 1 2 2

1 2

1 2

R 1 R C sE (s)

E (s) R R C R R C
R R 1

R R




 
  

 

 

 

 

 
10 2

g g

i 2 1 2

1 2 1 1 2 2

1 1 1 2

1 2

1 sTE (s) R
K where K ;

E (s) 1 sT R R

R R C R R C
T R C ; T 1

R R


 

 

 
   

 

 

Mathematical Modeling of Mechanical Systems 

1. What are the basic elements of Mechanical rotational systems? Write its torque balance equations  Nov/Dec 2015, May/ June 

2015 

The basic elements of Mechanical rotational system are  

(i)  Moment of  Inertia (J) 

(ii) Viscous fiction (B) 

(iii) Torsional stiffness (K) 

Torque Balance Equation 

1. Moment of Inertia  



 

 

 

 
2

J 2

d
T (t) J.

dt


  

T     θ      

 

2. Dashpot    [one end is fixed] 

 

 

B

d
T (t) B

dt


   

3. Torsional Spring [one end is fixed] 

 

 

KT (t) K    

 

4. Dashpot [both ends are free] 

 

B 1 2

d
T (t) B ( )

dt
      

 

 

5. Spring  [both ends are free] 

 

K 1 2T (t) K( )     

 

2. Write the differential equations governing the mechanical system  and determine the transfer function    

    (May/June 2016) (April/May 2019) 

 

 

 

J 

 

 

 

J 

B 

  T     θ 

  T     θ 

K 

  T     θ 
1   

B 

  Θ2  T 
1   

K 

K1 

X1 B x 

ft) 
2M  

1M   

B1 B2 



 

 

 

 

Sol 

Free body diagram for Mass 1 

 

 

 

 

 

 

 

 

2

1

M1 1 K1 1 12

1

B1 1 K 1

B 1

d x
f M f K X

dt

dx
f B . f K x x

dt

d
f B. x x

dt

 

  

 

  

By Newton’s second law, 

Σ applied force = Σ opposing force  

   

M2 B2 B K

2

2 2 1 12

f (t) f f f f

d x dx d
f (t) M B B. x x K x x (3)

dt dtdt

   

      
  

On taking Laplace transform,  

2

2 2 1

1

2

2 2 1

H s X(s) B sX(s) Bs[X(s) X (s)]

K[X(s) X (s)]   =  F(s)

X(s) [M s (B B)s k] X (s)[Bs K] F(s)    (4)

  

 

      

  

Substituting eqn (2) in eqn (4) 

 
 

   

2

2

2 2 2

1 1 1

Bs K
X(s) M s B B s K X(s)

M s B B s K K


          

  

       

   

22 2

1 1 1 2 2

2

1 1 1

M s B B s K K M s B B s K Bs K
X(s) F(s)

M s B B s K K

                 
    

 

 

M1

B1

B

K1

K

f

f

f

f

f

  1M

  

1x   



 

 

2

1 1 1

2 2 2

1 1 1 2 2

M s (B B)s (K K)X(s)

F(s) [M s (B B)s (K K)][M s (B B)s K] (Bs K)

   
 

        
 → (5) 

Eqn (1) and (3) forms the Mathematical model/differential equation of the given mechanical system equation (V) is the required 

transfer function 

3.For the mechanical translational system shown in fig. determine the differential equation and obtain the transfer function 2Y (s)

F(s)
 

Nov/Dec 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

Sol: Free body diagram for 
1M   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

1

M1 1 2

K1 1 1 2

B1 1 1 2

d y
f M

dt

f K y y

d
f B y y

dt



 

 

  

By Newton’s second law,  

   

M1 B1 K1

2

1

1 1 1 2 1 1 22

f (t) f f f

d y d
f (t) M B y y K y y (1)

dtdt

  

     
  

2B

  

1B

  

2K   

2y   

1y   

M2 

M1 

K1 

1M

  

M1

B1

K1

f (t)

f

f

f

  

Y1 

 



 

 

Taking Laplace transform 

   

 

2

1 1 1 1 2 1 1 2

2

1 1 1 1 1 1 2

F(s) M s Y (s) B s Y (s) Y (s) K Y (s) Y (s)

F(s) M s B s K Y (s) B s K Y (s) (2)

    

       

  

 

Free body diagram for 
2M   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

M2 2 K1 1 2 12

B1 1 2 1 K 2 2

2

B 2

d y
f M . f K (y y )

dt

d
f B . (y y ) f K y

dt

dy
f B .

dt

  

  



  

By Newton’s second Law, 

 

   

M2 B1 B K1 K

2

2 2

2 1 2 1 1 2 1 2 22

f f f f f 0

d y dyd
M B y y B K y y K y 0 (3)

dt dtdt

    

       
  

 

Taking Laplace transform 

 

   

 

     

2

2 2 1 2 1 2 1 2 1 2 2

2

2 1 1 2 2 1 1 1

2

2 1 1 2 2 1 1 1

M s Y (s) B s Y (s) Y (s) BsY (s) K Y (s) Y (s) K Y (s) 0

M s B s Bs K K Y (s) B s K Y (s) 0

M s B B s K K Y (s) B s K Y (s)

      

        

       

  

   
 

2

2 1 1 2

1 2

1 1

M s B B s K K
Y (s) Y (s) (4)

B s K

   
 


                                    

Substituting equation (4) in equation (2) 

 

     

 
 

2 2

1 1 1 2 1 1 2 2

1 1 2

1 1

M s B s K M s B B s K K Y (s)
F(s) B s K Y (s)

B s K

       
  


  

 
       

 

22 2

1 1 1 2 1 1 2 1 1

2

1 1

M s B s K M s B B s K K B s K
F(s) Y (s)

B s K

        



  

f(t)  

fM1  

fB1  

fK1  

1M

  

y1 



 

 

     
2 1 1

22 2

1 1 1 2 1 1 2 1 1

Y (s) B s K
(5)

F(s) M s B s K M s B B s K K B s K


 
             

  

Eqn (1) and (3) forms the mathematical model/ differential equations of the given system eqn (5) gives the required transfer function 

of the given mechanical system 

4. Determine the transfer function of the system shown in fiq. 

 

 

 

 

 

Sol: Given system can be redrawn as follows 

 

 

 

 

 

Free body diagram for Mass M 

 

 

 

 

 

 

 

2

M 2

B1 1

B 1

d x
f M

dt

dx
f B

dt

d
f B. x x

dt





 

  

M   
M

B1

B

f (t)

f

f

f

  

B 

M 

K 

a 

x(t) 

f(t) 

B1 

M1 = 0 

1x t   

B 

M 

K 

a 

x(t) 

f(t) 

B1 



 

 

By Newton’s second law 

 

M B1 B

2

1 12

f (t) f f f

d x dx d
M B B. x x f (t) (1)

dt dtdt

  

    
  

On taking Laplace transform 

 

 

2

1 1

2

1 1

Ms X(s) B sX(s) Bs X(s) X (s) F(s)

Ms B B s X(s) BsX (s) F(s) (2)

   

      

  

Free body diagram for 
1M 0   

 

 

 

K 1

B 1

f Kx

d
f B. x x

dt



 
 

 

 

 

By Newton’s second law, 

 

B K

1 1

f f 0

d
B x x Kx 0 (3)

dt

 

    
    

On taking Laplace transform  

 

 

 

 

1 1

1

1

1

Bs X (s) X(s) KX (s) 0

Bs K X (s) BsX(s) 0

X (s) Bs K Bs.X(s)

Bs
X (s) .X(s) (4)

Bs K

  

  

 

 


  

On substituting eqn. (4) in eqn (2) 

2
2

1

(Bs)
[Ms (B B)s]X(s) X(s) F(s)

Bs K
   


  

1
M 0

  

K

B

f

f

  

X1
 



 

 

   

     

22

1

22

1

Ms (B B)s Bs K Bs
X(s) F(s)

Bs K

X(s) Bs K
(5)

F(s) Ms B B s Bs K Bs

        
 

 


 
     

  

Equation (1) and (3) are differential equations governing the given system 

Equation (5) is the required transfer function of the given mechanical translational system 

5.Derive the transfer function of system shown  in fig    May/June 2015 

 

     f(t) 

 

 

Freebody diagram for 
1M   

 

     

 

2

1

M1 1 2

K 1 2

d x
f M

dt

f K x x



 

  

 

By Newton’s second law, 

 

M1 K

2

1

1 1 22

f (t) f f

d x
f (t) M K x x (1)

dt

 

   
    

On taking Laplace transform,  

 2

1 1 1 2F(s) M s X (s) K X (s) X (s)     

 2

1 1 2F(s) M s K X (s) KX (s) (2)      

Free body diagram for 2M   

 

 

 

M1 

2Kg 

X1 

f(t) 

fM1 

fK 

 

X2 

fM2 

fK 

 

M2 

2Kg 

K 

M1 = 2 Kg 

 

m 

M2 = 2 Kg 

X1 

 X2 

11 

X2 



 

 

 

      

 

2

2

M2 2 2

K 2 1

d x
f M .

dt

f K x x



 

  

By Newton’ second law 

 

M2 K

2

2

2 2 12

f f 0

d x
M K x x 0 (3)

dt

 

   
   

On taking Laplace transform  

 

 

 

2

2 2 2 1

2

2 2 1

2

2 2 1

2 12

2

2

2

1 2

M s X (s) K X (s) X (s) 0

M s K X (s) KX (s) 0

M s K X (s) KX (s)

K
X (s) X (s) (4)

M s K

M s K
X (s) X (s) (5)

K

  

  

 

 



 

 

On substituting eqn (4) in (2) 

 

  

2
2

1 1 12

2

2 2

1 2

12

2

K
F(s) M s K X (s) X (s)

M s K

M s K M s K K
F(s) X (s)

M s K



  


 




 

  

2

1 2

2 2 2

1 2

X (s) M s K
(6)

F(s) M s K M s K K


 

  
 

Put M1 = 2; M2 = 2 in eqn (6) 

  

 

 

   

2

1

2 2 2

2

1

2
2 2

2

4 2 2 2

2 2

4 2 4 2

2

2 2 2

X (s) 2s

F(s) 2s K 2s k K

X (s) 2s

F(s) 2s K K

2s

4s K 4Ks K

2s s

4s 4Ks 2 s Ks

s 1

2s s K 2 s K


  


 


  

 
 

 
 

  



 

 

 

 
1

2

X (s) 1
(7)

F(s) 2 s K
 


  

On substituting eqn (5)  in eqnn (2) 

2 2

1 2

2 2

2 2 2

1 2

2

(M s K)(M s K)
F(s) X (s) KX (s)

K

(M s K)(M s K) K
F(s) X (s)

K

 
 

   
  
 

  

  

   

2

2 2 2

1 2

1 2

2

2 4 2
2 2

X (s) K
(8)

F(s) M s K M s K K

put M 2, M 2

X (s) K K

F(s) 2 s Ks2s K K

 
   
 

 

  
   
  

  

 
2

2 2

X (s) K
(9)

F(s) 2s s K
  


  

Eqn (7) & (9) are the required transfer function. 

6.For the mechanical rotational system shown in fig determine the transfer function. 

 1(s)(s)
&

T(s) T(s)


  

 

 

  

 

Sol : Free body diagram for mass with moment of intertia 
1J   

 

 

 

 

   
j1 b12 kT  T  T   

J1 

    T 
1   

B 

B12 

J1 J2 

K 

            T    
1   



 

 

   
2

1

j1 1 b12 12 1 K 12

d d
T J ; T B ; T K

dtdt


         

By Newton’s second law, 
j1 b12 kT T T T     

   
2

1

1 12 1 12

d d
J B . K T            (1)

dtdt


         

On taking Laplace transform, 

   

 

2

1 1 12 1 1

2

1 1 12 12

J s (s) sB (s) (s) K (s) (s) T(s)

(s) J s sB K (s) sB K T(s) (2)

    

      

    

 
 

Free body diagram of mass with moment if intertia J2 

 

 

 

 

 

 

2

J2 2 b12 12 12

b K 1

d d
T J ; T B

dt dt

d
T B ; T K

dt


  


  

  

By Newton’s second law  

j2 b12 b kT T T T 0      

   
2d d d

T J B B K 0 (3)
2 12 1 1j2 2 dt dtdt

 
          

On taking Laplace transform, 

     

   

2

2 12 1 1

2

2 12 1 12

2

2 12

1

12

12

12

2 12

J s (s) B s (s) (s) Bs (s) K (s) (s) 0

(s) J s s B B K (s) B s K 0

J s s(B B) K
(s) (s)                (4)

B s K

B s K
(s) = (s)                (5)

J s s(B B) K

         

        

   
   

 

 
  

   

  

Substituting equation (4) in eqn (2) 

   
j1 b12 b kT  T  T T   

J2 

   



 

 

 
2 2

1 12 2 12

12

12

J s B s K J s s(B B) K
(s) B s K (s) T(s)

(B s K)

          
    


  

2 2 2

1 12 2 12 12

12

J s B s K J s s(B B) K (B s K)
(s) T(s)

B s K

            
 


  

 
12

22 2

1 12 2 12 12

B s K(s)
       (6)

T(s) J s B s K J s s(B B) K B s K



            

  

Substituting eqn (5) in eqn (2) 

2
2 12

1 1 12 12

2 12

(B s K)
(s) J s sB K (s) T(s)

J s s(B B) K


          

  

2 2 2

1 12 2 12 12

1 2

2 12

(J s B s K)(J s s(B B) K) (B s K)
(s) T(s)

J s s(B B) K

        
 

  
  

2

1 2 12

2 2 2

1 12 2 12 12

(s) J s s(B B) K
        (7)

T(s) (J s B s K)(J s s(B B) K) (B s K)

   


      
  

The equation (1) and (3) are called differential equations of the given mechanical rotational systems. 

The equation (6) and (7) are the required transfer functions of the given mechanical rotational systems. 

 

Analogous Systems 

7.Write the differential equations governing the mechanical system shown in fig. Draw the force voltage and 

force current electrical analogous circuits and verify by writing mech and node equations. 

 

 

 

 

 

 

Solution: 

Freebody diagram for mass M1 

M1 M2 

 

X1 

V1 

 

B1 

K1 K2 

B12 

2

2

x

v

  

B2 

f(t) 

 

 

X1, V1 

f(t) 

fM1 

fB1 



 

 

 

 

 

2

1

M1 1 K1 1 1 22

1

B1 1

B12 12 1 2

d x
f M ; f K x x

dt

dx
f B

dt

d
f B x x

dt

  



 
 

 

 

 

 

By Newtons second  law,  

   

M1 B1 B12 K1

2

1 1

1 1 12 1 2 1 1 22

f f f f f (t)

d x dx d
M B B x x K x x f (t) (1)

dt dtdt

   

      
  

Free body diagram for Mass 
2M   

 

 

2

2

M2 2 2

2

B2 2

B12 12 2 1

K1 1 2 1

K2 2 2

d x
f M

dt

dx
f B

dt

d
f B x x

dt

f K x x

f K x





 

 



  

 

 

 

 

By Newtons second law, 

   

M2 B2 K2 B12 K1

2

2 2

2 2 2 2 12 2 1 1 2 12

f f f f f 0

d x dx d
M B K x B x x K x x 0 (2)

dt dtdt

    

       
  

On replacing the displacements by velocity in differential equations (1) and (2) of the mechanical system 

 

M2 

fM2 

fB2 

fB12 

fK1 

fK2 

X2 

V2 

 



 

 

   

   

2

2

1

1 1 1 12 1 2 1 1 2

2

2 2 2 2 2 12 2 1 1 2 1

d x dv dx
(i.e., )v, ; v;x vdt

dt dtdt

dv
M B v B v v K v v dt f (t) (3)

dt

dv
M B v K v dt B v v K v v dt 0 (4)

dt

 
   

 

      

       





 

  

FORCE VOLTAGE ANALOGOUS CIRCUIT 

The electrical analogous elements for mechanical system are given below 

1 2 2

1 1 1 1 1 1

2 2 2 2 2 2

12 12

f (t) e(t);  v i;  v i ;

M L       B R     K 1/ C

M L       B R    K  =1/ C

                   B R

  

  

 



  

Force voltage electrical analogous circuits is shown below 

 

    

 

 

 

 

Applying KVL to mesh 1 

1

1 1 1 12 1 2 1 2

1

2

2 2 2 2 12 2 1 2 1

2 1

di 1
L R i R (i i ) (i i )dt e(t)        (5)

dt c

di 1 1
L R i i dt R (i i ) (i i )dt 0  (6)      

dt c c

     

      



 

  

It is observed that the mesh basis equations 

Eqn (5) and (6) ar similar to the differential equations 

Eqn (3) and (4) governing the mechanical system 

FORCE CURRENT ANALOGOUS CIRCUIT 

The electrical analogous elements for the elements of mechanical system  

C2
 ~ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e(t)  

1R

  

C1 

2L   
1L   

1
i   

2
i   

R12 
2

2

R

C

  



 

 

1 1 1 1 1 1

1 1 2 2 2 2 2 2

2 2 12 12

f (t) i(t) M C B 1/ R K 1/ L

v V M C B 1/ R K 1/ L

v V B 1/ R

   

   

 

  

 

 

 

 

 

  Force-current electrical analogous circuit 

Applying KCL at node 1 

   

   

1

1 1 1 2 1 2

1 12

2

2 2 2 2 1 2 1

2 2 12

dV 1 1 1
C V V V V V dt i(t) (7)

dt R R L

dV 1 1 1 1
C V V dt V V V V dt 0 (8)

dt R L R L

      

       



 

  

It is observed that the node basis equations 

Eqn (7) and (8) are similar to the differential equations 

Eqn (3) and (4) governing the mechanical system 

8. Write the differential equations the mechanical system shown in fig.Draw the force – voltage and force current electrical analogous 

circuit and verify by writing mesh and node equations.      NOV/DEC   2015 

    

 

 

 

 

 

Sol:  Freebody diagram of M1 

 

 

1K

  

1B   

1 1x , v   M1 

f1(t) 

2K

  

2 2x , v   M2 

f2(t) 

3K

  

3B   

3 3x , v   M3 

1M

  

1

1

x

v   

M1

B1

K1

K 2

f

f

f

f

  

1f (t)   

 C1 

12R

  

1L   



  
1R

  

C2
 

i(t) R2 

2L   

1V   2V   



 

 

 

 

2

1 1

M1 1 B1 12

K2 2 1 2 K1 1 1

d x dx
f M . f B .

dtdt

f K x x ; f K x

 

  

 

 

By newton’s second law,   

   
 

M1 B1 K1 K2 1

2

1 1

1 1 2 1 2 1 1 12

f f f f f (t)

d x dx
M B K x x K x f (t) (1)

dtdt

   

     
  

Free body diagram of M2 

 

       
 

   

2

2

M2 2 B3 3 2 32

K2 2 2 1 K3 3 2 3

d x d
f M . f B . x x

dtdt

f K x x ; f K x x

  

   

  

 

 

 

By Newtons second law, 

     

M2 B3 K2 K3 2

2

2

2 3 2 3 2 2 1 3 2 3 22

f f f f f (t)

d x d
M B x x K x x K x x f (t) (2)

dtdt

   

       
  

Free body diagram for M3 

 

        

 

2

3

M3 3 2

B3 3 3 2

K3 3 3 2

d x
f M

dt

d
f B x x

dt

f K x x



 

 

 

By Newtons second law 

2M

  

2

2

x

v   

M 2

B3

K 2

K 3

f

f

f

f

  

1f (t)   

3M

  

3

3

x

v   

M3

B3

K3

f

f

f

  



 

 

   

M3 B3 K3

2

3

3 3 3 2 3 3 22

f f f 0

d x d
M B x x K x x 0 (3)

dtdt

  

     
  

On replacing the displacements by velocity in the differential equation (1) and (2) and (3) governing the mechanical system 

 

     

   

1
1 1 1 1 1 2 1 2 1

2
2 3 2 3 2 2 1 3 2 3 2

3

3 3 3 2 3 3 2

dv
M B v K v dt K v v dt f (t) (4)

dt

dv
M B v v K v v dt K v v dt f (t) (5)

dt

dv
M B v v K v v dt 0 (6)

dt

     

       

     

 

 



  

FORCE VOLTAGE ANALOGOUS CIRCUIT 

The electrical analogous elements for the elements of mechanical system are given below. 

  

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 1 3 3 3 3

2 2

3 3

f (t) e (t) M L B R K 1/ C

f (t) e (t) M L B R K 1/ C

v i M L K 1/ C

v i

v i

   

   

  





  

  

 

 

 

 

 

 

Applying KVL to mesh (1), (2) and (3) 

 

1R   
1C   

1i   

2
i  

C1
 

2e (t)

  2L   

1L   

1e (t)   

3

3

R

C

  
3i   

3L   



 

 

 

1

1 1 1 1 1 2 1

1 2

2

2 3 2 3 2 3 2 1 2

3 2

3

3 3 3 2 3 2

3

di 1 1
L R i i dt (i i )dt e (t)       (7)

dt C C

di 1 1
L R (i i ) i i dt (i i )dt e (t)   (8)

dt C C

di 1
L R (i i ) (i i )dt 0        (9)

dt C

    

      

    

 

 



  

It is observed that the mesh equations (7), (8) and (9) are similar to the differential equations (4), (5) and (6) governing the mechanical 

system 

 

FORCE CURRENT ANALOGOUS CIRCUIT  

The electrical analogous elements for the elements of mechanical system are given below 

1 1 1 1 1 1 1 1

2 2 2 2 3 3 2 2

1 1 3 3

2 2

3 3

f (t) i (t) M C B 1/ R K 1/ L

f (t) i (t) M C B 1/ R K 1/ L

v V M C

v V

v V

   

   

 




  

 

 

 

On applying KCL at node (1), (2) and (3) 

 1

1 1 1 1 2 1

1 1 2

dV 1 1 1
C V V dt V V dt i (t) (10)

dt R L L
       

2

2 2 3 2 3 2 1 2

3 3 2

dV 1 1 1
C (V V ) (V V )dt (V V )dt i (t)   (11)

dt R L L
          

3

3 3 1 3 1

3 3

dV 1 1
C (V V ) (V V )dt 0     (12)

dt R L
       

It is observed that node basis equations (10). (11) and (12) are similar to the differential equations (4), (5) and (6) governing the 

mechanical system 

9. Write the differential equations governing the mechanical  rotational system shown in fig. Draw the torque voltage and torque – 

current electrical analogous circuits and verifying by writing mesh and node equations. 



  
C1

 
1

R

  

1
L

  



  2i (t)   
C2 

 

3c   

1 2 2v       L        v

  

    
3R   

3v   

L3 

1i (t)   



 

 

 

 

 

 

 

 

Sol 

Free body diagram of J1 

 

 

 

2

1

ji 1 2

1

b1 1

k1 1 1 2

d
T J

dt

d
T B

dt

T K ( )







  

  

By newtons second law 

j1 b1 k1

2

1 1

1 1 1 1 22

T T T T

d d
J B K ( ) T          (1)

dtdt

  

 
    

   

Free body diagram of 
2J   

 

 

1

2

2 2

j2 2 b2 2 k2 2 2 k 1 2 12

d d
T J ;      T B ;    T K ;  T K ( )

dtdt

 
         

By Newtons second law,  

j2 b2 k2 k1

2

2 2

2 2 2 2 1 2 12

T T T T 0

d d
J B K K ( )              (2)

dtdt

   

 
     

   

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing the mechanical 

rotational system, we get 

 

J1 

1T    

  

j1 b1 k1T  T  T

  

J2 

2      j2 b2 k2 k1T  T  T  T

  

1J   
2J   

1 1    
2 2    

1K   
2K   

T   

1B   
2B   



 

 

 

   

2

2

1

1 1 1 1 1 22

2

2 2 2 2 2 1 2 12

d d d
(i.e ; ; dt)

dt dtdt

d
J B K dt T (3)

dt

d
J B K dt K dt 0 (4)

dt

  
     


      


        





 

  

TORQUE – VOLTAGE ANALOGOUS CIRCUIT 

The electrical analogous elements for the elements if mechanical rotational system are given below 

1 1 1 1 1 1

1 1 2 2 2 2 2 2

2 2

T e(t) J L B R K 1/ C

i J L B R K 1/ C

i

   

    

 

  

 

 

 

 

 

 

Applying KVL to mesh (1) and (2) 

1

1 1 1 1 2

1

2

2 2 2 2 2 1

2 1

di 1
L R i (i i ) e(t)            (5)

dt C

di 1 1
L R i i dt (i i )dt 0      (6)

dt C C

   

    



 

  

It is observed that mesh basis equations (5) and (6) are similar to differential equations (3) and (4) governing the mechanical system. 

TORQUE CURRENT ANALOGOUS CIRCUIT 

The electrical analogous elements for the elements of mechanical rotational system are given below. 

1 1 1 1 1 1

1 1 2 2 2 2 2 2

2 2

T i(t) J C B 1/ R K 1/ L

V J C B 1/ R K 1/ L

V

   

    

 
  

 

 

 

± 

e(t)  

1R

  

1C

  

2L   

1
i   

2
i   

2

2

R

C

  

1L

  

C2  

1L   

1R

  

1V   
2V   

i(t)   
2R

  

2L

  C1 



 

 

 

 

 

Applying KCL at node (1) and (2) 

 1
1 1 1 2

1 1

dV 1 1
C V V V dt i(t)

dt R L
     

2
2 2 2 2 1

2 2 1

dV 1 1 1
C V V dt (V V )dt 0   (8)

dt R L L
       

It is observed that the node basis equations (7) and (8) are similar to the differential equations (3) and (4) governing the mechanical 

system. 

10.Write the differential equations governing the mechanical rotational system shown in fig. Draw the torque-voltage and torque-

current electrical analogous circuits and verify by writing mesh and node equations. 

     

 

 

 

Solution 

Freebody diagram of J1 

 

 

 

2

1

ji 1 2

1 2

b1 1

k1 1 1 2

d
T J

dt

d( )
T B

dt

T K




  


   

  

By newtons second law,   
j1 b1 k1T T T T     

2

1 1 2

1 1 1 1 22

d d( )
J B K ( ) T             (1)

dtdt

  
       

Freebody diagram of J2 

J1 

1T    

  

j1 b1 k1T  T  T

  

1J   2J   
3J   

1K   
2B   

3K   

1B   

T 



 

 

 

       

2

j2 2 2

2 3

b2 2

k1 1 2 1

2 1
b1 1

d
T J

dt

d( )
T B

dt

T K ( )

d( )
T B

dt




 


  

 


  

By newtons second law, 

j2 b2 b1 k1

2

2 1

2 2 2 3 1 1 2 12

T T T T 0

d( )d d
J B ( ) B K ( ) 0      (2)

dt dtdt

   

 
       

  

Free body diagram of J3 

 

       

2

3

j3 3 2

3 2

b2 2

k3 3 3

d
T J

dt

d( )
T B

dt

T K




 


 

   

By Newton’s second law, 

j3 b2 k3

2

3 3 2

3 2 3 32

T T T 0

d d( )
J B K 0               (3)

dtdt

  

  
   

  

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing the mechanical 

rotational system, we get 

 
2

2

d d d
(i.e ; ; dt)

dt dtdt

  
        

   

     

 

1
1 1 1 2 1 1 2

2
2 1 2 1 2 2 3 1 2 1

3

3 2 3 2 3 3

d
J B K dt T (4)

dt

d
J B B K dt 0 (5)

dt

d
J B K dt 0 (6)

dt


       


          


      







  

TORQUE – VOLTAGE ANALOGOUS CIRCUIT 

 The electrical analogous elements for the elements of mechanical rotational system are given below. 

J2 

2   j1 b2 k1 b1T  T  T  T

  

J3 

3      j3 b2 k3T  T  T    



 

 

1 1 1 1 1 1

1 1 2 2 2 2 3 3

2 2 3 3

3 3

T e(t) J L B R K 1/ C

i J L B R K 1/ C

i J L

i

   

    

  

 
 

 

 

 

 

 

 

Applying KVL to mesh (1), (2) and (3) 

 

 

1

1 1 1 2 1 2

1

2

2 1 2 1 2 2 3 2 1

2

3

3 2 3 2 3

3

di 1
L R (i i ) (i i )dt=e(t)       (7)

dt C

di 1
L R (i i ) R i i (i i )dt 0   (8)

dt C

di 1
L R (i i ) i dt 0        (9)

dt C

   

      

   







 

 

It is observed that mesh basis equation (7), (8) and (9) are similar to the differential equations (4), (5) and (6) governing the 

mechanical system. 

 

TORQUE – CURRENT ANALOGOUS CIRCUIT 

The electrical analogous elements for the elements of mechanical  rotational system are given below. 

 

 

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 3

3 3 3 3

T i(t) V J C B 1/ R K 1/ L

V J C B 1/ R K 1/ L

V J C

     

    

  

 

 

 

 

C1
 

1L   

1i   

2
i  

2L   

e(t) 
2R

  3i   

3C   

1R

  

3L   

1R   

1L   



  

C2
  

i(t) 
C3 

3L   

1V   2V   

C1
 

2 3R    V

  



 

 

 

 

 

Applying KCL at node (1), (2) and (3)  

   

     

 

1

1 1 2 1 2

1 1

2

2 2 1 2 3 2 1

1 2 1

3

3 3 2 3

2 3

dV 1 1
C V V V V dt i(t) (10)

dt R L

dV 1 1 1
C V V V V V V dt 0 (11)

dt R R L

dV 1 1
C V V V dt 0 (12)

dt R L

     

       

    







 

It is observed that the node basis equations (10), (11), and (12) are similar to the differential equations (4), (5) and (6) governing the 

mechanical system 

 

BLOCK DIAGRAMS 

1. Write the rule for eliminating negative and positive feedback in block diagram reduction    NOV/DEC 2015 

(A) Elimination of –ve feedback loop 

 

 

 

 

  

 

 

 

 

 

 

Proof 

C (R CH)G

C RG CHG

C CHG RG

C(1 HG) RG

C G

R (1 GH)

 

 

 

 




  

(B) Elimination of positive feedback loop 

 

 

 

G   

R CH

  

R   (R CH)G

  
C   

H   

CH

  

C   

R 
G

1 GH

  

C   

G   

R CH

  

R   
(R CH)G

  
C   

H   

CH

  

C   

R 
G

1 GH
  

C   



 

 

 

 

Proof    

C (R CH)G

C RG CHG

C CHG RG

C(1 GH) RG

C G

R 1 GH

 

 

 

 




 

 1 3 2 4

3 1 1 2 3 1 3 4

G G G GC(s)

R(s) 1 G H G G G G G G




  
 

2. Using the block diagram reduction technique. Find the closed loop transfer function of the system whose block diagram is 

shown in fig 

 

 

 

 

 

 

 

 

 

Sol 

Moving the branch point before the block G2 

 

 

 

 

 

R(s)

  

1G   
2G

  

3G   

4G

  

1H   

2H   

C(s)   

R(s)

  

1G   
2G

  

3G   

4G

  

1 2H G

  

2H   

C(s)   



 

 

 

 

 

Combining the cascade blocks G2 and G3 parallel block G1 

 

 

 

 

 

 

 

 

Moving the summing point before G1 

 

 

 

 

 

 

Interchanging the summing points 

 

 

 

 

 

 

R(s)

  

1G   
2 3 4G G G

  

1 2H G

  

2H   

C(s)   

R(s)

  
1G   

2 3 4G G G

  

1 2H G

  

2 1H / G

  

C(s)   

R(s)   

1G   

2 3 4G G G

  

2 1H G

  

1 2H G   

C(s)   



 

 

 

 

Eliminating the inner most negative feedback  

1

1 2

1

1 2 1

G G

H H G

GG

1 GH 1 G G H






 

  

 

 

 

 

 

 

 

 

Combining cascade blocks 

 

 

 

 

Eliminating the inner feedback loop 

1 2 3 4

1 2 1

2 1

G (G G G )
G

1 G G H

H H / G








  

1 2 3 4

1 2 1

1

G (G G G )

1 G G HG

1 GH G
1









2 3 4 2

1 2 1 1

(G G G ) H

1 G G H G





1 2 3 4

1 2

G (G G G )

1 G G






1

1 2 2 2 3 2 4 2

1 2 1

H

1 G G H G G H G H

1 G G H

  



  

R(s)   
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1 2 1

G

1 G G H

  
2 3 4G G G

  

2 1H G

  

C(s)   

R(s)   

1 2 3 4

1 2 1

G (G G G )

1 G G H





  

2 1H G

  

C(s)   



 

 

1 2 3 4

1 2 1 2 3 2 4 2

G (G G G )

1 G G H G G H G H




  
  

 

 

 

 

 

 

 

Eliminating the negative, unity feedback 

1 2 3 4

1 2 1 2 3 2 4 2

G (G G G )
G

1 G G H G G H G H

H 1




  



  

1 2 3 4

1 2 1 2 3 2 4 2

1 2 3 4

1 2 1 2 3 2 4 2

G (G G G )

1 G G H G G H G HG

G (G G G )1 GH
1

1 G G H G G H G H



  





  

  

1 2 3 4

1 2 1 2 3 2

G (G G G )

1 G G H G G H



 


4 2

1 2 1 2 3 2 4 2 1 2 3 1 4

1 2 1 2 3 2

G H

G G H G G H G H G G G G G
1

1 G G H G G H



   


  4 2G H

  

1 2 3 4

1 2 1 2 3 2 4 2 1 2 3 1 4

G (G G G )

1 G G H G G H G H G G G G G




    
  

 

 

 

 1 2 3 4

1 2 1 2 3 2 4 2 1 2 3 1 4

G G G GC(s)

R(s) 1 G G H G G H G H G G G G G




    
  

 

 

R(s)

  
1 2 3 4

1 2 1 2 3 2 4 2

G (G G G )

1 G G H G G H G H



  

  

C(s)   

R(s) C(s) 
 1 2 3 4

1 2 1 2 3 2 4 2 1 2 3 1 4

G G G G

1 G G H G G H G H G G G G G



    
  



 

 

3.Using block diagram reduction technique, find C/R 

 

 

 

 

 

 

 Sol : Moving th branch point a ahead of G2, 

 

 

 

 

 

 

So, Moving the branch point b, before H1 

 

 

 

 

 

 

 

Eliminating the feedback H1 

 

 

 

R(s)   

1G   2G

  

1H   
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a 

b 

R(s)   

1G   2G

  

1H   
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a 

b 

     1/G2 

R(s)   

1G   2G

  

1H
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a 

     1/G2 

1H   

R(s)   

1G   2

2 1

G

1 G H

  

C(s)   

     1/G2 

1H   



 

 

 

 

Combining the cascade blocks 

 

 

 

 

 

 

Eliminating the negative feedback, H1 

 

  

 

1 2

2 1

1

1 2

2 1

1 2
1

2 1

1 2

2 1 1 2 1

G G
G

1 G H

H H

G G

1 G HG

G G1 GH
1 H

1 G H

G G

1 G H G G H















 

  

1 2

2
2 1 1 2 1

1 2

2 1 1 2 1

1 2

G G 1G ,  H
G1 G H G G H

G G

1 G H G G HG

1 GH G G
1

 
 

 





2 1 2 1 2

1

1 G G G H G 

1 2

2 1 1 2 1 1

G G

1 G H G G H G


  

  

 

 

 

R(s)   

2

1 2

G

1 G G

  

C(s)   

     1/G2 

1H   

R(s)

  
1 2

2 1 1 2 1

G G

1 G H G G H 
  

C(s)

  

     

1/G2 

21/ G   

1 2

2 1 2 1 1 1

G G

1 G H G G H G  
 R(s) C(s) 



 

 

1 2

2 1 1 2 1 1

G GC(S)

R(S) 1 G H G G H G


  
 

4.Using block diagram reduction technique find C/R   NOV/DEC 2016 

 

  

 

 

 

 

 

Sol: Moving the branch a ahead of G4 

 

 

 

 

 

 

 

 

 Combining the cascade blocks G3 and G4 
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1G   
2G

  

3G   
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4G
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2G

  

2 4H / G
 
 C   

G3 G4 

H1 
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1G   
2G

  

3 4G G

  

2 4H / G
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H1 



 

 

 

 

Eliminating the feedback H1 

  

 

 

 

 

 

 

Combining the cascade blocks 

 

 

 

 

 

 

 

Eliminating the feedback, 
2 4H / G   

 

2 3 4

2 4

3 4 1

2 3 4

3 4 1

2 3 4

G G G
G       H H / G

1 G G H

G G G

1 G G HG

1 GH G G G
1

 








2 3 4

3 4 1 2 3 22

3 4 1 4

G G G

1 G G H G G HH

1 G G H G


 


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1G   
1 2 3 4

3 4 1 2 3 2

G G G G

1 G G H G G H 
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1G   
2G

  

3 4G G

  

2 4H / G
 
 

1H   
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4G
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1G   
2G

  
3 4

3 4 1

G G

1 G G H
  

2 4H / G
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Combining the cascade blocks 

 

 

 

 

Eliminating the feedback (unity) 

1 2 3 4

3 4 1 2 3 2

1 2 3 4
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G       H 1
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G G G G1 GH 1 G G H G G H G G G G
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 
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
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1 2 3 4
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G G G G
R C

1 G G H G G H G G G G  
 

1 2 3 4

3 4 1 2 3 2 1 2 3 4

G G G GC

R 1 G G H G G H G G G G


  
 

5.Using block diagram reduction technique, find C/R 

 

 

 

 

 

 

 

 

Sol: Moving the branch point a, ahead of G3 
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1 2 3 4

3 4 1 2 3 2

G G G G
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2G   
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3G

  

3H

  

R(s)   

1G
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1 3H / G

  

C(s)

  

3G

  

3H



 

 

 

 

 

 

 

 

 

 

 

 

 

Combining the cascade blocks 2 3G  and G   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eliminating the feedback H2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combining  the cascade blocks 
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1G

  

2 3G G

  

2H
 
 

1 3H / G

  

C(s)

  

3H

  

R(s)   

1G

  

2 3

2 3 2

G G

1 G G H
  

1 3H / G

  

C(s)

  

3H

  

R(s)   
1 2 3

2 3 2

G G G

1 G G H
  

1 3H / G   

C(s)

  

3H

  



 

 

 

 

 

 

 

 

Eliminating the feedback parts 1 3H / G   

1 2 3

2 3 2
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G G G

1 G G H
G

G G G
1




 1

2 3 2 3

H

1 G G H G

1 2 3
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G G G

1 G G H G G H

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Eliminating the feedback path 
3H ,   

1 2 3

3

2 3 2 1 2 1
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1 2 3 2 3 2 1 2 1 1 2 3 3
3
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G G G
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1 G G H G G H

 
 

 
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   


 

  

 

  1 2 3
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G G G
R(S) C(S)

1 G G H G G H G G G H  
 

1 2 3

2 3 2 1 2 1 1 2 3 3

G G GC(s)

R(s) 1 G G H G G H G G G H


  
 

6.Using block diagram reduction technique, find the closed loop transfer function of a system, whose block diagram is shown 

in fig 
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1 2 3

2 3 2 1 2 1

G G G

1 G G H G G H 
  

C(s)   

3H   
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3G   
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1H   

1G

  

2G   

2H

  

4G   



 

 

 

 

Sol: Combining the parallel blocks 

 

 

 

 

 

Combining the cascade blocks 

 

 

 

 

 

Moving the summing point ahead of 
2H   

 

 

 

 

 

Cascading 
1 2H  and H  combining the summing points. 

Elimination of summing point by multiply signs 
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2 3G G   
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1H   
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2H

  

4G   

R

1 2 3G (G G )
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1H   
2H

  

4G   
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1 2 3G (G G )

  

C   

1H   
2H

  

4 2G H

  

4 2G H

  

1 2H H   

4 2G H

  



 

 

 

 

 

 

 

 

Feedback path 
1 2H ,H  elimination 

 

 

 

 

Combining parallel path 

 

 

 

Combining cascade blocks 
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G (G G ) 1 G HC

R 1 G G H H G G H H

 


 
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     1 1 2 3G (G G )   

4 2G H

  

      
1 2H H   

R   C   

     1  1 2 3

1 2 1 2 1 3 1 2

G G G

1 G G H H G G H H



 

  

4 2G H

  

R   C 

1 2 3

1 2 1 2 1 3 1 2

G (G G )

1 G G H H G G H H



 

  

4 21 G H

  

R   C 

4 2 1 2 3

1 2 1 2 1 3 1 3

(1 G H )(G (G G ))

1 G G H H G G H H

 

 
 



 

 

7.Using block diagram reduction technique, find C/R 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sol: Moving the branch point a before H1 

 

 

 

 

 

 

 

 

Elimination of feedback 
1H   
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R   
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4G   

1G   
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2G   
3G   

1H   
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Moving the  branch point ahead of G3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combining the cascade blocks and eliminating feedback H2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Combining the cascade blocks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C 

1G   
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2 1 2 3 2
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1 3H / G

  

C 

1G   
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2
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G

1 G H

  

3G   
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1 3H / G   



 

 

 

 

Eliminating the feedback path, 
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2 1 2 3 2 3

G G G H
G ;   H

1 G H G G H G
 

 
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 

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Combining the parallel paths, 
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G G G G (1 G H G G H G G H )C
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   

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8.Find C(s)/R(s) of the system shown in fig using block diagram reduction technique 
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Sol: Combining the parallel blocks 
2 1G  and G   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eliminating the feedback 
1H   

 

 

 

 

 

 

 

 

 

 

 

 

Moving the summing point (a) ahead of 
2H   
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1 (G G )H
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Eliminating the summing point by multiply signs 

 

 

 

 

 

 

Eliminating feedback 
2H  and combining parallel blocks 

 

 

 

 

Combining the cascade blocks 
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   
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1 G H G GC(s)
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 

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9.  Find C(s)/R(s) of  the system shown in fig. using block diagram reduction technique. 
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G G

1 (G G )H


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Sol: Moving the summing point a ahead of 
1G   

 

 

 

 

 

Inter changing the summing points, 

 

 

 

 

 

 

Combining the parallel blocks & Eliminating the feedback path G1H1. 

 

 

 

 

Combining the cascade blocks  
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10. Determine the transfer function 
C(s)

R(s)
for the following block diagram  

 

 

 

 

 

 

Solution:- Moving the branch point before G2. 

 

 

 

 

Combining the parallel blocks 

 

 

 

 

 

Moving the branch point ahead of  
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Eliminating the unity feedback path, 
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Combining the cascade blocks and eliminating the feedback 
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G (G G )C(S)

R(S) 1 G G G G H




  
  

11. Using block diagram reduction technique find the transfer function from each input to the output C for the system shown in 

fig. 

  

 

 

 

 

 

 

 

Sol: To find 
C(s)
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To find 2C (s)
 put R(s)=0, 
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

 

  

 

 

 

 

2

2

G

1 G

  

5

5 1

G

1 G H
  

C(s)

  

2H

  

4G

  

X(s)

  

3G

  

5

5 1

G

1 G H
  

2C (s)

  

2 3 2

2

G G H

1 G




  

X(s)

  4G   

 

  
5 2

2 5 1 2 3 5 2

G 1 G

1 G 1 G H G G G H



  

  

G4 
X(s) C2(s) 

 

  
4 5 2

2 5 1 2 3 5 2

G G 1 G

1 G 1 G H G G G H



  

  

X(s) C2(s) 



 

 

 

 

 

  
4 5 22

2 5 1 2 3 5 2

G G 1 GC (s)

X(s) 1 G 1 G H G G G H




  
  

When both R(s) and X(s) are simultaneously present, the output   

1 2C(s) C (s) C (s)    as per superposition theorem 

Hence 
 

  
1 2 3 5 4 5 2

2 5 1 2 3 5 2

R(s)G G G G X(s)G G 1 G
C(s)

1 G 1 G H G G G H

 


  
  

SIGNAL FLOW GRAPH 

PROBLEMS 

1. Obtain the overall transfer function of the following signal flow graph using Mason’s gain formula 

 

 

Sol: 

Step 1:Forward path gains No. of forward path K=1 

Forward path gain path 
1 2 3 4 5 6 7x x x x x x x         

 

1 1 2 3 4P G G G G   

Step 2: Individual loop gains 

2 3 4 2x x x x      3 4 3x x x     3 2 5 6 3x x x x x      



 

 

                    

 

 

11 1 2 2P G G H      
21 2 1P G H     

31 2 3 4 4P G G G H    

5 6 5x x x    

 

41 4 3P G H    

Step 3: Non touching loops →Gain products 

There are two pairs of non touching loops 

 

12 1 2 4 2 3P G G G H H   

 

22 2 4 1 3P G G H H   

Step 4: To find ∆ and ∆k 

   11 21 31 41 12 22

1 2 2 2 1 4 3 2 3 4 4 1 2 4 2 3 2 4 1 3

1 P P P P P P

1 G G H G H G H G G G H G G G H H G G H H

       

      
  



 

 

1 1  Since there in no part of the graph is not touching with first forward path 

 

Step 5: Transfer function 

By Mason’s gain formula  

 
n

k k 1 1

k 1

1 1
T(s) P P



   
 
   

1 2 3 4

1 2 2 2 1 4 3 2 3 4 4 1 2 4 2 3 2 4 1 3

G G G G
T(s)

1 G G H G H G H G G G H G G G H H G G H H


     
  

2.Find the overall gain of the system whose signal flow graph is shown in fig. Nov/Dec 2017 

  

 

 

 

 

 

 

Sol:  Step 1: Forward path gain No. Of forward path K=2 

       Forward path gain  

      Path 1 : 1→2→3→4→5→6 

 

1 1 2 3 4P G G G G   

      Path 2: 1→2→3→5→6 

 

5 6   

2G  

2
H

  

R   

4
 

C
  

3H   

3G

  
G1 G4 



 

 

         
2 1 2 6P G G G   

 Step 2: Individual  loop gain 

  2 3 2      2 3 4 2                 4 4   

     

  

 11 2 2P G H     
2 2 3 1P G G H       

31 5P G     

 

 

    
41 2 3 4 3P G G G H     

51 2 6 3P G G H    

Step 3: Non touching loops – gain products. There are two pairs of non touching loops 

  

                            

 
12 2 5 2P G G H       

22 2 5 6 3P G G G H    

 

Step 4: To find ∆ and ∆k 

 ∆=1-[ 11 21 31 41 51 12 22P P P P P ] [P P ]        

 2 2 2 3 1 5 2 3 4 3 2 6 3 2 5 2 2 5 6 31 G H G G H G G G G H G G H G G H G G G H           

 1 1 0 1     Since there is no part of the graph is not touching with first forward path 

 2 51 G     Since when forward path 2 being removed remaining part of the graph is as shown 

5G

  



 

 

  

 

  

 STEP 5: Transfer function: 

 By Mason’s gain formula 

 K K 1 1 2 2

K

1 1
T(S) P (P P )     

 
   

1 2 3 4 1 2 6 5

2 2 2 3 1 5 2 3 4 3 2 6 3 2 5 2 2 5 6 3

G G G G G G G (1 G )
T(S)

1 G H G G H G G G G H G G H G G H G G G H

 
 

      
  

3.The signal flow graph for a feedback control system is shown in fig. Determine the closed loop transfer function C(s)/R(s).     

Nov/Dec 2015 

 

  

 

 

 

 

Sol: 

Step : 1 forward path gains 

 No. of forward path K=2 

 Path 1  1→2→3→4→5→6 

  

   1 1 2 3 4 5P G G G G G   

3       4       5   



 

 

 Path 2  1→2→3→4→5→6 

   

  
2 1 2 5 6P G G G G   

Step 2: Individual loop gains 

 

 

 

 

 

11 2 1P G H                   
21 3 2P G H        

31 4 3P G H          
41 6 2 3P G H H   

Step 3: Non touching loops gain products 

 

 

 

 
12 2 4 1 2P G G H H   

 Step : 4 To find 
k     

 

   11 21 31 41 12

2 1 3 2 4 3 6 2 3 2 4 1 3

1

2

1 P P P P P

1 G H G H G H G H H G G H H

1 0 1

1 0 1

      

     

   

   

  

 Since there is no part of the graph is not touching with first and second forward path respectively. 

 Step 5: Transfer function by Mason’s gain formula 

 k k 1 1 2 2

k

1 1
T(s) P (P P )     

 
   

 1 2 3 4 5 1 2 5 6

2 1 3 2 4 3 6 2 3 2 4 1 3

G G G G G G G G G
T(s)

1 G H G H G H G H H G G H H


 

    
  

3

  

5

 

2 3H       H

  

6G   

H2
 

G3
 

3

  

4  

1H

  

2G

 
2
  

3

 

1H

  

2G

 
2
  

3

 

H3
 

4G  

4
  

5

 

H3
  

4G  

4
  

5

 



 

 

4.Obtain the overall transfer function of the following signal flow graph using Masons gain formula. 

  

 

 

 

 

Sol: Step 1 forward path gain 

 No. of forward path K=2 

 Path 1→1→2→3→4→5→6→7→8→9 

  

 
1 1 2 3 4 5 6P G G G G G G   

 Path 2 →1→2→6→7→8→9 

  

 

 

P2= 5 6 7G G G   

STEP:2 individual loop gains 

 3→4→3   4→5→4           6→7→6 

 

 

 

3H

  

5G  

6 7  

5 6G           G   

1        2
  

6         7         8          9   

7     G   

-H1
 

2G  

3

  

4  

-H2
 

3G

 
4

  

5  



 

 

  

11 2 1P G H     21 3 2P G H      31 5 3P G H    

 

 2→3→4→5→6→2               2→6→2 

 

 

 

 

  

41 1 2 3 4 4P G G G G H       51 7 4P G H    

Step:3 Gain productions of non touching loops 

  

 

 

 

 
12 2 5 1 3P G G H H   

 

 

 

 

 

 22 3 5 2 3P G G H H   

 

 

 

4H   

1 2 3 4G   G   G   G

 

  

2     3     4    5    6   

2 6 

7G   

4H   

-H1
 

2G  

3

  

4  

3H

  

5G  

6 7  

-H1
 

3G  

4

  

5  

3H

  

5G  

6 7  

-H2
 

2G  

3

  

4  
2 6 

7G   

4H   



 

 

  

 

   32 2 7 1 4P G G H H   

 

 

 

 

 

   
42 3 7 2 4P G G H H   

Step:4 Determination of ∆ &  ∆k 

∆1=1; Since there is no part of the graph is not touching with first forward path 

∆1=1-[L1+ L2] 

         =1+
1 1 5 3G H G H   

  

  

 

 

Individual loops  

 L1=
1 1G H   

 
2 5 3L G H    

    11 21 31 41 51 12 22 32 421 P P P P P P P P P             

      
2 1 3 2 5 3 1 2 3 4 4 7 4

2 5 1 3 3 5 2 3 2 7 1 4 3 7 2 4

1 G H G H G H G G G G H G H

G G H H G G H H G G H H G G H H

     

   
  

Step:5 Transfer function by Hason’s gain formula 

2H

  

3G  

4

  

5  
2 6 

7G   

4H   

5G          

  

1        2
  

6           

1G   

1 3H       -H

  



 

 

 
 

k k 1 1 2 2

k

1 2 3 4 5 6 5 6 7 1 1 5 3

2 1 3 2 5 3 1 2 3 4 4 7 4 2 5 1 3 3 5 2 3 2 7 1 4 3 7 2 4

P P P
T(s)

G G G G G G G G G 1 G H G H

1 G H G H G H G G G G H G H G G H H G G H H G G H H G G H H

   
 

 

  


        


  

5.Determine the overall transfer function of SFG using Mason’s gain formula 

 

Sol 

Step1: forward path gain 

 No. of forward paths K=2 

  

Diagram       

 

 

 

        

Step2: Individual loop gains 

 

       

          

 

    

    

         

 

G6 

R 

1 2 3 4     X         X        X       X        

1 2 3 4 G         G        G        G          
X5 

1 1 2 3 4 6P G G G G G  

1H

  

1x   

11 1P H

   

3H   

2 4 4X G X   

31 4 3P G H   

R 

1 2 3 4     X         X        X       X        

1 2 3 4 G         G        G        G          

5X   

G5 

1 1 2 3 4 5P G G G G G

  

 

2H   

2 3 3
X      G      X   

P21 = G3 H2 

4H

  

C   

P41 = H4 



 

 

 

Step:3 Gain products of non touching loops Two non touching loops 

 Two non touching loops 

  

         

 

 

 

         

 

 

         

 

 Three non touching loops 

 

 

           

 

 

           

 

 

Step :4 Determination of  and k    

 
11 21 31 41 12 22 32 13 23

1 3 2 4 3 4 1 2 3 1 3 4 1 4 3 1 2 4 4 1 3 4

1 [P P P P ] [P P P ] [P P ]

1 H G H G H H H H G H H G H H G H H H G H H H

         

         
  

 
1 2 1     Since there is no part of the graph is not touching with forward path s 

1H

  

1x   

 

H2
 

2 3 3
X      G      X   

12 1 2 3P H H G

  

1H

  

1x   

 

H3
 

3 4 2
X      G      X   

22 1 3 4P H H G

  

1H

  

1x   

4H

  

C   

32 1 4P H H   

1H

  

1x   

4H

  

C   

 

3H   

3 4 4
X      G      X   

23 4 1 3 4P G H H H   

1H

  

1x   

4H

  

C   

13 3 1 2 4P G H H H   

 

2H   

3 3 3X G X

  



 

 

Step:5 Transfer function 

 By Mason’s gain formula k k

k

p
T(s)





   

 

1 1 2 2

1 2 3 4 5 1 2 3 4 6

1 3 2 4 3 4 1 2 3 1 3 4 1 4 3 1 2 4 4 1 3 4

P P
T(s)

G G G G G G G G G G
T(s)

1 H G H G H H H H G H H G H H G H H H G H H H

  







        

  

6. Using Mason’s gain formula to find 2

1

x

x
  

 

1. No. of forward paths k=4 

 

  

         

          

 

          

         
 
 
 

2. Individual loops and gains 

 

 

 

 

1G   
6 7 8G    G     G   

4G

  

2 1 4 6 7 8P G G G G G

 

1 2 3G   G  G

  

8     G

  

5G   

3 1 2 3 5 8P G G G G G  

4G   
1G     

8G   5G   

4 1 4 5 8P G G G G

 

2H   

3 6 7G      G      G  

11 2 6 7 2P G G G H  

1H   

2 3 6 7 8G      G      G      G    G  

21 2 3 6 7 8 1P G G G G G H  

1 1 2 3 6 7 8P G G G G G G  



 

 

      

 
 
 
 
 
 
 
 
 
 
 
 
 

      

         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
Non touching loops →Nil 

11 21 31 41 51 61

2 6 7 2 2 3 6 8 1 3 5 2 4 6 7 8 1 2 3 5 8 1 4 5 8 1

 and k

=1-[P P P P P P ]

  =1-G G G H G G G G H G G H G G G G H G G G G H G G G H

 

     

    

  

 

1

2

3

4

1

1

1

1

 

 

 

 

  

 Since there is no part of the graph is not touching with forward paths 
 

 

H1
 

 
4G   

6 7 8G  G  G   

41 4 6 7 8 1P G G G G H   

2H   

5G   

3G   

31 3 5 2P G G H

  

1H   

 
5G   

8G   
2 3G  G

  

51 2 3 5 8 1P G G G G H   
61 4 5 8 1P G G G H   

1H   

8G   

4 5G     G

  



 

 

Transfer function by Mason’s gain formula  k k

k

P
T(s)





  

1 1 2 2 3 3 4 4

1 2 3 6 7 8 1 4 6 7 8 1 2 3 5 8 1 4 5 8

2 6 7 2 2 3 6 7 8 1 3 5 2 4 6 7 8 1 2 3 5 8 1 4 5 8 1

P P P P
T(s)

G G G G G G G G G G G G G G G G G G G G
T(s)

1 G G G H G G G G G H G G H G G G G H G G G G H G G G H

      




  


     

 

 
7.Find L/R using Mason’s gain formula 
 
 
 
 
 
 
 
 
 
 
 

Sol : 

1. No. of forward path and forward path gains k=4. 

 

 

 

          

 

 

          

 

           

 

 

 

2.Individual loops and gain 

 

5           6           7   

R   
C

  

3H   

1G

  
2 4 6G    G    G

  

7G   

2H   

1      2
   

1H   3 5G  G   

8 

1 2 4 6 7     G         G        G         G        1        G         

1 1 2 4 6 7P G G G G G

  

1G   
4 6 7G    G     1    G   

3G   

2 1 3 4 6 7P G G G G G    

1 2G      G   
6 7G     1    G   

5G   

3 1 2 5 6 7P G G G G G

   

1G   

  

6 7G     1    G   

3 5G     G   

4 1 3 5 6 7P G G G G G

   

1H

  

6G  

4

  

5  

2H

  

7G  

6

  
7   2   

7   

2 4 6 7G   G   G    1    G

  

3       4      5       6   

3H   



 

 

 

 

 

  

 

 

 

 

 

     

 

51 3 5 6 7 3P G G G G H    

  

 

 

3.Non touching loops 

 

          

 

   

4. ∆ and ∆k  

  

1 2 3 4 1         [Since there is no part of the graph is not touching the forward paths] 

3H   

3G   

4 6 7G   G    1    G   

41 3 4 6 7 3P G G G G H   
3H   

6 7G    1    G   2G   

5G   

51 2 5 6 7 3P G G G G H   

1H

  

6G  

4

  

5  

2H

  

7G  

6

  
7   

12 6 7 1 2P G G H H   



 

 

5.Transfer function by Mason’s gain formula 

1 1 2 2 3 3 4 4K K

K

1 2 4 6 7 1 3 4 6 7 1 2 5 6 7 1 3 5 6 7

6 1 7 2 2 4 6 7 3 3 4 6 7 3 2 5 6 7 3 3 5 6 7 3 6 7 1 2

p p p pp
T(S)

G G G G G G G G G G G G G G G G G G G G
       = 

1 G H G H G G G G H G G G G H G G G G H G G G G H G G H H

      
 

 

  

      


 

 

8. Find L/R using Mason’s gain formula 

 

 

 

 

 

 

Sol 

1. No. of forward path and gain K=3 

 

 

 

 

          

          

 

 

2. Individual loops and gain 

 

 

 

 

 

 

1G   4 5G    G

  
R   

C   

3H

  

2H   

1H

  

1G

  

8G   

4 7H     G

  

1 2 3 4 5 6     G         G        G         G        G         G         

1 1 2 3 4 5 6P G G G G G G

  

1 2 3G      G      G   

8G   

 1   3 1 2 3 8P G G G G   

1 2G      G

  

7G   

6G       1  
2 1 2 7 6P G G G G   

1H

  

4G  

5

  

6  

11 4 1P G H    

4H

  

2 33   G  4  G   5

  

21 2 3 4P G G H    

3

  

7   

2 3 4 5G   G   G   G   

     4      5       6   

2H

  
31 2 3 4 5 2P G G G G H    



 

 

     

 

 

 

 

       

 

 

 

 

 

 

        

 

3. Non touching loops 

 

 

 

 

 

 

 

 

            

 

4. 
kand    

3H

  

1 2 3 4 5 6G   G   G   G   G   G     

 

3  4  5  6  7   
2
  

8   

41 1 2 3 4 5 6 3P G G G G G G H 

  

2H

  

7G   

2G   

3

  

7   
4       5       6

  

51 2 7 2P G G H    

3H

  

7G   

1 2G      G   

2   8

  
3       4       5       6      7

  

6G   

61 1 2 7 6 3P G G G G H    

3H

  

8G

  

1 2 3G      G      G

  
2   8

  
3       4       5         

71 1 2 3 8 3P G G G G H    

1H

  

4G  

5

  

6  

2H

  

7G   

2G   

3

  

7   
4       5       6

  

12 4 2 7 1 2P G G G H H

  

-H1
 

4G  

5

  

6  

3H

  

7G   

1 2G      G   

2   8

  
3       4       5       6      7

  

6G   22 1 2 4 6 7 1 3P G G G G G H H

  



 

 

11 21 31 41 51 61 71 12 22

4 1 2 3 4 2 3 4 5 2 1 2 3 4 5 6 3 2 7 2 1 2 7 6 3 1 2 3 8 3 2 4 7 1 2 1 2 4 6 7 1 3

1 [P P P P P P P ] [P P }

1 G H G G H G G G G H G G G G G G H G G H G G G G H G G G G H G G G H H G G G G G H H

          

          

 

1

3

2 4 1

1;

1;  since there is no part of the graph is not touching with forward path 1 and 3

1 G H ;  when forward path 2 being removed, remaining part of the graph is as shown

 

 

  

  

 

 

 

 

 

 

    

 

 

 

5.Transfer function By Mason’s gain formula 

1 1 2 2 3 3K K

K

1 2 3 4 5 6 1 2 6 7 4 1 1 2 3 8

4 1 2 3 4 2 3 4 5 2 2 7 2 1 2 3 4 5 6 3 1 2 3 8 8 2 4 7 1 2 1 2 4 6 7 1 3

p p pp
T(S)

G G G G G G G G G G (1 G H ) G G G G
       = 

1 G H G G H G G G G H G G H G G G G G G H G G G G H G G G H H G G G G G H H

    
 

 

  

       


 

CONVERSION OF BLOCK DIAGRAM TO SIGNAL FLOW GRAPH 

1. Convert the block diagram into signal flow graph and find the transfer function using Masons gain formula 

Procedure: 

1.Select a node for every branch point and summing point, input and output signal in block diagram 

2.for each block have a line segment on which its gain is written with direction 
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4G
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4G  
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6  

2 3G    G   

1H

  

1G

  

G4 

2H

  

1      2   



 

 

 

 

 

 

 

 

Sol : 

1. No. of forward path and forward path gains k=2. 
 
 
 
 
 
         

 

 

         

 

 

 2.Individual loops and gain 

 

 

 

  

             

 

 

 

      

 

 

 

1 2 31      1     G       1     G        G        1      1  

1 1 2 3P G G G   

11     1   G    1

  

4G   

1      1   
2 1 4P G G

  

1H

  

1 2G      1      G

 
3

  6  
4       5

  

11 1 2 1P G G H 

  

2H

  

4   

8

  

10   

4G   

5            7   

21 4 2P G H 

  

2H

  

4   

8

  

10   

2 3G      G   

5            7   

31 2 3 2p G G H    

2H

  

2   

8

  

10   

1 2 3G       G      G

  

 

41 1 2 3P G G G 

  

4G   

3    4    5   7

  

2H

2   

8   

10   

1G     

  

51 1 4P G G    



 

 

 

 

      

  

 

3.Non touching loops - NIL 

  4. 11 21 31 41 51

1 2 1 4 2 2 3 2 1 2 3 1 4

 and k

=1-[P P P P P ]

   =1+G G H G H G G H G G G G G

 

    

   

 

1 2 1     [Since there is no part of the graph is not touching with the forward paths] 

  

5. Transfer function by Mason’s gain formula 

k k 1 1 2 2

k

1 2 3 1 4

1 2 1 2 3 2 1 4 1 2 3 4 2

P P P
T(s)

G G G G G

1 G G H G G H G G G G G G H

   
 

 




    


 

2.Convert block diagram to signal flow graph and find the transfer function using Mason’s gain formula 
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4    5   1     2   3
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1G

  

G4 
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1      2   
3     4      5

  
6 7     8

  

9      10
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R 
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SOL: 

1. No. of forward path and forward path gains k=2. 
  
 
 
 
 
          
 
 
         
 

  

2.Individual loops and gain 

 

 

 

 

 

                     

 

 

 

 

  

 

 

3.Non touching loops 

1     1     1
  

4G   

1      1   

2 4P G

  

3H

  

11      G      1       

2

  
5 

3       4

  

11 1 3P G H

  

1H

  

31      G      1       

6

  
9 

7       8

  

21 3 1P G H

  

  

2H

  

21    G    1

  

4    5    6    7   

31 2 2P G H   

1 1 2 3P G G G   

1 2 31      1     G       1     G       1       G     1  

1    2    3    4    5    6    7    8    9   10   

3H

  

G4 

1H   

     2   
3     4      5

  
6 7     8
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2H   

41 4 1 2 3P G H H H   



 

 

 

 

           

 

 

 4. ∆ and ∆ki  

   11 21 31 41 12

1 3 3 1 2 2 4 1 2 3 1 3 1 3

1 P P P P P

1 G H G H G H G H H H G G H H

      

    
   

1 1   [Since there is no part of the graph is not touching with the forward paths 1 ] 

2 2 21 G H ;    When forward path 2 being removed, remaining part of the graph is as shown u 

  Diagram 

5. Transfer function By Masons gain formula 

 

k k 1 1 2 2

k

1 2 3 4 2 2

1 3 3 1 4 1 2 3 1 3 1 3

P P P
T(s)

G G G G 1 G H

1 G H G H G H H H G G H H

   
 

 

 


   


 

3.Construct an equivalent signal flow graph for the block diagram shown in fig and evaluate the transfer function 
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4G
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2H   
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1G
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     4      5

  
6 7     8
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11      G      1       
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3       4

  

1H

  

31      G      1       
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7       8

  

12 1 3 1 3P G G H H   



 

 

 

 

 

 

 

 

 

Sol 

1. No. of forward path and forward path gains k=2. 

 

 

 

 

 

           

 

2. .Individual loops and gain 

  

 

 

 

 

 

      

         

 

1 2 31      1     G        G         G     1  

1    2    3    4    5    6    7    8    9   10 

  

1 1 2 3P G G G   

1     1     1
  

4G   

1      1   

1  2   3    4

  

7   8   9

  

2 4P G

  

1H

  

1 2G      1      G

 
3

  
6 

4       5

  

11 1 1P G H    
2H

  

5

  

8

  

10   

2 3G      G   

6            7   

21 2 3 2P G G H    

1   

4G

  

1       1
  

41 4P G    

1   
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10   

1 2 31      1    G      G      G     1  

3    4     5    6    7   

31 1 2 3P G G G 

  



 

 

 

 

 

 

 

 

 

 

 

 

     

 3 .  Non touching loops - Nil 

   

4. 11 21 31 41 51

1 1 2 3 2 1 2 3 4 2 4 1 2

 and k

=1-[P P P P P ]

   =1+G H G G H G G G G G G H H

 

    

   

 

1 2 1     [All the loops are touching the two forward paths ] 

 

5.Transfer function By Masons gain formula 

1 1 2 2

k k

k

1 2 3 4

1 2 1 2 3 2 1 2 3 4 2 4 1 2

P P1
T(s) P

G G G G

1 G G H G G H G G G G G G H H

  
  
 




    


 

4.Draw the signal flow graph and evaluate the closed loop transfer of a system whose block diagram is shown in fig 
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4G
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1. No. of forward path and forward path gains k=4. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

2.Individual loops and gain 

 

 

2G

  

1G

  
3G

  

4         5   6      7

  

3 1         2 

-H2 

-G4 

R(S) C(S) 

1 3   G            G      1       1  

1    2    3    4    5    6    7      

1 1 3P G G

  

1    2    3    4    5    6    7      

1   1     1    G             
2G

  1       1 

2 1 2P G G    

    4    5    6    7      

1 3G      G      1      1

  

1       2 

1 

8 

3 
3 1 3 4 2P G G G H   

1 

-G2 

2H

  

3    4    5    6    7      

1  1  1 G1 

4G

  

4 1 2 4 2P G G G H 

  

1H

  

1 3G      G       1

 
3

  6  
4       5

  
2H

  8 

11 1 3 2 1P G G H H   

1H

  2H

  8 

G1 

2G

  
1 

21 1 2 1 2P G G H H 

  



 

 

 

 

        

 

 3 .  Non touching loops - Nil 

 4.
11 21 1 2 1 2 1 3 1 2

 and k

=1-[P P ] 1+G G H H G G H H

 

   
 

1 2 3 4 1         [All the loops are touching the two forward paths ] 

 

5.Transfer function By Masons gain formula 

1 1 2 2 3 3 4 4

k k

k

1 3 1 3 4 2 1 2 1 2 4 2

1 2 1 2 1 3 1 2

P P P P1
T(s) P

G G G G G H G G G G G H

1 G G H H G G H H

      
  
 

  


 



 

5.Convert the block diagram shown in fig, to signal flow graph and find the transfer function, using Mason’s gain formula. Verify 

with block diagram approach   MAY/JUNE 2016 

  

 

 

 

 

SOL 

 

 

 

 

 

Sol 

1. No of forward paths and gain 

R(s)   

1G   
2G

  

3G
 
 

2H   

C(s)   

1       2 3 4 5 6 

2G

  
1G

  

3G   

3

  

4      5       6       

-H 

R(S) C(S) 

1        2 

1          1 
1 



 

 

  

 

         

 

 

 

 

 

 

 

 

 

2. Individual  loops and loop gain 

 

  

 

 

3. Non touching loops – Nil 

4. 11 1

1 2

 and k

=1-P 1 G H

1

 

  

   

 

As all the loops are touching the forward paths 

        5.Transfer function By Masons gain formula 

1 1 2 2

k k

k

1 2 3

1 1

P P1
T(s) P

G G G

1 G H

  
  
 








 

 

Verification by block diagram reduction technique  
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3G
 
 

2H   

C(s)   

1       2 3 4 5 6 

1     2     3     4     5     6     

   1          1   
3G

  1       1 

2 3P G    

11      3      G      

2

  
4 
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11 1 1P G H    

1 1 2P G G

  

1 2  1        1      G       G      1        

1    2    3    4    5    6   

  



 

 

 

 

Step :1 Moving a branch point ahead of block G1 

 

  

 

Step:2 Eliminating –ve feedback and combining the parallel path 

 

 

 

Step:3 Combining the cascade blocks 

  

 

 

 

R(s)   

1G   
2G

  

3 1G / G
 
 

H   

C(s)   

1       2 3 4 5 6 

1

1

G

1 G H
  3

2

1

G
G

G
   

R(S) C(S) 

1

1

G

1 G H
  1 2 3

1

G G G

G


  

R(S) C(S) 

1 2 3

1

G G G

1 G H




  

R(S) 
C(S) 



 

 

 

1 2 3

1

G G GC(s)
                              (2)

R(s) 1 G H


 



 

Eqn (1) and (2) are equal. Hence Verified. 

6.Find the transfer function of the system shown un fig. by block diagram reduction technique and signal flow graph technique 

   April/ May 2015 

 

 

 

 

 

 

Sol: 

By block diagram reduction technique  

Step:1 Removing Unity feedback 
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1

1

G
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Step:2 Moving the branch point before H1 

 

 

 

 

Eliminating of feedback H1 

 

 

 

 

 

 

Combining the cascade blocks combining the cascade blocks 
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1

1
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R(s)   

2G

  

3G

  

1H

  

C(s)   
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1ZH

  

1

1

G
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Eliminating the feedback path H2 

1 2 3

2

1 2 1 1 2 1

1 2 3

1 2 1 1 2 1

1 2 3 2

1 2 1 1 2 1

G G G
G         H H

(1 G )(1 G H ) 2G G H

G G G
 

(1 G )(1 G H ) 2G G HG

G G G H1 GH
1  

(1 G )(1 G H ) 2G G H

 
  

  





  
  

1 2 3

1 2 1 1 2 1 1 2 3 2

G G G
 

(1 G )(1 G H ) 2G G H G G G H


   

  

1 2 3

1 2 1 1 2 1 1 2 3 2

G G G

1 G G H 3G G H G G G H


   

  

1 2 3

1 2 1 1 2 1 1 2 3 2

G G G
R(s) C(s)

1 G G H 3G G H G G G H   

  

 

1 2 3

1 2 1 1 2 1 1 2 3 2

G G GC(s)

R(s) 1 G G H 3G G H G G G H


   

  

(ii) by signal flow graph technique  

  

R(s)   C(s)   

2H

  

1 2 3

1 2 1 1 2 1

G G G

(1 G )(1 G H ) 2G G H  

  

R(s)   

1G   2G

  

3G   

1H   

C(s)   



 

 

 

 

 

 

 

 

 

 

Step:1No of forward path and forward path gain K=1 

          

 

Step:2 Individual loops and individual loop gains 

     

   

4         5

  

3

  

4
 

11 1P G   

2G   

1H   

5 6 

9 

21 2 1P G H

  

1 2G           G   

1H   

3 6 

9 

31 1 2 1P 2G G H   

1 1 2 3P G G G

  

1 2 3  1        1      G     1     G     G   1        

1    2    3    4    5    6   7   8

  



 

 

      

       

 

  

 

   

Step:3 Non touching loops – gain products 

           

 

Step:4 To find 

 

 11 21 31 41 12

1 2 1 1 2 1 1 2 3 2 1 2 1

1 2 1 1 2 1 1 2 3 2

1

 and k

=1- P P P P P

1 G G H 2G G H G G G H G G H

1 G G H 3G G H G G G H

as all the loops are touching the forward paths

 

    

     

    

    

Step:5 Transfer function by Mason’s gain formula, 

 

  2 

7   3              4              5              6    

2H   

 

G1 G2 G3 

41 1 2 3 2P G G G H    

3

  

4  

G1 

2G   

1H   

5 6 

9 

12 1 2 1P G G H

  



 

 

1 1

K K

K

1 2 3

1 2 1 1 2 1 1 2 3 2

1 2 3

1 2 1 1 2 1 1 2 2 2

p1
T(S) p

G G G
       = 

1 G G H 3G G H G G G H

G G G
T(s)

1 G G H 3G G H G G G H


  
 

   

 
   



      Hence verified 

CONSTRUCTION OF SIGNAL FLOW GRAPH FROM THE SYSTEM EQUATIONS 

STEPS: 

1.Obtain the system equations by writing differential equations governing the system 

2.Represent each variable by a separate node. 

3.Use the property that value of the variable represented by a node is an variable represented by a node is an algebraic sum of all the 

signals entering at that node, to simulate the equations 

4. Coeffcients of the variables in the equations are to be represented as the brancg gain, joining the nodes in signal flow graph. 

5.Show the input and output variables separately to completely signal flow graph 

1. Construct signal flow graph for the set of linear equations and determine overall transfer for using Mason’s gain formula 

 
2 12 1 32 3 42 4

3 23 2

4 24 2 34 3 44 4

5 25 2 45 4

x a x a x a x              (1)

x a x                                     2

x a x a x a x              (3)

x a x a x                          (4)

  



  

    

Step:1    

  

1 2 3 4 5

                   

x    x     x    x     x

    

  

  



 

 

Eqn  1        

  

Eqn   2        

1 2 3 4 5

                           

x      x       x      x     x

    

  

Eqn 3        

   

 

Eqn 4  

 

 

Complete signal flow graph 

 

 

 

   3x   1 2x       x   
4 5x      x   
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44a
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1x   5x   4x
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23 34

       a

a          a

    

44

45

a

a

  

R C 

24a

  

25a

  

 
X3 X4

 
1 2x       x   

5  x   

45a   

25a

  



 

 

1. No. of forward paths and forward path gain k=3 

 

 

 

1 12 23 34 45 1 2 3 4 5

2 12 24 45 1 2 4 5

3 12 25 1 2 5

P a a a a x x x x x

P a a a x x x x

P a a x x x

    

   

  
  

2. Individual  loops and gain 

 

 

 

 

11 23 32 2 3 2

21 23 34 42 2 3 4 2

31 24 42 2 4 2

41 44 4

P a a x x x

P a a a x x x x

P a a x x x

P a x

  

   

  


 

3. Non touching loops 

12 11, 41 32 23 44P P P a a a 

  

 

4. 

 

 
11 21 31 41 12

32 23 23 34 42 24 42 44 23 32 44

1

2

3 44

 and k

=1- P P P P P

1 a a a a a a a a a a a

1

1

1 a

 

    

     

 

 

  

         

5. Transfer function by Mason’s gain formula 

1 1 2 2 3 3k k

k

P P PP
T(s)

    
 

 


  12 23 34 45 12 24 45 12 25 44

23 32 23 34 42 24 42 44 23 32 44

a a a a a a a a a (1 a )
T(s)

1 [a a a a a a a a ] a a a

  


    
 

2.Construct the signal flow graph for the following set of simultaneous equations 

2 21 1 23 3X A X A X ;  3 31 1 32 2 33 3X A X A X A X ;  

 

 

4 42 2 43 3X A X A X 

And obtain the overall transfer function using Mason’s gain formula
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1. No of forward paths and gain 

 

 

 

          

 

 

        

 

2. Individual loops and gain 

 

                

3. Non touching loops = Nil 

4. 

11 21

32 23 33

1

2 33

3

 and k

=1-[P P ]

1 [A A A ]

1

1 A

1

 

 

  

 

  

 
  

33a

  

3x   

21 32 43A          A           A

  

1 2 3 4x      x      x      x

  

1 21 32 43P A A A

  

1 2x       x   
4x   

21A   

42A   

2 21 42P A A   

1 3x       x

  

4x   

31A   

43A   

3 31 43P A A   

32A      

2x

  3x  

23A

  

11 23 32P A A   

33a

  

3x   

P21 = A33 



 

 

5. Transfer function By Mason’s gain formula 

1 1 2 2 3 3k k

k

P P PP
T(s)

    
 

 


 

21 32 43 21 42 33 31 43

32 23 33

A A A A A (1 A ) A A

1 [A A A ]

  

 

  

3.For the network shown below, draw the signal flow graph and find transfer function Mason;s gain formula. 

0 1V / V

  

  

 

Sol 

 

 

Consider current through series element and voltage across the shunt element. 

Nodes/Variables are  

i 1 1 2 2 o

1 1 2 2

V ,i ,V ,i ,V ,V

i , v , i , v mixed nodes

  

i

0

V input node

V output node





 

Current through R1 

i 1

1

i 1

1 1

1 i 1

1 1

V V
i

R

V V
  =

R R

1 1
I (s) V (s) V (s)                      (1)

R R






    

~ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

± 
I
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2R

  

I
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1 1i      R

  

1c

  

2c   0v   

2R
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Construction of signal flow graph is as follows 
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5. Transfer function by Mason’s gain formula, 
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1. Explain about DC Servo Motor  
A DC servo motor is used as an actuator to drive a load. It is usually a DC motor of low power rating. DC 

servo motors have a high ratio of starting torque to inertia and therefore they have a faster dynamic response.  

 DC motors are constructed using rare earth permanent magnets which have high residual flux density and 

high coercively. 

 As no field winding is used, the field copper losses is zero and hence, the overall efficiency of the motor is 

high.  

 The speed torque characteristic of this motor is flat over a wide range, as the armature reaction is negligible.  

  Moreover speed in directly proportional to the armature voltage for a given torque. Armature of a DC servo 

motor is specially designed to have low inertia. 

  In some application DC servo motors are used with magnetic flux produced by field windings.  

  The speed of PMDC motors can be controlled by applying variable armature voltage. These are called 

armature voltage controlled DC servo motors.  

  Wound field DC motors can be controlled by either controlling the armature voltage or controlling rho field 

current. Let us now consider modelling of these two types or DC servo motors.  

(a) Armature controlled DC servo motor  
The physical model of an armature controlled DC servo motor is given in  

 

 
The armature winding has a resistance R a and inductance La.  

The field is produced either by a permanent magnet or the field winding is separately excited and supplied with 

constant voltage so that the field current If  is a constant.  When the armature is supplied with a DC voltage of ea 

volts, the armature rotates and produces a back e.m.f  eb  

 
The armature current ia depends on the difference of eb and en. The armature has a moment of inertiaJ, frictional 

coefficient Bo  

The angular displacement of the motor is θ. The torque produced by the motor is given by  

 



 

 

Where KT is the motor torque constant.  

The back emf is proportional to the speed of the motor and hence 

 

The differential equation representing the electrical system is given by 

 

Taking Laplace transform of equation from above equation 

 

The mathematical model of the mechanical system is given by 

 

Taking Laplace transform 

 

 

Solving for θ(s) ,we get 

 
The block diagram representation of the armature controlled DC servo motor is developed in steps 

 



 

 

Combining these blocks we have 

 
Usually the inductance of the armature winding is small and hence neglected 

 

 
Where 

 
Field Controlled Dc Servo Motor  

The field servo motor 

 
The electrical circuit is modeled as 

 

 

 
Where Motor gain constant 

 
 Motor time constant 



 

 

 
 Field time constant 

 
The block diagram is as shown as 

 
2. Write a short note on AC Servo Motors  
An AC servo motor is essentially a two phase induction motor with modified constructional features to suit servo 

applications.  

The schematic of a two phase or servo motor is shown  

 
 
It has two windings displaced by 90 degree on the stator One winding, called as reference winding, is supplied with a 

constant sinusoidal voltage.  

The second winding, called control winding, is supplied with a variable control voltage which is displaced by 90 o 

out of phase from the reference voltage.  

The major differences between the normal induction motor and an AC servo motor are  

The rotor winding of an ac servo motor has high resistance (R) compared to its  inductive reactance (X) so that its  

ratio 
𝑋

𝑅
 is very low.  

 

 For a normal induction motor, 
𝑋

𝑅
 ratio is high so that the maximum torque is obtained in normal operating region 

which is around 5% of slip.  

 The torque speed characteristics of a normal induction motor 

and an ac servo motor are shown in fig  

 

 

 
The Torque speed characteristic of a normal induction motor is highly nonlinear and has a positive slope for some 

portion of the curve. 



 

 

This is not desirable for control applications as the positive slope makes the systems unstable. The torque speed 

characteristic of an ac servo motor is fairly linear and has 45 negative slope throughout.  

The rotor construction is usually squirrel cage or drag cup type for an ac servo motor. The diameter is small 

compared to the length of the rotor which reduces inertia of the moving parts.  

 Thus it has good accelerating characteristic and good dynamic response.  

 

The supplies to the two windings of ac servo motor are not balanced as in the case of a normal induction motor.  

The control voltage varies both in magnitude and phase with respect to the constant reference vulture applied to the 

reference winding.  

The direction of rotation of the motor depends on the phase (± 90°) of the control voltage with respect to the 

reference voltage.  For different rms values of control voltage the torque speed characteristics are shown in Fig.  

The torque varies approximately linearly with respect to speed and also controls voltage.  

The torque speed characteristics can be linearised at the operating point and the transfer function of the motor can be 

obtained.  

 
3. Write a short note on Synchros  

A commonly used error detector of mechanical positions of rotating shafts in AC control systems is the Synchro.  

It consists of two electro mechanical devices.  

 Synchro transmitter  

 

 Synchro receiver or control transformer.  

 

The principle of operation of these two devices is same but they differ slightly in their construction.  

The construction of a Synchro transmitter is similar to a phase alternator.  

 

The stator consists of a balanced three phase winding and is star connected.  

 

The rotor is of dumbbell type construction and is wound with a coil to produce a magnetic field.  

When a no voltage is applied to the winding of the rotor, a magnetic field is produced.  

 

The coils in the stator link with this sinusoidal distributed magnetic flux and voltages are induced in the three coils 

due to transformer action.  



 

 

Than the three voltages are in time phase with each other and the rotor voltage.  

 

The magnitudes of the voltages are proportional to the cosine of the angle between the rotor position and the 

respective coil axis.  

The position of the rotor and the coils are shown in Fig.  

 

 

 

 
 

When θ=90 the axis of the magnetic field coincides with the axis of coil S2 and maximum voltage is induced in it as 

seen.  

 
For this position of the rotor, the voltage c, is zero, this position of the rotor is known as the 'Electrical Zero' of die 

transmitter and is taken as reference for specifying the rotor position.  

In summary, it can be seen that the input to the transmitter is the angular position of the rotor and the set of three 

single phase voltages is the output.  

The magnitudes of these voltages depend on the angular position of the rotor as given  



 

 

 
Hence  

 

 
 
Now consider these three voltages to he applied to the stator of a similar device called control transformer or synchro 

receiver. The construction of a control transformer is similar to that of the transmitter except that the rotor is made 

cylindrical in shape whereas the rotor of transmitter is dumbell in shape. Since the rotor is cylindrical, the air gap is 

uniform and the reluctance of the magnetic path is constant. This makes the output impedance of rotor to be a 

constant.  

 Usually the rotor winding of control transformer is connected teas amplifier which requires signal with constant 

impedance for better performance.  A synchro transmitter is usually required to supply several control transformers 

and hence the stator winding of control transformer is wound with higher impedance per phase.  Since the some 

currents flow through the stators of the synchro transmitter and receiver, the same pattern of flux distribution will be 

produced in the air gap of the control transformer.  

The control transformer flux axis is in the same position as that of the synchro transmitter. Thus the voltage induced 

in the rotor coil of control transformer is proportional to the cosine of the angle between the two rotors.  
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Unit 2 

TIME RESPONSE ANALYSIS 

PART-A 

1. What is an order of a system? APRIL/MAY 2011, Nov/Dec 2017 

The order of a system is the order of the differential equation governing the system. The order of the 

system can be obtained from the transfer function of the given system. 

2. Define type number of the system   Nov/Dec 2017 

The type number of the system is defined as number of poles which lies on the origin of the complex plane. 

3. What is step signal? 

The step signal is a signal whose value changes from zero A at t=0 and remains constant at A for  t>0.  

 

4. What is ramp signal? 

The ramp signal is a signal whose value increases linearly with time from an initial value of zero at t=0. 

The ramp signal resembles a constant velocity. 

 

5. State some standard signals used in time domain analysis      Nov’15, APRIL /MAY’11&16, Nov/Dec 2018 

Step signal, Ramp signal, Parabolic signal and sinusoidal signal 

 

6. What is transient response? 

The transient response is the response of the system when the system changes from one state to another. 

 

7. What is steady state response? 

The steady state response is the response of the system when it approached infinity. 

 

8. Define damping ratio. April/May 2019 

Damping ratio is defined as the ratio of actual damping to critical damping. 

 

9. List the time domain specifications  May/June 2016, NOV/DEC 2016 

The time domain specifications are  

i) Delay time 

ii) Rise time 

iii) Peak time 

iv) Peak overshoot 

v) Setting time 

10. What is damped frequency of oscillation? 

In under damped system the response is damped oscillatory. The frequency of damped oscillation is given 

by 2

d n 1      

11. What will be the nature of response of second order system with different types of damping? 

 For undamped system the response is oscillatory. 

 For under damped system the response is damped oscillatory. 

 For critically damped system the response is exponentially rising. 

 For over damped system the response is exponentially rising but the rise time will be very large 

. 

12. Define delay time. 

The time taken from for response to reach 50% of final value for the very first time is delay time. 

 

13. Define rise time       April / May 2010 

The time taken for response to raise from 0% to 100% for the very first time is rise time. 

 



14. Define peak time. 

The time taken for the response to reach the peak value for the first time is peak time. 

 

15. Define peak overshoot. Nov/ Dec 2010, April/May 2017 

Peak overshoot is defined as the ratio of maximum peak value measured from the Maximum value to final 

value. 

 

16. Define setting time. Nov/Dec 2018 

Setting time is defined as the time taken by the response to reach and stay within specified error. 

 

17. What is the need for a controller? 

The controller is provided to modify the error signal for better control action. 

 

18. What are the different types of controllers? 

The different types of the controller are  

 Proportional controller 

 PI controller 

 PD controller 

 PID controller 

19. What is proportional controller? 

It is device that produce a control signal which is proportional to the input error signal. 

 

20. What is PI Controller? 

It is device that produce a control signal consisting of two terms-one proportional to error signal and the 

other proportional to the integral of error signal. 

 

21. What is PD Controller? 

PD controller is a proportional plus derivative controller which produces an output signal consisting of two 

terms – one proportional to error signal and other proportional to the derivative of the signal. 

 

22. What is the significance of integral controller and derivative controller in a PID controller? 

The proportional controller stabilizes the gain but produces a steady state error. The integral control 

reduces or eliminated the steady state error. 

 

23. Define Steady state error. 

The steady state error is the value of error signal e(t) when t tends to infinity. 

 

24. What is the drawback of static coefficients? 

The main drawback of static coefficient is that it does not show the variation of error with time and input 

should be standard input. 

 

25. What are the three constants associated with a steady state error? 

The three steady state errors constant are 

 Positional error constant Kp 

 Velocity error constant Kv 

 Acceleration error constant Ka 

26. What are the main advantages of generalized error co-efficients? 

i) Steady state is function of time 

ii) Steady state can be determined from any type of input 

 

27. What are the effects of adding a zero to a system? 

Adding a zero to a system results in pronounced early peak to system  response thereby the peak overshoot 

increases appreciable. 



 

28. Why derivative controller is not used in control system? 

The derivative controller produces a control action based on rate of change of error signal and it does not 

produce corrective measures for any constant error. Hence derivative controller is not used in control 

system. 

 

29. What is the effect of PI controller on the system  performance?   Nov/Dec 2019, April/May 2017, May/June 

2016 

The PI Controller increases the order of the system by one, which results in reducing the steady state error. 

But the system because less stable than the original system. 

 

30. What is the effect of PD Controller of system performance? April/May 2017 

The effect of PD controller is to increase the damping ratio of the system and so the peak overshoot is 

reduced. 

31. What are the root loci? 

 The path taken by the root of the open loop transfer function when the loop gain is varied from 0 to infinity 

are called root loci. 

32. What is the dominant pole?     (NOV/DEC 2015, 2016) 

  The dominant pole is a pair of conjugate pole which decides the transient response of the system. In higher 

order system the dominant poles are very close to origin and all other poles of the system are widely separated and 

so they have less effect on transient response of the system. 

33. What are the main significance of root locus? 

i. The root locus technique is used for stability analysis. 

ii. Using root locus techniques the range of value of K, for as stable system can be determined. 

 

34. What are the breakaway point are break in points? 

 At break away point the root locus break from the real axis to enter into the complex plane. At break in 

point the root locus enters the real axis from then complex plane. To find the breakaway or break in points, from  

a equation for K from the characteristic equation and differentiate the equation of K with respect to s. Then find the 

roots of  the equations dK/dS = 0. The root of dK/dS = 0 are breakaway or break in points provided for this value of 

root the gain K should be positive and real. 

 

35. What are asymptotes? How will you find angle of asymptotes? 

 Asymptotes are the straight line which are parallel to root locus going to infinity and meet the root locus at 

infinity. 

Angle of asymptotes = 
 180 2q 1

q 0,1,2,3,....n m
n m

 
  


  

 N= number of poles 

 M = number of zeroes. 



36. What is the centriod? 

 The meeting point of the asymptotes with the real axis is called centroid. The centroid is given by Centroid 

= (sum of the poles-sum of the zeros)/n-m 

 N= number of poles 

 M = number of zeroes. 

37. What is magnitude criterion? 

 The magnitude criterion states that s = sa will be a point on root locus if for that value of s, magnitude of 

G(s)H(s) is equal to 1. 

     a

a

(product length of vector fromopen loopzeros to thepoint s s )
G s H s K 1

(product length of vector fromopen looppoles to thepoint s s )


 


 

38. What is angle criterion?  

 The angle  criterion states that s = sa will be a point on root locus if for that value of  s, the argument or 

phase of G(s)H(s) is equal to an odd multiple 180   . 

     a asumof theangleof vectorsfromzeros to thepoint s s sumof theangleof vectorsfrompoles to thepoint s s 180 2q 1      
  

39. How will you find the root locus on real axis?   (MAY/JUNE 2016) 

 To find the root locus on real axis choose the test point on real axis to the right of this test point is odd 

number then the test point lie on the root locus. If it is even the test point does not lie on the root locus. 

 

Part – B & C QUESTIONS AND ANSWERS 

1. Derive the time response analysis of a first order system for (i) Unit step input (ii) Unit ramp (iii) impulse input 

(i) For Unit step input 

The closed loop transfer function of first order system  
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(ii) For Ramp input 

The closed loop transfer function of first order system, 

If the input is unit ramp then, r(t)=t and R(s)=
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(iii) For impulse input 

The closed loop transfer function of first order system, 

If the input impuse, then r(t)=δ(t) and R(s)=1 



The response in s-domain, C(s) = 

1
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2. Discuss briefly about step response analysis second order system 

The closed loop second order system is shown in fig. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The standard form of closed loop transfer function of second order system is given by 
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Depending on the value of   , the second order system is classified into 4 types. 

1. Undamped system :  =0 

2. Underdamped system: 0<  <1 

3. Critically damped system:  =1 

4. Overdamped system:  >1 
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3. Response of undamped second order system for unit step input  Nov/Dec 2019, April/May 

2017 
The standard form of closed loop transfer function of second order system is, 
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The response of undamped second order system for unit step input is completely oscillatory. 

 

4. Response of under damped second order  system for unit step input. (Nov/Dec 2018) 

 The standard form of closed loop transfer function of second order system is  
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For under damped system, 0<   <1, and the roots of the characteristic equation are complex conjugate 
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By partial fraction expansion 
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The response of under damped second order system for unit step input oscillator before setting to a final value. 

    

 

 

 

 

3. Response of critically damped second order system for unit step input 

The standard form of closed loop transfer function of second order system is  
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The response of critically damped closed loop second order system for unit step input, has no oscillations. 

4.Response of overdamped second order system for unit step input. 

 The standard form of closed loop transfer function of second order system is  
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The closed loop transfer function can be written in terms of s1 and s2 as 
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The response of over damped closed loop system or unit step input has no oscillations, but it takes longer time for 

the response to reach the final steady value. 

 

 

5. What are the time domain specifications? Define them 

Time domain specifications 

The transient response characteristics of a control system to a unit step input is specified in terms of the following 

time domain specifications 

1. Delay time(td) 

2. Rise time (tr) 

3. Peak time (tp) 

4. Maximum overshoot (Mp) 

5. Settling time (ts) 

6. Steady state error (ess) 

 Delay time(td) is the time required to reach at 50% of its final value by a time response signal during its 

first cycle of oscillation. 



 Rise time (tr) is the time required to reach at final value by a under damped time response signal during its 

first cycle of oscillation. If the signal is over damped then rise time is counted as the time required by the 

response to rise form 10% to 90% of its final value. 

 Peak time (tp) is simply the time required by response to reach its first peak i.e the peak of first cycle of 

oscillation, or first overshoot. 

 Maximum overshoot (Mp) is straight way difference between the magnitude of the highest peak of time 

response and magnitude of its steady state. Maximum overshoot is expressed in terms of percentage of 

steady-state value of the response. As the first peak of response is normally maximum in magnitude, 

maximum overshoot is simply normalized difference between first peak and steady- state value of a 

response. 

 Settling time (ts): Time required for a response to become steady. It is defined as the time required by the 

response to reach and steady within specified range of 2% to 5% of its final value. 

 Steady state error (ess) is the difference between actual output and desired output at the infinite range of 

time 

 

6. Derive the expressions for time domain specifications of a second order system subjected to a step input  

           (April/May 2019) 

Expression for Rise time tr 

   

Transient response of  second order system is given by  
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Expression for Peak time tp: 

Transient response of  second order system is given by  
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d t = nπ where n = 1,2,3 

But tp and required for first peak overshoot n=1 
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Expression for maximum peak overshoot(%Mp) 
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Expression for setting time ts 

The setting time ts is the required by the output to settle down within 2% of tolerance band. So,  ts is the time 

when output becomes 98% of its final value and remains within the range of 2  %  

 
sc(t) at (t=t ) 0.98   

Now at t= ts, the transient oscillatory term completely vanishes. The only term which controls the amplitude 

of the output within 2% . Hence value of  ts is obtained considering only exponentially decaying envelope, 

neglecting all other terms. 
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In practice the settling time is assumed to be  
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7. Discuss the effects of P, PI, PD and PID Controllers         Nov/Dec 2015, May/June 2016, Nov/Dec 2016,  

                                  Nov/Dec 2019 

Controllers: A Controller is a device introduced in the system to modify the error signal and to produce a control 

signal. 

The controller modifies/improves the transient response of the system 

The different types of controllers are 

 Proportional controller(P controller) 

 Integral controller (I controller) 

 PI controller 

 PD controller 

 PID Controller 

Proportional controller (P controller) 

 The proportional controller is a device that produces a control signal, u(t) proportional to the input error 

signal e(t). 

In P-controller , u(t)  e(t) 

  U(t) = Kp.e(t)…………..(1) 
Where Kp is the proportional gain or proportional constant On taking Laplace transform to (i) 

  U(s)=KpE(s) 

  p

U(s)
K .................(2)

E(s)
   

Equation (2) is the transfer function of P controller 

 The proportional controller amplifies the error signal by amount Kp 

 The introduction of controller on the system increases the loop gain by an amount Kp 



 The increase in loop gain improves steady state tracking accuracy, disturbance signal rejection and 

relative stability and also makes system less sensitive to parameter variation. 
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Where   is damping ratio and 
n  is undamped natural frequency. 

For steady state response, 
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If transient response is to be improved, damping ratio must be changed. 

In general good time response demands, 

 Less settling time 

 Less overshoot 

 Less rise time 

 Smallest steady state error 

 Increasing the gain Kv to very large values, steady state error may be reduced but due to high gain, settling 

time and peak overshoot increases and this may lead to instability of the system 

 Drawback : it leads to constant steady state error 

Integral controller (I controller) 

The integral controller is a device that produces a control signal u(t) which is proportional to integral of the 

input error signal [e(t)] 

In I controller, u (t) ∝ e(t)dt   

iu(t) K e(t)dt...................(1)  

Where Ki is the integral constant  



On taking Laplace transform to (i) U(s) = i

E(s)
K

s
  

    iKU(s)
...................(2)

E(s) s
   

Eqn(2) is the transfer function of I controller 

 The integral controller removes or reduces the steady state error without need for manual reset. Hence I 

controller is called automatic reset. 

 Drawback: it may lead to oscillatory response of increasing or decreasing amplitude, which is 

undesirable and the system may become unstable. 

 

PI Controller 

The proportional plus integral controller produces an output signal consisting of two terms, one proportional to error 

signal and the other proportional to the integral of the error signal 

In PI Controller, u(t) e(t) e(t)dt      
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p

p

i

p

p

i

p

i

p

i

K E(s)
U(s) K E(s)

T s

K
       =E(s) K

Ts

1
       =E(s)K 1

Ts

E(s) 1
K 1 ...........................(2)

U(s) Ts

 

 
 

 
 
 

 
 

  
 

  



Equation (2) is the transfer function of PI Controller 

The advantages of both P controller and I Controller are combined in PI controller. The proportional control action 

increases the loop gain and makes the system less sensitive to variations of system parameters. 

The integral control action is adjusted by varying the integral time. The change in value of Kp affects both the 

proporational and integral parts of control action. The inverse of the integral time Ti is called the reset rate. 

 

Effects of PI Controller: 

  G(s)=

2i
p n

n

K
(K )

s

s(s 2 )

 

 
  

p

2i
n 2

i n

2

n n

2

i n

3 2 2 2

n n i n

Assu min g K 1,

K
1

(K s)s
         G(s)=

s(s 2 ) s (s 2 )

i.e system becomes TYPE2 in nature

(K s)C(s)
         

R(s) s 2 s s K



       
   

 


    

  

i.e it becomes third order. 

As order increases by one, system relatively becomes less stable as Ki must be designed in such a way that system 

will remain in stable condition. Second order system is always stable. 

Hence transient response gets affected if controller is not designed properly. While,  

For steady state response, 



   
p s 0 ss

p s 0 ss

K lim G(s)H(s) ;  e 0

K lim sG(s)H(s) ;e 0





   

   
  

 Hence as type is increased by one, error becomes zero for ramp type of inputs, i.e., steady state of system 

gets improved and becomes more accurate in nature. 

Hence PI controller ha following effects: 

 It increases order of the system 

 It increases the TYPE of the system 

 Design of Ki must be proper to maintain stability of system. So it makes system relatively less stable. 

 Steady state error reduces tremendously for same type of inputs. 

In general PI controller improves steady state part affecting the transient part. 

PD Controller 

 The proportional plus derivative controller produces an output signal consisting of two terms: one 

proportional to error signal and the other proportional to the derivative of error signal. 

In  PD  Controller,  
d

u(t) e(t) e(t)
dt

    
  

p p d

p d

u(t) K e(t) K T e(t)........................(1)

Where K  is the proportional gain and T  is the derivative time

 
 

On taking Laplace transform to (i), 

  

p p d

p d

U(s) K E(s) K T sE(s)

U(s)
K (1 T s)...............(2)

E(s)

 

 
  

Equation (2) is the transfer function of PD Controller. 

The derivative control acts on rate of change of error and not on the actual error signal. The derivative control is 

effective only during transient periods and so it does not produce corrective measures for any constant error. Hence 

the derivative controller is never used alone, but it is employed in association with proportional and integral 

controllers. 

 The derivative controller does not affect the steady state error directly but anticipates the error, initiates an 

early corrective action and tends to increase the stability of the system. 

 It amplifies noise signal and may cause a saturation effect in the actuator.  

 The derivative control action is adjusted by varying the derivative time. The change in the value of Kp 

affects both P and D parts of control action. The derivative control action is called as rate control. 

 



  

 

 

Effects of PD Controller: 

 

2

p d n

n

p

2

d n

n

K (1 sT )
G(s)

s(s 2 )

Assu min gK 1,

(1 sT )
G(s)

s(s 2 )

 


 



 


 

  

 
2

d n

2 2 2

n n d n

(1 sT )C(s)

R(s) s s[2 T ]

 


   
  

Comparing the denominator with standard form, 
n  is same as P type controller. 

 

2

n n n d

n d

2 ' 2 T

T
'

2

    


   

  

Because of this controller, damping ratio increases by factor n dT

2


 

For steady state response, 

p s 0 ss

n

p s 0 ss

n

K lim G(s)H(s) ;  e 0

2
K lim sG(s)H(s) ;e

2





   

 
  

 

  

As there is no change in coefficients, error also will remain same. Hence PI controller has following effecs: 

 It increases the damping ratio 

 
n  for system remains unchanged. 

 TYPE number of the system remains unchanged. 

 It reduces peak overshoot 

 It reduces settling time 

 Steady state error remains unchanges 



In general PD controller improves transient part without affecting steady state 

PID controller 

The PID controller produces an output signal consisting of three terms: one proportional to error signal, another one 

proportional to integral of error signal and that one proportional to derivative of error signal 

In PID controller,  u(t)∝[e(t)+
d

e(t)dt e(t)]
dt

   

   U(t)=
p

p p d

i

K d
K e(t) e(t)dt K T e(t)..................(1)

T dt
    

Where Kp is the proportional gain, Ti integral time and Td is the derivative time.  

On taking Laplace transform to (1), 

   
p

p p d

i

K E(s)
U(s) K E(s) K T E(s)

T s
     

   

p d

i

p d

i

1
U(s) E(s)K 1 T s

Ts

U(s) 1
K [1 T s]........................(2)

E(s) Ts

 
   

 

     

Equation (2) is the transfer function of PID controller. 

 The combination of proportional control action. Integral action and derivative control action is called PID 

control. 

The proportional controller stabilizes the gain but produces a steady state error 

The integral controller reduces (or) eliminates the steady error. 

The derivative controller reduces the rate of change of error. 



  

 

 

Problems 

1. A system  has the following transfer function 

C(s) 20

R(s) s 10



  

Determine its unit impulse and unit step response with zero initial conditions. 

Sol: 

a) Unit impulse input 

For unit impulse input R(s)=1 

1

1

10t

C(s) 20

R(s) s 10

20
C(s) = R(s)

s 10

20
       =1. 

s 10

Time Response c(t)=L [C(s)]

20
c(t) L

s 10

c(t) 20e














    



  

b) Unit step input 

For unit step input, R(s) =1/S 

C(s) 20

R(s) s 10



 

Response in ‘s’ domain C(s)=R(s) 
20

s 10
 

 



 

1 20
C(s)

s (s 10)

A B
       = by partial fraction expansion

s s 10

A(s 10) Bs 20

comparing coefficients of s,

A+B=0 (1)

comparing constant terms

10A=20 A 2

B 2

substituting A and B

2 2
C(s)=

s s 10







  



 

  




  

Response in time domain c(t) = L
-1

[C(s)] 

1 1

10t

2 2
c(t) L L

s s 10

c(t) 2 2e

 



          

 

  

2. Obtain the unit step response and unit impulse response of the unity feedback system having open loop 

transfer function  

10
G(s)

s(s 2)



  

 Sol Given G(s) = 
10

H(s) 1
s(s 2)




  

 The closed loop transfer function 
C(s) G(s)

R(s) 1 G(s)



  

2

2

10

C(s) 10s(s 2)

10R(s) s 2s 10
1

s(s 2)

C(s) 10

R(s) s 2s 10


 

 



 

 

(a) Unit step input 

For unit step input, r(t) =1, R(s)=1/s 

Response in s domain C(s) = R(s) 
2

10

s 2s 10 
 

C(s)=
1

s
 

2

10

s 2s 10 
 



 2

2 2

A Bs C
C(s) by partial fraction expansion

s s 2s 10

A(s 2s 10) Bs Cs 10

comparing constant terms

10A=10 A 1

comparing the coefficients of s terms

2A+C=0 C 2


 

 
    

 

  

  

 

Comparing the coefficients of s
2
, 

 

A+B=0→ B 1    

2

2

2

2 2

2 2

1 s 2
C(s)

s s 2s 10

1 s 2
         

s s 2s 1 1 10

1 s 2
          =

s (s 1) 9

1 s 1 1
          =

s (s 1) 9 (s 1) 9

1 s 1 3
          =

s (s 1) 9 3((s 1) 9)


  

 


 
   



 


 
   


 
   

 

1 at

2 2

1 at

2 2

L e sin t
(s a)

s a
L e cos t

(s a)

 

 

 
    

 
    

  

Response in time domain c(t) =  1L C s      

t t

t

1
c(t) 1 e cos3t e sin 3t

3

c(t) 1 e [cos3t 0.33sin 3t]

   

  
  

b)Impulse response 

 for impulse input, R(s)=1 

 

2

2

2 2

1

2 2

t

t

10
C(s) R(s)

s 2s 10

10
C(s)

s 2s 10

10
C(s)

(s 1) 3

c(t) L C(s)

10 3
       =

3 (s 1) 3

       =3.33 e sin 3t

c(t) 3.33 e sin 3t  







 
 


 


 



 



 1 at

2 2
L e sin t

(s a)

  
    

 

3. A positional control system with velocity feedback is shown in fig. What is the response of the system for unit 

step input? 



 

Sol: 

The closed loop transfer function is  

2 2

C(s) G(s)

R(s) 1 G(s).H(s)

100
given G(s) H(s) 0.1s 1

s(s 2)

100

C(s) s(s 2)

100R(s)
1 (0.1s 1)

s(s 2)

100

s(s 2)
           =

s(s 2) 100(0.1s 1)

s(s 2)

100 100
           =

s 2s 10s 100 s 12s 100

The characteristic po




  



 

 



  




    

2lynomial is s 12s 100 

  

1, 2

12 144 4x100
roots are s s   = 

2

12 j16
         =

2

         =-6 j8

  

 



  

The roots are complex conjugate. The system is under damped. So the response of the system will have damped 

oscillations. 

The response in s-domain C(s) = R(s) 
2

100

s 12s 100 
  

Since input is unit step, R(s)=1/s 



 

2

2

2 2

1 100
C(s) .

s s 12s 100

A Bs C
          = By partial fraction expansion

s s 12s 100

A(s 12s 100) Bs Cs 100

comparing the constant terms,

100A=100 A 1

comparing the coefficients of s,

12A+C C 12

comparing the

 
 




 
    

 

  
2

2

 coefficients of s ,

A B 0 B 1

1 s 12
C(s)

s s 12s 100

    


  
 

  

2

2 2

2 2 2 2

2 2 2 2

1 s 12

s s 12s 36 64

1 s 6 6

s (s 6) 8

1 s 6 6

s (s 6) 8 (s 6) 8

1 s 6 6 8

s 8(s 6) 8 (s 6) 8


 

  
 

 
 


  
   


  

   

  

The time domain response is obtained by taking inverse Laplace transform of C(s) 

 1Time response, c(t)=L C(s)   

1

2 2 2 2

6t 6t

6t

1 s 6 6 s
c(t) L

s 8(s 6) 8 (s 6) 8

6
        = 1-e cos8t e sin8t

8

6
c(t) 1 e sin8t cos8t

8



 



 
   

    



     

  

4. Find all the time domain specifications for a unity feedback control system whose open loop transfer function is 

given as G(s)=
25

s(s 6)
  

The open loop transfer function G(s)=
25

 H(s) = 1
s(s 6)

  

The closed loop transfer function
C(s) G(s)

R(s) 1 G(s).H(s)



  



2

2

25

C(s) 25 25s(s 6)

25R(s) s(s 6) 25 s 6s 25
1 .1

s(s 6)

C(s) 25

R(s) s 6s 25


   

   



 

  

The characteristic equation is 
2s 6s 25 0     

By comparing the equation with standard form 2 2

n ns 2 s 0, we get      

2

n

n

2.5

5

 
 

                            

n

n

2 6

6 6
0.6

2x 2x5

 

   


  

2

d n 1 5 1 0.36 4rad / sec         

2

1 11 1 0.36
tan tan 53.12 0.92rad.

0.6

 
                

  

1. Rise time 
r

d

0.92
t 0.55sec

4

 
  

   

2. Peak time p

d

t 0.785s
4

 
  


  

3. Delay time d

n

1 0.7 1 0.7x0.6
t 0.284s

5

  
  


  

4. Setting time s

n

4 4
t 1.33s

0.6x5
  


  

2

2

/ 1

p

0.6x / 1 0.6

p

5. % Peak overshoot %M e x100%

      =e x100%

%M 9.5%

 

  




  

Results 

 

r

p

d

s

p

t 0.55sec

t 0.785sec

t 0.284sec

t 1.33sec

%M 9.5%











  



5. The differential equation of the system is given by 
2

2

d y dy
5 16y 16x

dxdt
   . Find the time domain specifications 

and output response expression. 

Sol: 

The given differential equation 
2

2

d y dy
5 16y 16x

dxdt
     

Taking Laplace transform, we get  

2

2

s Y(s) 5sY(s) 16Y(s) 16X(s)

Y(s) 16

X(s) s 5s 16

  


 

   

Comparing with standard form of second order system, 

2

n

2

n n

2

n

n

C(s)

R(s) s 2 s

16

4rad / sec




  

 
 

   
n2 5

5
0.625

2x4

 

  
  

Damping ratio   =0.625 

Natural frequency of oscillation = 
n 4rad / sec    

Damping frequency 2

d n 1      

                              
2     =4 1 (0.625)

     =3.1225 rad/sec


 

2 2
1 11 1 0.625

tan tan 51.3 0.8949rad / sec
0.625

  
    


  

d

n

r

d

p

d

1 0.7 1 .07(0.625)
Delay time t 0.3593sec

4

3.14 0.8949
Rise time t 0.719sec

3.1225

3.14
Peak time t 1.006sec

3.1225

  
  


  

  



  


  



 

2

2

/ 1

p

(3.14x0.625)/ 1 0.625

s

s
n

%Peak overshoot (M ) e x100

                                = e x100

                                = 8.09%

setting time t

44for 2% tolerance, t 1.6sec
0.625x4

for 5% to

 

 





  

s
n

33lerance, t 1.2sec
0.625x4

  

  

Output response of the system 

Since   =0.625, it is under damped system. The response of the second order under damped system is given by  

n t

d
2

0.625x4xt

2

2.5t

e
c(t) 1 sin( t )

1

e
      =1- sin(3.1225t 0.8949)

1 0.625

c(t) 1 1.2810e sin(3.1225t 0.8949)







    
 




  

  

6.  The unity feedback system is characterized as shown in fig. What is the response c(t) to the unit step input. Given 

that 0.5.   Also calculate rise time, peak time, maximum overshoot and settling time. 

     

Sol 

The closed loop transfer function 
C(s) G(s)

R(s) 1 G(s).H(s)



  

2

2

16
G(s) ;H(s) Ks 1

s(s 0.8)

16

C(s) 16s(s 0.8)

16R(s) s 0.8s 16Ks 16
1 (Ks 1)

s(s 0.8)

16
            =

s (0.8 16K)s 16

  



  

   


  

  

By comparing with standard form of second order transfer function 



2

n

2 2 2

n n

C(s) 16

R(s) s 2 s s (0.8 16k)s 16


 

     
  

2

n

n

16

4

 
 

                         

 

n

n

2 0.8 16K

2 0.8
K

16

2x0.5x4 0.8
    =

16

K 0.2

  

 






  

2 2

C(s) 16 16

R(s) s (0.8 16x0.2)s 16 s 4s 16
  

    
 

Output response 

The response in S domain, C(s)=R(s).
2

16

s 4s 16 
  

For unit step input, R(s)=1/s 

 

2

2

2 2

1 16
C(s) .

s s 4s 16

A Bs C
       = by partial fraction expansion

s s 4s 16

A(s 4s 16) Bs Cs 16

comparing the constant term,

16A=16 A 1


 


 
    

 

  

Comparing the coefficients of s
2
 term 

A B 0 B 1

Comparing the coefficients of s term

4A C 0 C 4A 4 C 4

    

        

  

2

2

2

2 2

2 2

1 s 4
C(s)

s s 4s 16

1 s 4
          =

s s 4s 4 12

1 s 4
          =

s (s 2) 12

1 s 2 2
          =

s (s 2) 12 (s 2) 12

1 s 2 2 12
          =

s (s 2) 12 (s 2) 1212


  

 



  



 


 

   


 

   

  



Time domain response is obtained by taking inverse Laplace transform, of C(s) 

1 1

2 2

1 s 2 2 12
c(t) L [C(s)] L

s (s 2) 12 (s 2) 1212

   
    

    
  

2t 2t

2t 2t

2t 2t

2
           =1-e cos 12t e sin 12t

12

2
           =1-e cos 12t e sin 12t

2 3

1
c(t) 1 e [cos 12t e sin 12t

3

 

 

 





  

  

Damped frequency of oscillation 

2 2

d n

r

d

2 2
1 1

1 4 1 0.5 3.464 rad / sec

1.047
Rise time t 0.6046sec

3.464

1 1 0.5
where =tan tan 60 1.047radian

0.5

 

      

 
  



           
     

  

Peak time p

d

t 0.907sec
3.464

 
  


  

2

2

/ 1 x100%

0.5x / 1 .05 x100%

p e% Maximum ove

e

16.3

rshoot,   % M

%

 
 

  




  

Setting time ts= 

s

n

s

n

3 3
for 5% error, t 3T 1.5sec

0.5x4

4 4
for 2% error, t 4T 2sec

0.5x4

   


   


  

7. The unity feedback control system is characteristic by an open loop transfer function G(s)=K/[s(s+10)]. 

Determine the gain K, so that the system will have damping ratio of 0.5 for this value of K, determine peak 

overshoot and peak time for a unit step input. 

Sol 

The closed loop transfer function is given by  



2

C(s) G(s)

R(s) 1 G(s).H(s)

K
G(s) ,H(s) 1

s(s 10)

K

C(s) Ks(s 10)

KR(s) s 10s K
1

s(s 10)




 



  

 


  

The standard form of second order equation of a closed loop system is  

2

n

2 2

n n

2

n n

n

2

C(s)

R(s) s 2 s

comparing these two equations,

K K

5
2 10

k

25 25
for =0.5, K= 100

0.25

K 100




  

    

    

  




  

n K 100 10      

(b) Peak time(
pt )   

p
2 2

d n

p

p

t 0.363sec
1 10 1 (0.5)

%M 16.3%

   t 0.363sec

  
   
   





  

8. The open loop transfer function of a unity feedback control system is given by G(s)=
K

s(sT 1)
 where K and T are 

positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step 

response of the system is reduced form 75% to 25% APRIL/MAY 2017 

 

Sol 

The closed loop transfer function is given by  

C(s) G(s)

R(s) 1 G(s)



 

2
2

K
G(s)

s(sT 1)

K

C(s) K K / Ts(sT 1)

K 1 KR(s) Ts s K
1 s s

s(sT 1) T T





   

   


  

Comparing this with standard second order system equation, the  



2

n

2 2

n n

C(s)

R(s) s 2 s




  
  

2

n n n

n

K K 1
  ;     2

T T T

1 1

2 T 2 KT

      

  


  

Let the peak overshoot Mp1correspond to 
1 p2 and M    be the peak overshoot for  

2     and 

corresponding gains be
1 2K  and K  respectively  

2
1 1

2
2 2

/ 1

p1

1

2

1

1

/ 1

p2

2

2

2

2

2 2

2

M e 0.75

taking natural logarthims on both sides,

ln 0.75 0.2877
1

from which 0.091

IIIly,

       M e 0.25

taking ln on both sides,

ln 0.25 1.3863
1

1  =2.266

  

  

 

 
  

 

 

 

 
  

 

 



1 2

1 2

0.4

1 1
 and  since T is same in both the cases

K K



   

  

2 2

1 2

2 2

12

2 1

K (0.091) 1

K 19.4(0.4)

1
(or) K K

19.4


  





  

 

Hence the original gain has to be reduced by factor 19.4 to reduce the overshoot from 75% to 25% 

 

9. For a unity feedback control system, the open loop transfer function G(s)=[10(s+2)]/s
2
(s+1) find 

1. The position, velocity , acceleration error constants 

2. The steady state error, when R(s)=
2 3

3 2 1

s s 3s
    

Sol 

2

10(s 2)
G(s) .  H(s) = 1

s (s 1)





  

1. Position, velocity and acceleration error constant  



p
s 0

2s 0

v
s 0

2s 0

a
s

K Lt G(s)

10(s 2)
    = Lt

s (s 1)

Velocity error constant, K Lt sG(s)

10(s 2)
                                          = Lt s

s (s 1)

Position error consta

Acceleration erro

nt,

r constant, K Lt












 





 



 2

0

2

2s 0

s 0

s G(s)

10(s 2)
                                                = Lt s

s (s 1)

10(s 2) 10x2
                                                = Lt 20

(s 1) 1











 



  

(2) To find steady state error 

 

2 3 2

2 3 2 3

2

2 2

2 2

2 2

R(s)

1 G(s).H(s)

3 2 1 10(s 2)
R(s) ,      G(s)= ;H(s) 1

s s 3s s (s 1)

3 2 1 3 2 1

s ss 3s s 3sE(s)
10

The error signal in s domain E s  

(s 2) s (s 1) 10(s 2)
1

s (s 1) s (s 1)

3 s (s 1) 2 s (

s s (s 1) 10(s 2) s




   


   
 

   
 

 
     



2

2 3 2

2

2 2 2s 0

s 1) 1 s (s 1)

s (s 1) 10(s 2) 3s s (s 1) 10(s 2)

3s (s 1) 2(s 1) (s 1)
Lt

s (s 1) 10(s 2) s (s 1) 10(s 2) 3s(s (s 1) 10(s 2))

    
           

   
   

         

  

=0-0+
1

60
 =

1

60
 

Steady state error 
ss

1
e

60
   

10. Consider a unity feedback system with closed loop transfer function 
2

C(s) Ks b
.

R(s) s as b




 
 Determine the transfer 

function G(s). show that the steady state error with unit ramp is given by 
 a K

b


  

Sol 

For unity feedback system, H(s)=1 



The closed loop transfer function, M(s)=
C(s)

R(s)
  

M(s)=
C(s)

R(s)
=

G(s) G(s)

1 G(s).H(s) 1 G(s)


 
  

G(s)
M(s)

1 G(s)
 


  

2

2

2

2

G(s) M(s)(1 G(s))

G(s) M(s) M(s).G(s)

G(s) M(s)G(s) M(s)

G(s)(1 M(s)) M(s)

M(s) Ks b
G(s) M(s) (given)

1 M(s) s as b

open loop transfer function

Ks b

M(s) Ks bs as bG(s)=
Ks b1 M(s) (s as b) Ks b

1
s as b

Ks

 
 
 
 


 

  




  
    

 



2

b Ks b

s(s (a K)s (a K)s




  

  

0

s 0

s 0

v
s
Lt sG(s)H(Velo s)

Lt sG(s)

Ks b b
L

city error cons

t s
s(s

ta

(a K)) a

nt,  K

K












 

  

  

With velocity input, steady state error, 

ss

v

1 a K
e

K b

Hence proved


 

  

11.  For a unity feedback control system having open loop transfer function 
K(s 2)

s(s 5)(4s 1)


 

  

The input applied is r(t)=1-3t. Find the minimum value of K. so that the steady state error is less than 1. 

Sol 



p
s 0 s 0

v
s 0 s 0

K(s 2)
G(s) ;  H(s)=1

s(s 10)(s 1)

Error constants

K(s 2)
K Lt G(s)H(s) Lt

s(s 5)(4s 1)

K(s 2)
K Lt sG(s)H(s) Lt s

s(s 5)(4s 1)

K(s 2) 2K
                             = =  

(s 5)(4s 1) 5

 

 




 


   

 


 
 


 

  

Total steady state error due to r(t)=1+3t 

ss

p v

ss

1 3
e

1 K K

1 3 3 3
     = 0

21 0.4K 0.4K
k

5

3
e 1(given)  

For steady state e

1
0.4k

K rror to be less than 17.5

 


   


  

 

  

12. Determine the type and order of the system with the following transfer function 

(1) 
s 4

(s 2)(s 3)


 

  

Sol:        order is 2 

 Type number 0 

 

(2) 
3 2

10

s (s 2s 1) 
  

Sol:        order is 5 

 Type number 3 

*INCLUDE THIS *                                                 ROOT LOCUS 

1. Sketch the root locus of the system whose open loop transfer function is     
K

G S .
s s 2 s 4


 

. Find the 

value of K, So that the damping ratio of the closed loop system is 0.5 

 Solution: 

 Step 1: To locate poles and zeros 

 The poles of open loop transfer function are the roots of the equation    s s 2 s 4  = 0 



Poles are lying at s = 0, -2, -4. 

Let us denoted poles 
1 2 3p 0,p 2,p 4       

Step 2: To find the root locus on the real axis  

 The root locus starts from pole p1 = 0& terminal at p2 = -2 and it form the part  of root locus  and 

the root locus starts from p3 & the terminates at open loop zero at infinity. 

Step 3: to find asymptotes and centroid 

 
 180 2q 1

angle of asymptotes q 0,1,2,3....n m
n m

  
  


  

Here n = 3, m = 0.      q 0,1,2,3.    

A

A

A

180
when q 0, 60

3

180 3
when q 1, 180

3

180 5
when q 2, 300 60

3

 
     

 
     

 
        

  

A

sum of poles sum of zeros
Centroid

n m

0 2 4 0
2

3





  

   
  

Step 4: To find the break away and break in points 

 The closed loop transfer function = 
 
 

 
 

C s G s

R s 1 G s



  

 
 
 

  

  
  

K

C s s s 2 s 4 K

KR s s s 2 s 4 K
1

s s 2 s 4

 
 

  
 

  

The characteristic equation is given by 



 

  
 2

3 2

3 2

2

2

2

s s 2 s 4 K 0

s s 6s 8 K 0

s 6s 8s K 0

K s 6s 8s

dK
s 12s 8

ds

dK
put 0 3s 12s 8 0

ds

12 12 4 3 8
s 0.845 or 3.154

2 3

   

   

   

     

    

    

    
   



  

Check for K; 

 When s=-0.845, the K is given by      3 2
K 0.845 6 0.845 8 0.845 3.08            Since K 

is  +ve and real for s = -0.845, this point is actual break away point. 

 When s = -3.154, the value is given by      3 2
K 3.154 6 3.154 8 3.154 3.08            

Since K, is negative for s  = -3.154, this is not a actual breakaway point. 

Step 5: To find angle of departure  

 since there are no complex pole (or) zero, there is no need to find angle of departure  

Step 6:  To find the crossing point imaginary axis. 

The characteristics equation is given by: 

 3 2s 6s 8s K 0     

Put s j   

 

     3 2

3 2

j 6 j 8 j K 0

j 6 8j K 0

      

        

Equating imaginary part to zero, 

 

3

3

2

j j8

j j8

8 8

     

    

    
  

 

Equating real parts to zero  



 

2

2

6 K 0

K 6 6 8 48

   

    
 

The crossing point of root locus is j2.8  

The value of K corresponding to this point is K = 48. Thus is the limiting value of K for stability. 

The complete root locus sketch is shown in fig.  The root locus has three branches. One branch starts at the 

pole at s = -4, travel the ‘-ve’ real axis to meet the zero at infinity, the other two root locus branches starts 

at s = 0 and s = -2 & travel the –ve real axis breakaway from real axis at s= -0.845, then cross imaginary 

axis s j2.8  & travel parallel to asymptotes to meet zero at infinity. 

To find the value of K corresponding to G = 0.5 

Given that G = 0.5 

 1cos 0.5 cos 0.5 60       

Draw a line OP, such that the angle between line OP & -ve real axis is 60
0
  60    

The meeting point of OP and root locus is sd  

k at s = sd 

 

d

d

1 2 3

Product of length of vector from all pole 

to the point s = s

Product of length of vector from all zeros 

to the point s = s

1.3 1.75 3.5
7.96 8

1 1



   
  

 



 

 



2. The open loop transfer of a unity feedback control system is given by,  2 2

K
G(s)

s s 4s 13


 
 Sketch the 

root locus. 

Solution:-  

Step 1: To locate poles and zeros  

Poles  

 

24 4 4 13
s 0,

2

0, 2 j3, 2 j3

   


    

 

Let 
1 2 3P 0,P 2 j3,P 2 j3        

Zeros: Nil  

Step 2: To find root locus on the real axis there is only one pole at origin. Hence the entire –ve real axis will be a 

part of root locus. 

Step 3: To find angles of asymptotes and centroid  

Angle of asymptote 
 

A

180 2q 1

n m

  
 


 

   q = 0, 1, 2, ……n-m 

Here n = 3, q = 0, 1, 2, 3. 

When q =0, A

180
60

3

 
      

When q =1, 
A

180
3 180

3

 
       

When q = 2, 
A

180
5 300 60

3

 
         

When q = 3, A

180
7 420 60

3

 
          

Centroid A

Sum of poles - Sum of zeros 

n m
 


 

               
0 2 j3 2 j3 0 4

1.33
3 3

     
     



Step 4: To find the breakaway and break in points  

The closed loop transfer function  

  

 
 

2

2

2

C(s) G(s)

R(s) 1 G(s)

K

s s 4s 13C(s) K

KR(s) s s 4s 13 K

s s 4s 13




 
 

  
 

 

The characteristics equation is  2s s 4s 13 K 0     

 

 
 

2

2

2

2

2

s s 4s 13 K 0

K s 4s 13

dK
3s 8s 13

ds

dK
0 3s 8s 13 0

ds

8 8 4 13 3
s

2 3

s 1.33 j 1.6

   

   

     

    

    



  

 

Check for K: 

When s= -1.33 + j1.6 the value of K is given by  

 

 
     

2 2

3 2

K s 4s 13s

1.33 j1.6 4 1.33 j1.6 13 1.33 j1.6

real ve

   

           
 

 

Similarly when s = -1.33 – j 1.6, the value of K is not   positive & real. Therefore, the root locus has reither 

breakaway nor breakin points, 



 

Step 5: To find the angle of departure consider complex pole P2. Draw velocities from all other poles to the pole P2. 

Let the angles of these vectors be 
1 2&   

Here 1

1 2
3180 tan 123.7 , 90

2
         

Angle of departure from the complex pole P2  



 

 
 

1 2180

180 123.7 90

33.7

     

     

  
 

The angle of departure at complex pole P3 is negative of the angle of departure at complex pole A. 

Angle of departure at pole P3 = +33.7
0
  

Step 6: To find the crossing point an imaginary axis  

The characteristics equation is given by  

 3 2s 4s 13s K 0     

Put s = j 

 
     3 2

3 2

j 4 j 13 j K 0

j 4 j13

      

        
 

Equating imaginary parts to zeros, 

 

2

3

2

13 0

13

13 13 3.6

   

   

       

 

Equating real part to zero  

 2 24 K 0 K 4 4 3 52           

The crossing point of root locus is 3.6  

The value of K at this crossing point is 52. 

The complete root sketch is shown in fig. 

3. The open loop transfer function of 0 unity feedback system is given by, 
 

 2

K s 9
G(S)

s s 4s 11




 
. Sketch the 

root locus of the system. 

Solution:-  

Step 1: To locate poles & zeros  

Poles  



 
 2s s 4s 11 0

s 0, 2 j2.64, 2 j2.64

  

    
 

Let P1= 0, P2 = -2+j2.64, P3 = -2-j2.64 

Zeros: s +9 = 0 & s = -9 

Let Z = -9 

Step 2: To find root locus on real axis the position of real axis from s = 0 to s= -9 will be a part of root locus & from 

s = -9 to s =  will not be part of root locus. 

Step 3: To find angle of asymptotes & centroid angle of asymptotes  

 
 

A

180 2q 1

n m

 
  


 

Where q = 0, 1, ….n - m 

Here n = 3, m = 1, q = 0, 1, 2 

When q = 0, 
A

180
90

2


       

When q = 1, 
A

180
3 270 90

2


         

When q = 2, 
A

180
5 450 90

2


          

Centroid 

A

Poles zeors

n m

0 2 j2.64 2 j2.64 ( 9)

2

2.5

 
 


     





 

Step 4: To find break away and break is points  

The characteristics equation of the system is  



 

 
 

 

 

2

2

3 2

2

K s 9
1 0

s s 4s 11

s s 4s 11
K

s 9

dK
0 2s 31s 61s 0

dS

s s 15.5s 30.5 0

s 0,s 13.157, s 2.313


 

 

  




    

   

     

 

There are no valid breakaway (or) break in points. 

Step 5: To find the angle of departure  

Consider complex pole P2. Draw vectors from all poles and zeros to pole P2. 

 

1

1

2

1

3

2.64
180 tan 127.1

2

90

2.64
tan 20.7

7





     

  

   

 

 The Angle of departure from complex pole P2  = 180-(127.1+90)+20.7 = -16.4 

The angle of departure from complex pole P3 is negative of the angle of departure of from complex pole P2.  

Angle of departure from complex pole P3 = 16.4
0
  

Step 6: To find the crossing point of imaginary axis. 

The closed loop transfer function 
C(s) G(s)

R(s) 1 G(s)



  

The characteristics equation is 1+G(s) 

 

 
 

 

 

2

2

3 2

3 2

K s 9
1

s s 4s 11

s s 4s 11

s 4s 11s Ks 9K 0

s 4s 11 K s 9K 0


  

 

  

     

     

  

Put s = jω 

 
     3 2

3 2

j 4 j 11 j Kj

j 4 j11 j

        

        
  



Equating imaginary part  to zero  

  

3

3

2

11 0

11 K

11 K (1)

   

   

   

  

 



 



–

 Equating real part to zero, 

 2 24 9K 0 9K 4         

But, 2 11 K    

 9K 4 1 K 44 4K

9K 4K 44

5K 44

44
K 8.8

5

    

  


 

  

Put K = 8.8 in eqn (1) 

 
2 11 8.8 19.8

19.8 4.4

   

    
  

The crossing point of root locus = ± j 4.4. the value of K corresponding to this point is 8.8. 

The complete root locus sketch is shown in fig. 

4. Sketch the root locus plot of the system whose OLTF is given as  APRIL/MAY 2017 

  2

K
G(s).H(s)

s s 4 s 4s 13


  
  

Solution:-  

Step 1: To locate poles and zeros  

Poles: 

 
2s(s 4)(s 4s 13) 0

s 0, 4, 2 j3, 2 j3

   
     

  

Let P1 = 0, P2 = -4, P3 = -2+j3, P4 = -2-j3 

Step 2: To locate root locus on real axis  

The portion between s =0 & s = -4 is a part of the root locus. 

Step 3: To find angle of asymptotes & centroid  



Angle of asymptotes 

 
A

180 2q 1

n m

q 0,1,.....n m

 
 


 

  

Here n = 4, m = 0, q = 0, 1, 2, 4, 

When q = 0, 
A

180
1 45

4
         

When q = 1, 
A

180
3 135

4


         

When q = 2, 
A

180
5 225

4


         

When q = 3, 
A

180
7 315

4


         

Centroid  

 
 

A

A

poles zeros

n m

0 4 2 j3 2 j3 (0)

4 0

2

 
 


     




  

 

Step 4: To find breakaway and break in points  

The characteristics equation is 

 

  
  
 

2

2

4 3 2

3 2

1 G(s)H(s) 0

K
1 0

s s 4 s 4s 13

K s s 4 s 4s 13

K s 18s 29s 52s

dK
0 4s 24s 58s 52 0

dS

s 2,s 2 j1.58, s 2 j1.58

 

 
  

    

    

     

        

   

The valid break away point are  

B1 = -2, B2 = -2+j 1.58, B3 = -2-j 1.58 

Step 5: To find angle of departure  

Consider complex pole P3. Draw vectors from all other poles to pole P3.  



Now  

 

1

2

3

125

90

55

  

  
  

 

Angle of departure  from  

 

 
 

3 1 2 3P 180

180 125 90 55

90

      

     

  

 

Angle of departure from  4p 90 90         

Step 6: To find crossing point of imaginary axis  

The characteristics equation is  

 4 3 2s 8s 29s 52s K 0       

Using Routh Hurwitz criterion  

s
4
: 1  29 K ROW 1 

s3:  8  52  ROW 2 

s
2
: 22.5  K  ROW 3 

s
1
:   52-0.3K    ROW 4 

s
0
:  K    ROW 5 

 

For stability K > 0, (from S
0
 row) 

And 52 – 0.35 K > 0 (from S
1 

row) 

 K > 0, K < 148.6 

For system to be stable, the maximum value of K is 148.6 

The auxiliary equation is 22.5 s
2
 + K = 0 

 
222.5s 148.6 0

s j2.56

 
 

  

Column 1 



The crossing point of imaginary axis is 2.56 & corresponding value of K is 148.6 

The complex root locus sketch is shown in fig. 



 



 2` 

Time response analysis 

  5. With neat steps, write down the procedure for the construction of root locus. 

Procedure for constructing the root locus of the loop transfer function when k is varied from 0 to ∞. 

1. Symmetry: The root locus plot is always symmetrical with respect to the real axis is s – plane  

2. Starting and Ending points: the root locus originates from an open loop pole ie, K = 0 and terminates at open loop 

zero is K = ∞ 

3. Number of Loci: The number of separate root locus (N) depends upon the number of pole (n) and number of zeros 

(m) of the loop transfer function. 

N = n for n> m 

N = m  for m > n 

Where n is the number of finite poles of G(s) H(s)  

 M is the number of finite zeros of G(s) H(s)  

Thus, the number of separate root locus is equal to the number of poles (or) zeros which ever is greater. 

4. Existence on real axis: Some of the loci will lie on the real axis. A point on the real axis if the sum of open loop 

transfer function poles and zeros to the point is odd. 

5. The number of asymptotic lines: Asymptotes is defined as a line on which the root locus touches at infinity. 

For the function, G(s) H(s) having n finite poles and m finite zeros  , the no. of asymptotes q = n-m  

6. Angle of asymptotes: If the number of poles is greater than the number of zeros n > m; then n – m branches will 

move to infinity and these cbranches move along the asymptotes. For root locus, the angle of asymptotes, 

 
A

180 2q 1
0

n m

 
  


  

Where q is a positive integer having values 0, 1, 2…. (n – m) 

7. Centre of Asymptote or centroid : The point at which asymptotes intersect on real axis in s – plane is called 

centroid & is given by  

 A

polesof G(s)H(s) zerosofG(s)H(s)

n m

 
 


  



8. Breakaway (or) break in points: Breakaway point is defined as the point at which root locus comes out of the real 

axis and breakin point is defined as the point at which root locus enters the real axis.  

The breakaway (or) break in points are the points on the root locus at which multiple roots of the characteristic 

equation occur. 

The following are the steps to determine the breakaway (or) break in points  

(a) Find the characteristics equation, 1+ G(s) H(s) = 0 

(b) Write K in terms of s 

(c) Derive 
dK dK

& put 0
ds ds

   

(d) The roots of equation 
dK

0
ds

  may be breakaway (or) break in points  

If the value of K is positive & real for any root of 
dK

0,
dS

  then the corresponding root is avalid break away (or) 

break in points 

9. Intersection of root locus with imaginary axis  

The point of intersection of root locus with the imaginary axis in the s – plane can be determined by use of the Routh 

criterion. Alternatively by letting s = j in the characteristic equation and separate real part and imaginary part. Two 

equations are obtained: one by equating real parts to zero and the other by equating imaginary part to zero. Solve the 

two equations for  and K. 

The value of  gives the point where the root locus crosses the imaginary axis & the value of K gives value of gain 

K at crossing point. Also this value of K is the limiting value of K for stability of the system. 

10. Angle of departure (or) arrival: The root locus leaves from a complex pole & arrives at a complex zero. These 

two angles are known as angle of departure and angle of arrival, respectively. 

Angle of departure 
sum of angles to the complex

(from a complex 180
 pole A from other poles 

pole A)

Sum of angles of vectors 

to the complex pole A from zeros.

Angle of arrival at 

a c


      
 


 

 
 

Sum of angles of vectors

180  to the complex zero A from 
omplex zero A

all other zeros

Sum of angles of vectors to 

the complex zero A from 

poles

 
        

 
 
  
 
 

 . 



11. Value of K at a point on the root locus  

The value of K at a point S1 on the root locus is determine by measuring the vectors from the poles and zeros of 

loop transfer function to point S1 on the root of is given as  

n m

1 j

j 1

n

1 i

i 1

s P
1

K
G(s) H(s)

s Z








 






  

1

1

Product of all vectors lengths from poles of G(s) H(s) to s

Pr oduct of all vectors lengths from zeros of G(s) H(s) to s
  



UNIT – 3 

FREQUENCY RESPONSE AND SYSTEM ANALYSIS 

PART-A 

1. What is meant by frequency response ?  April/May 2017 

A frequency response is the steady state response of s system when the input to the system is a sinusoidal signal. 

2. List out the different frequency domain specification?      (NOV/DEC 2015, MAY/JUNE 2016, Nov/Dec 

2017) 

The frequency domain specifications  are  

 Resonant peak  

 Resonant frequency  

 Bandwidth  

 Cut- off rate  

 Gain margin  

 Phase margin  

 

3. Define – Resonant Peak  

 

The maximum value of the magnitude of closed loop transfer function called resonant peak. 

 

4. What is bandwidth? 

The bandwidth is the range of frequencies for which the system gain is more than - 3 dB. The bandwidth is a 

measure of the ability of a feedback system to reproduce the input signal, noise rejection characteristics and rise 

time. 

5. Define Cut – off rate ? 

The slope of the log – magnitude curve near the cut – off is called cut – off rate. The cut –off rate indicates the 

ability to distinguish the signal from noise. 

6. Define – Gain margin?     (MAY/ JUNE 2013) 

The gain margin, Kg is defined as the reciprocal of the magnitude of the open loop transfer function at phase 

cross over frequency. Gain margin 
pc

1
kg

G( j )





  

7. Define Phase Cross over frequency? April/May 2019 

 

 The frequency at which, the phase of open loop transfer function is -180° is called phase cross over frequency 

ωpc. 

 

8. What is Phase margin?    (MAY/JUNE 2013 & NOV/DEC 2011) 

 

It is the amount of phase lag at the gain cross over frequency required to bring system  to the verge of instability. 

The phase margin, γ=180º+ ϕgc. 

 

9. Define Gain cross over frequency? (APRIL/MAY 2011, May 2016, April/May 2019 & Nov/Dec 2019) 

 

The gain cross over frequency ωgc, is the frequency at which the magnitude of the open loop transfer function  is 

unity. 

 

10. What is Bode plot? 



 

The Bode plot is the frequency response plot of the transfer function of a system. A bode plot consist of two 

graphs. One is the plot of magnitude of sinusoidal transfer versus log ω. The other is a plot of the phase angle of 
a sinusoidal function versus log ω. 
 

11. What are the main advantages of Bode plot? 

 

The main advantages are: 

 

(i) Multiplication of magnitude can be to addition. 

(ii) A simple method for sketching an approximate log curve is available  

(iii) It is based on asymptotic approximation. Such approximation is sufficient if rough information on the 

frequency response characteristics is needed. 

(iv) The phase angle curves can be easily draw if a template for the phase angle curve of 1+jω is available. 
 

12. Define Corner frequency? April/May 2018 

 

The frequency at which the two asymptotes  meet in a magnitude plot is called corner frequency. 

 

13. Define  Phase lag and phase lead? 

 

A negative phase angle is called phase lag. A positive phase angle is called phase lead. 

 

14. What are M circles?     (NOV/DEC 2015, MAY/JUNE 2016) 

 

The magnitude M of closed loop transfer function with unity feedback will be in the form of circle on complex 

plane for each constant value of M. The family these circles are called M circles. 

 

15. What is Nichols chart? 

 

The chart consisting of M & N loci in the log magnitude versus phase diagram is called Nichol’s chart. 

 

16. What are two contours Nichol’s chart? 

 

Nichols chart of M and N contours superimposed on ordinary graph. The M contours are the magnitude of 

closed loop system in decibel and the N contours are the phase angle locus of closed loop s system. 

 

17. What is non – minimum phase transfer function? 

 

A transfer function which has one or more zeros in the right half S – plane is known as non – minimum phase 

transfer function. 

 

18. What are the advantages of Nichols chart?   (APRIL/MAY 2015) 

 

The advantage are: 

 

(i) It is used to find the close loop frequency response from open loop frequency response. 

(ii) Frequency domain specification can be determined from Nichols chart. 

(iii) The gain of the system can be adjust to satisfy the given specification. 

 

 



 

19. What are N circles?     (NOV/DEC 2015, MAY/JUNE 2016) 

 

If  the phase of closed  loop transfer function with unity feedback is ∝, then N = tan ∝. For each constant value 

of N, a circle can be drawn in the complex plane. The family of these circles are called N circles. 

 

20. What are the two types of compensation?      

 

The two types of compensation are  

 

(i) Cascade or series compensation  

(ii) Feedback compensation or parallel compensation  

  

21. What are the three types of compensator?   (MAY/JUNE 2013) 

 

The three types of compensators are  

 

1. Lag compensator  

2. Lead compensator  

3. Lag – lead compensator  

 

22. What are the uses of lead compensator?   (NOV/DEC 2011) 

 

The uses of lead compensator are  

 

 Speeds up the transient response  

 Increases the margin of stability of a system  

 Increases the system error constant to a limited extent. 

 

23. What is the use of lag compensator?    (APRIL/MAY 2011) 

 

The lag compensator improves the steady state behaviour of a system, while nearly preserving its transient 

response. 

 

24. When lag – lead compensator is required? 

 

The lag – lead compensator is required when both the transient and steady state response of a system has to be 

improved. 

 

25. What is a compensator?      (APRIL/MAY 2011) 

 

A device inserted into the system for the purpose of satisfying the specification is called as a compensator. 

 

26. When lag/ lead/ lag – lead compensation is employed?  (APRIL/MAY 2011, May/June 2016, 

April/May 2017, Nov/Dec 2017) 

 

Lag compensation is employed for stable system for improvement in steady state performance. Lead 

compensation is employed for stable/ unstable system for improvement in transient state performance. Lag – 

lead compensation is employed for stable/unstable system for improvement in both steady state and transient 

state performance. 

 

 



 

27. What are the effects of adding a zero to a system? 

 

Adding a zero to a system results in pronounced early peak to system response thereby the peak overshoot 

increase appreciably. 

 

28. What are the characteristics of phase lead network?   (APRIL/MAY 2015) 

 

 In lead compensation, if the bandwidth increases, the speed off response will also get increased  

 The lead compensator having the phase lead frequency response characteristics which will improve the 

transient response and will also extent to steady state response. 

 

29. What is the significant of Nichol’s plot?    (NOV/DEC 2016) 

 

The complete closed loop frequency response  can be obtained by using Nichol’s chart. All the frequency 

domain specification can be obtained by sketching open loop magnitude – phase plot on the Nichol’s chart. 

 

30. What is series compensation?      (NOV/DEC 2016) 

 

If the compensator is placed in the forward path of the plant then, the compensation is termed as series 

compensation. 

 

 

PART – B  

BODE PLOT 

 

1. For the following transfer function, sketch the Bode plot. Also determine gain margin & phase margin. 

 
5

G(s)H(s)
s(10 s)(20 s)


 

  

Solution:-  

The sinusoidal transfer function G(jω) is obtained by replacing s by jω in the s – domain transfer function. 

   
5

G(s)H(s)
s 10 1 0.1s 20 1 0.05s


  

 

               
  

5

200s 1 0.1s 1 0.05s


 
 

               
  

0.025

s 1 0.1s 1 0.05s


 
 

Put s = jω 

 

  
  

0.025
G(j )H(j )

j 1 j0.1 1 j0.05
  

    
 

Magnitude plot 

 

The corner frequencies are 
c1

1
10rad / sec

0.1
     

   
c2

1
20 rad / sec

0.05
     

 Team  
Corner frequency 
rad /sec  

Slope 
db/dec  

Change in 
slope db/dec 



0.025

j
 

- -20          - 

1

1 j0.1 
   

c1

1
10

0.1
      

-20 -20 – 20 = -40 

1

1 j0.05 
   

c2

1
20

0.05
      

 -20 -40-20 = -60 
 

Choose a low frequency   such that c1   & choose a high frequency h  such that h c2    

Let    = 0.1 rad/ sec, ωh = 50 rad/sec  

Let A G(j ) in dB    

Calculating of gain A at c1 c2 h, ,      

 

At ,   
0.025

A 20log 0.1
j

    


  

  

0.02
20log

0.1

12.04dB



 
 

At c1   c1

0.025
A 20log 10

j
    


  

  

0.025
20log

10

52.04 db



 
  

At c2   c2
c1 c2 c1

c1

A slope from to log A at
 

         
  

  
 

 

20
40 log 52.04

10

12.04 52.04 64.08dB

   

    
  

At h    h
c2 h c2

c2

A slope from to log Aat
 

         
  

   50
60 log 64.08 88 db

20

        
 

  

 

ω rad/sec  A dB 
0.1 
10 
20 
50 

-12.04 
-52.04 
-64.08 
-88 

 

Phase angle plot  
1 1G(j ) 90 tan 0.1 tan 0.05           

 

ω rad/sec  G(j ) deg     

0.01 
0.1 
1 
5 
10 

-90.08 
-90.85 
-98.57 
-130.6 
-161.6 



14 
15 
20 

-179.45 
-183.17 
-198.43 

 

 
 

 

From graph,  gain crossover frequency ωgc = 0.024rad/ sec 



  Phase crossover frequency ωpc = 14rad/ sec 

  Gain margin = 57 db 

  Phase margin γ = 90° 

2. Sketch the Bode plot for the following transfer function and determine the phase margin and gain 

margin 
  

20
G(s)

s 1 3s 1 4s


 
  

Solution:-  

The sinusoidal transfer function of G(jω) is obtained by replacing s by jω in the given transfer function. 

  

 
  

20
G(j )

j 1 j3 1 j4
 

    
  

Magnitude plot  

The corner frequencies,  
c1

1
0.25 rad /sec

4
     

   
c2

1
0.33 rad / sec

3
     

 Term  
Corner frequency 
rad/sec 

Slope 
db/dec 

Change in slope 
db/sec  

 
20

j
  

- -20 - 

1

1 j3 
   

c1

1
0.25

4
      

-20 -20 – 20 = - 40 

1

1 j4 
   

c2

1
0.33

3
      

 -20 -40 - 20 = -60 
 

Choose a frequency   such that c1   and choose a frequency h  such  that  h c2    

Let 0.15rad /sec   and h 2rad /sec    

Calculation of gain A at c1 c2 h, ,      

At   ,   20
A G j 20log 0.15

j
      


  

  
20

20log 42.5 dB
0.15

   

At c1,     c1

20
A G j 20log 0.25

0.15
       

        
20

20log 38dB
0.25

   

At c2   c2
c1 c2 c1

c1

A Slope from to log Aat
 

         
 

  
0.33

40 log 38 33dB
0.25

       

At h    h
c1 h c2

c2

A Slope from to log Aat
 

         
 

  
2

60 log 33 13.95 14dB
0.33

        

 ω 
rad/sec A dB  



 0.15 
0.25 
0.33 
2 

42.5 
38 
33 
-14  

    

Phase angle plot  

  1 1G j 90 tan 3 tan 4          

 

 ω 
rad/sec  G j deg      

 0.15 
0.2 
0.25 
0.33 
0.6 
1 
2 

-146 
-160 
-172 
-188 
-218 
-238 
-253  

 

From graph, 

Gain cross over frequency, ωgc = 1.12 rad/sec 

Phase cross over frequency, ωpc = 0.29 rad/sec 

Gain margin = -35db 

Phase margin γ = 180°+ϕgc  

  =180°-240° 

  = -60° 



 
3. Sketch the Bode plot for the following transfer function and determine the system gain K for the gain 

cross over frequency to be 5rad/ sec. 
  

2ks
G(s)

1 0.2s 1 0.02s


 
  APRIL/MAY 2017 

Solution:-  

The sinusoidal transfer function G(jω) is obtained by replacing s by (jω) in the s-domain transfer function  

Put s = jω 



  
2k(j )

G( j )
1 j0.2 1 j0.02


  

   
  

 

Let k  = 1 

 
  

2( j )
G( j )

1 j0.2 1 0.02


  

   
  

Magnitude plot  

The corner frequency are 
c1

1
5rad / sec

0.2
     

   
c2

1
50rad /sec

0.02
     

 Term  
Corner frequency 
rad/sec   Slope db/ dec  

Change in slope 
db/deg 

 2
j    - +40 - 

1

1 j0.2 
   

c1

1
5

0.2
      

-20 40 – 20 = 20 

1

1 j0.02 
   

c2

1
50

0.02
      

-20 20 – 20 = 0 
 

Choose a low frequency   such that c1   and choose a high frequency h  such that h c2    

Let 0.5rad / sec    and h 100rad / sec    

Let A G(j ) indb    

Calculating of gain A at c1 c2 h, ,      

At ,   2A 20log ( j )    

  
 
 

2

2

20log

20log 0.5 12db

 

  
  

At c1,   2A 20log ( j )    

  
 
 

2

2

20log

20log 0.5 28db

 

 
  

At c2,   c2
c1 c2 c1

c1

A slope from to log Aat
 

         
  

  
50

20 log 28 48db
5

      

At h    h
c2 h c2

c2

A slope from to log Aat
 

         
  

  
100

0 log 48 48db
50

      



 
Table-1 

 ω rad / sec  A dB 

0.5 -12 

5 28 

50 48 

100 48 
Phase plot  

1 1G(j ) 180 tan 0.2 tan 0.02           

 

Table 2 

 ω = rad/sec G(j )deg    

 0.5 174 

1 168 

5 130 

10 106 

50 50 



100 30 
 

Bode plot for the above table 1 & 2 is shown in fig. 

 

To find K 

Gain cross over frequency ωgc = 5 rad/sec (given) At ω = ωgc = 5 rad/sec, the gain is 28 dB. 

If gain cross over frequency is 5rad/sec, then at that frequency, the dB gain should be zero.  

 

Hence to every point of magnitude plot a dB gain of -28dB should be added. 

The value of k is calculated by equating  

20 log k to -28 dB 

 20 log k = -28 dB 
28

2020logk 28dB;k 10 ;k 0.0398


     

 

4. Given 
0.2ske

G(s)
s(s 2)(s 8)




 

 . Find K so that the system is stable with  

(a) gain margin equal to 6db (b) Phase margin equal to 45° 

 

Solution:- 

Put k =1 and convert the given transfer function to time constant form (or) bode form  

 

   

  

0.2s 0.2s

0.2s

e e
G(s)

s(s 2)(s 8) s 2 1 0.5s 8 1 0.125s

0.0625e

s 1 0.5s 1 0.125s

 



  
     


 

  

The sinusoidal transfer function G(jω) is obtained by replacing s by jω. 

 
j0.20.0625e

G(j )
j (1 j0.5 ) 1 j0.125

 

  
    

  

Magnitude plot  

 

The corner frequency are,  
c1

1
2rad / sec

0.5
     

   
c2

1
8rad / sec

0.125
     

 Term  
Corner frequency 
rad/sec  Slope db/dec 

Change in 
slope db/dec 

 
0.0625

j
  

- -20 - 

1

1 j0.5 
   

c1

1
2

0.5
      

-20 -20 – 20 = -40 

1

1 j0.125 
   

c2

1
8

0.125
      

-20 -40 – 20 = -60 
 

Choose a low frequency   such that c1    and choose a high frequency h  such that h c2     

Let 0.5rad / sec   and h 50rad / sec    

 

Calculation of gain A at c1 c2 h, ,      



At ,   
0.0625 0.0625

A 20log 20log 18db
j 0.5

   


  

At c1,   
0.0625 0.0625

A 20log 20log 30db
j 2

   


  

At c2,   c2
c1 c2 c1

c1

A slope form to log Aat
 

         
  

   8
40 log 30 54db

2
        

At h ,    h
c2 h c2

c2

A slope form to log Aat
 

       
  

   50
60 log 54 102db

8
         

 

 ω rad/sec  A db 
 0.5 
2 
8 
50 

-18 
-30 
-54 
-102 

 

Phase angle plot  

1 1180
G(j ) 0.2 90 tan 0.5 tan 0.125          


  

  

 ω rad/sec   G j deg      

 0.01 
0.1 
0.5 
1 
2 
3 
4 

-90 
-94 
-114 
-134 
-172 
-202 
-226  

The above Bode plot for the above transfer function is shown in fig. 

 

To find K 

 

With k = 1, gain margin = 32 db 

But required gain margin is 6db. Hence to every point of magnitude plot, a db gain of 26 db is added. 

 

 26
20

20logk 26

k 10 19.95



 
  

Phase margin γ = 180° +ϕgc  

When  new gc new new45 , 180 45 180 135                 

When K = 1, the db gain at gc 135     is -24 db. 

The gain must be made zero, to have PM = 45°. Hence to every point of magnitude plot a db gain of 24 db 

should be added. 

The value of k is calculated by  

 
24

2020logk 24;k 10 ;k 15.84     

 



 

 

 

 

 

 

 



 

5. Sketch the bode plot for the following transfer function & determine phase margin  

 
 2

75 1 0.2s
G(s)

s s 16s 100




 
 

 

 
 

 

 
 

22

2

75 1 0.2s 75 1 0.2s
G(s)

s 16ss s 16s 100
s 100 1

100 100

0.75 1 0.2s

s 1 0.01s 0.16s

 
 

  
   

 



 

  

Put s = jω 

 

 

 
 

 
 

2

2

0.75 1 j0.2
G( j )

j 1 0.01 j0.16

0.75 1 j0.2

j 1 0.01 j0.16

 
 

    

 


    

  

Magnitude plot  

The corner frequencies are ,
c1

1
5rad / sec

0.2
     

  c2 n 10rad / sec     

 Term  
Corner frequency 
rad/sec  Slope db/dec  

Change in slope 
db/dec  

0.75

j
   

- -20 - 

1 j0.2     c1

1
5

0.2
      

+20 -20 +20 = 0 

2

1

1 0.01 j0.16   
   

c2 n 10      -40 0 – 40 = -40 
 

Choose a low frequency   such that c1   and choose a high frequency h  such that h c2    

Let 0.5rad / sec   and h 20rad / sec    

Calculation of gain A at c1 c2 h, ,      

At ,   
0.75 0.75

A 20log 20log 3.5db
j 0.5

  


  

At c1,   
0.75 0.75

A 20log 20log 16.5db
j 5

   


  

At c2,   c2
c1 c2 c1

c1

A slope from to log Aat
 

       
  

   10
0 log 16.5 16.5db

5
        

At h ,    h
c2 h c2

c1

A slope from to log Aat
 

         
  

   20
40 log 16.5 28.5db

10
         



 ω rad/sec A dB 
 0.5 
5 
10 
20 

3.5 
-16.5 
-16.5 
-28.5 

 

Phase angle plot. 

 

 

 

1 1
n2

1 1
n2

0.16
G j tan 0.2 90 tan ,for

1 0.01

0.16
G j tan 0.2 90 tan 180 for

1 0.01

 

 


       

 
             

  

 ω rad/sec  G j deg    

 0.5 
1 
5 
10 
20 
50 
100 

-88 
-88 
-92 
-116 
-148 
-168 
-174 

From graph 

gc = -88° 

Phase Margin   = 180° + gc  

  = 180 ° - 88° = 92° 

Gain Margin = +  [As phase plot crosses the -180° at infinity.  |G(j)|  at infinity = - db] 

 



 

 

 

POLAR PLOT 

1. The open loop transfer function of a unity feedback system is given by     2

1
G s

s 1 s 1 2s


 
. Sketch 

the polar plot and determine the gain margin and phase margin 

Solution 



Given that     2

1
G s

s 1 s 1 2s


 
 

Put s = j, G(j) = 
    2

1

j 1 j 1 j2    
 

= 
2 2 1 2 1

1 0

180 1 tan 1 4 tan 2 

 

         
 

G (j) =  1 1

2 2 2

1
180 tan tan 2

1 1 4

     
   

 

|G(j)| = 
  2 2 2 2 2 2

1 1

1 1 4 1 1 4


       
 

= 
2 2 4

1

1 5 4    
 

G(j) = -180° - tan-1  - tan-1 2 

Corner frequencies 

c1 = 
1

1
= 1 rad / sec 

c2 = 
1

2
= 0.5 rad / sec 

 

Magnitude and phase plot of G(j) 

 
rad/sec 

|G(j)| G(j) 
Deg 

0.45 3.33 -246 
0.5 2.5 -251 
0.55 1.9 -256 
0.6 1.5 -261 
0.65 1.2 -265 
0.7 0.97 ≅ 1 -269 
0.75 0.8 -273 
1.0 0.3 -288 
 

From Polar graph 

Gain Margin, Kg = 
1

0


 

Phase Margin,  = 180° - 270° 

 = - 90° 

 



 
 

2. The open loop transfer function of a unity feedback system is given by  
 2

1
G s

s 1 s



. Sketch the polar 

plot and determine the gain margin and phase margin. 

Solution 



Given that  
 2

1
G s

s 1 s



 

Put s = j 

 G(j) = 
    2

1 1

j 1 j 1 jj 1 j


      
 

= 
2 1 2 1

1

90 1 tan 1 tan      
 

= 

 
 1

2
2

1
90 2 tan

1

   
 

 

|G(j)| = 
  32

1 1

1

 

 

G(j) = -90° - 2tan-1  

Corner frequencies. 

c1 = 
1

1
= 1 rad / sec 

Table Magnitude and phase plot of G(j) 

 
rad/sec 

|G(j)| G(j) 
Deg 

0.4 2.2 -134 
0.5 1.6 -143 
0.6 1.2 -151 
0.7 1 -159 
0.8 0.8 -167 
0.9 0.6 -174 
1.0 0.5 -180 
1.1 0.4 -185 
 

From Polar graph, 

Gain Margin kg = 2 

Phase Margin  = 21° 

 



 

3. Consider a unity feedback system having an open loop transfer function,     
k

G s
s 1 0.5s 1 4s


 

 

Sketch the polar plot and determine the value of k so that (i) Gain Margin is 20db 

(ii) Phase Margin is 30° 

Solution 



Given that     
k

G s
s 1 0.5s 1 4s


 

 

Put k = 1 and s = j in G(s) 

     
1

G j
j 1 j0.5 1 j4

 
    

 

= 

   2 21 1

1

90 1 0.5 tan 0.5 1 4 tan 4         
 

 

= 
 2 2 1 1

1

1 0.25 1 16 90 tan 0.5 tan 4         
 

=  1 1

2 2

1
90 tan 0.5 tan 4

1 0.25 1 16

     
    

 

|G(j)| = 
2 2

1

1 0.25 1 16    
 

G(j) = 1 190 tan 0.5 tan 4      

Corner frequencies 

c1 = 
1

4
= 0.25 rad / sec 

c2 = 
1

0.5
= 2 rad / sec 

32 Table Magnitude and Phase plot of G(j) 

 

 
rad/sec 

|G(j)| G(j) 
Deg 

0.3 2.11 -149 
0.4 1.3 -159 
0.5 0.87 -167 
0.6 0.61 -174 
0.8 0.35 -184 
1.0 0.22 -193 
1.2 0.15 -199 
 

From polar plot, k = 1 

Gain Margin kg = 
1

0.44
= 2.27 

Gain Margin in db = 20 log 2.27 = 7.12 db 

Phase Margin,  = 180 ° + gc - 180° - 165°  = 15° 

To find k 

Case (i) 

Let GB be the magnitude of open loop transfer fn G(j) at -180° with k = 1 

Let GA be the magnitude of open loop transfer function G(j) at -180° with k = ? & gain margin of 20 db. 

Now 20 log 
A

1

G
= 20  log 

A

1

G
= 

20

20
= 1 

 GA = 0.1 

The value of k = A

B

G 0.1
0.227

G 0.44
   

k = 0.227 



 
Case (ii) 

With k = 1, the phase margin is 15°. This has to be increased to 30°. Hence the gain has to be decreased. 

Let gc2 be the phase of G(j) for a phase margin of 30°. 

 30° = 180° + gc2 

gc2 = 30° - 180° = -150° 

In the polar plot the -150° line cuts the locus of G(j) at point c and cut the unity circle at point D. 



Let GC be magnitude of G(j) at point C 

GD be magnitude of G(j) at point D 

From polar plot, GC = 2.04 

GD = 1 

Now k = D

C

G 1
0.49

G 2.04
   

k = 0.49 

 

* INCLUDE THIS *  

Compensator design using Bode plots 

1. Write short notes on different types of compensation 

Types of compensation 

Series Compensation or Cascade Compensation 

 This is the most commonly used system where the controller is placed in series with the controlled 

process. 

Figure shows the series compensation. 

 
Series compensation 

Feedback compensation or Parallel compensation 

 This is the system where the controller is placed in the sensor feedback path as shown in fig. 

 

 
Feedback compensation or parallel compensation 

State Feedback Compensation 

 This is a system which generates the control signal by feeding back the state variables through constant 

real gains. The scheme is termed state feedback. It is shown in Fig. 

 
State feedback compensation 

The compensation schemes shown in Figs above have one degree of freedom, since there is only one controller 

in each system. The demerit with one degree of freedom controllers is that the performance criteria that can be 

realized are limited. 

That is why there are compensation schemes which have two degree freedoms, such as: 

a) Series – feedback compensation 

b) Feed forward compensation 



Series- Feedback Compensation 

Series-feedback compensation is the scheme for which is series controller and a feedback controller are used. 

Figure shows the series-feedback compensation scheme. 

 
Series-feedback compensation. 

Feed forward Compensation 

 The feed forward controller is placed in series with the closed-loop system which has a controller in the 

forward path. In Fig. Feed forward the is placed in parallel with the controller in the forward path. The 

commonly used controller in the above-mentioned compensation schemes are now described in the section 

below. 

 
Feed forward controller in series with the closed-loop system. 

 
Feed forward controller in parallel with the controller in the forward path. 

2. Realize the lead compensator using electrical network and obtain the transfer function 

Lead Compensator 

 It has a zero and a pole with zero closer to the origin. The general form of the transfer function of the 

load compensator is 
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Subsisting  

 = CR1;  = 1 2

1 2

CR R

R R
( 1CR  ) 

Transfer function 

G(s) =  
s 1

s 1

 
 

 

3. Realize the lag compensator using electrical network and obtain the transfer function  

Lag Compensator 

 It has a zero and a pole with the zero situated on the left of the pole on the negative real axis. The 

general form of the transfer function of the lag compensator is  

    
1

s s 1
G s

1 s 1s

    
 



 

Where  > 1,  > 0. 

Therefore, the frequency response of the above transfer function will be 
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Lag compensator 
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Now comparing with 
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4. Realize the lag-lead compensator using electrical network and obtain the transfer function 

Lag-Lead Compensator 

 The lag-lead compensator is the combination of a lag compensator and a lead compensator. 

The lag-section is provided with one real pole and one real zero, the pole being to the right of zero, 

whereas the lead section has one real pole and one real came with the zero being to the right of the 

pole. 

The transfer function of the lag-lead compensator will be 
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The figure shows lag lead compensator 
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Where  > 1,   < 1. 
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The above transfer functions are comparing with 
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M&N circles 

1. Prove that the loci of the constant magnitude of closed loop transfer function is a circle 

Constant M circles 

Consider the polar plot of the open loop transfer function of a unity feedback system. A point on the 

polar plot is given by: 

G(j) = x + jy 

The closed loop frequency response is given by 
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Rearranging, we have  
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Making a perfect square of the terms, we have, 
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Represents a circle with a radius of 
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For various assumed values of M, a family of circles can be drawn which represent the above 

equation. 

These circles are called constant M-circles. 

Properties of M-circles: 

1. For M =1, the centre of the circle is at 
2

2M 1

M
Lt ,0 .

M 1

 
  

 ie., (-, 0). 

The radius is also infinity 

Substituting M = 1 in equation (a), we have 

 2x = -1 

Or x = 
1

2
  

This M = 1 is a straight line parallel to y axis at 
1

x
2

  . 

2. For M > 1, centre of the circle is on the negative real axis and as M  , the centre approaches  

(-1, j0) point and the radius approaches zero; ie (-1, j0) point represents a circle of M = . 

3. For 0 < M < 1, 
2

2

M

M 1



 is positive and hence the centre is on the positive real axis. 

4. For M = 0, the centre is at (0, 0) and radius is 0; ie., origin represents the circle for M = 0. 

5. As M is made smaller and smaller than unity, the centre moves from + towards the origin on the 

positive real axis. 

The M circles are sketched in Fig. below 



 

 

2. Prove that the loci of the constant phase angle of closed loop transfer function is a circle 

Constant N circles 

Constant N circles are obtained for the points on the open loop polar plot which result in constant 

phase angle for the closed loop system. Consider the phase angle of the closed loop transfer 

function 
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Taking tangent of the angles on both sides of equation. 7.23, we have 
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Let tan  = N 

Then 
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Rearranging, we get, 
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Represents the equation of a family of circles for different values of N with centre at  

 
1 1

,
2 2N
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And Radius    
2N 1

2N


  

These circles are known as constant N circles. 

The constant N-circles are shown in Figure. Instead of marking the values of N on the various circles, 

value of  = tan
-1

 N are marked so that the phase angle can be read from the curves.  

 



UNIT – 4 

STABILITY AND COMPENSATOR DESIGN 

PART –A 

1. Defined stability 

 A linear relaxed system is said to have BIBIO stability if every bounded input result in a bounded 

output. 

2. What is nyquist contour? 

 The contour that enclosed entire right half of s plane is called nyquist contour. 

3. State Nyquist stability criterion. (April/May 2019, Nov/Dec 2019, NOV/DEC 2015 & MAY/JUNE 2013) 

 If the nyquist plot of the open loop transfer function G(s) corresponding to the nyquist contour 

in the s plane encircle the critical point -1+j0 in the contour in clockwise direction as many time as the 

number of right half s plane poles of G(s), the closed loop system is stable. 

4. Defined relative stability. 

 Relative stability is degree of closeness of the system;  it is an indication of strength or degree of 

stability. 

5. What will be the nature of impulse response when the roots of characteristic equation are lying on 

imaginary axis?  

 If the root of characteristic equation lies on imaginary axis the nature of impulse response is 

oscillatory. 

6. What is the relationship between stability and coefficient of characteristic polynomial? 

 If the coefficients of characteristic polynomial are negative or zero, then some of the roots lies 

on the negative half of the s plane. Hence the system is unstable. If the coefficients of the characteristic 

polynomial are positive and if no coefficient is zero then there is possibility of the system to be stable 

provided all the roots are lying on the left half of the s-plane. 

7. What is Routh stability criterion?    (APIRL/MAY 2010) 

 Routh criterion states that the necessary and sufficient condition for stability is that all of the 

element in the first column of the routh array is positive. If  this condition is not met, the system is 

unstable and the number of sign changes in the element of the first column of the routh array 

corresponds to the number of roots of characteristic equation in the right half of s plane. 

8. What is limitedly stable system? 



 For a bounded input signal if the output has constant amplitude oscillation , then the system 

may be stable or unstable under some limited constraints. Such a system is called limitedly stable 

system. 

9. In the routh array what conclusion you can make when there is row of all zero? 

 All zero rows in the routh array indicate the existence of an even polynomial as a factor of the 

given characteristic equation. The even polynomial may have roots on imaginary axis. 

10. What is the principle of argument? 

 The principle of argument states that let F(s) are analytic function and if an arbitrary closed 

contour in a clockwise direction is chosen in the s plane so that F(s) is analytic at every point of the 

contour. Then the corresponding F(s) plane contour mapped in the F(s) plane will encircle the origin N 

times in the anti clockwise direction, where N is the difference between number of poles and zeroes of 

F(s) that are encircle by the chosen closed contour in the s plane. 

11. What are the two segment of Nyquist contour? 

 i.  An finite line segment C1 along the imaginary axis. 

 ii. An arc C2 of infinite radius. 

12. What are the root loci? 

 The path taken by the root of the open loop transfer function when the loop gain is varied from 

0 to infinity are called root loci. 

13. What is the dominant pole?    (NOV/DEC 2015, 2016), APRIL/MAY 2017 

  The dominant pole is a pair of conjugate pole which decides the transient response of the 

system. In higher order system the dominant poles are very close to origin and all other poles of the 

system are widely separated and so they have less effect on transient response of the system. 

14. What are the main significance of root locus? 

i. The root locus technique is used for stability analysis. 

ii. Using root locus techniques the range of value of K, for as stable system can be determined. 

 

15. What are the breakaway point are break in points? 

 At break away point the root locus break from the real axis to enter into the complex plane. At break in 

point the root locus enters the real axis from then complex plane. To find the breakaway or break in points, from  

a equation for K from the characteristic equation and differentiate the equation of K with respect to s. Then find the 

roots of  the equations dK/dS = 0. The root of dK/dS = 0 are breakaway or break in points provided for this value of 

root the gain K should be positive and real. 

 

16. What are asymptotes? How will you find angle of asymptotes? 



 Asymptotes are the straight line which are parallel to root locus going to infinity and meet the 

root locus at infinity. 

Angle of asymptotes = 
 180 2q 1

q 0,1,2,3,....n m
n m

 
  


  

 N= number of poles 

 M = number of zeroes. 

17. What is the centriod? 

 The meeting point of the asymptotes with the real axis is called centroid. The centroid is given 

by Centroid = (sum of the poles-sum of the zeros)/n-m 

 N= number of poles 

 M = number of zeroes. 

18. What is magnitude criterion? 

 The magnitude criterion states that s = sa will be a point on root locus if for that value of s, 

magnitude of G(s)H(s) is equal to 1. 

     a

a

(product length of vector fromopen loopzeros to thepoint s s )
G s H s K 1

(product length of vector fromopen looppoles to thepoint s s )


 


 

19. What is angle criterion?  

 The angle  criterion states that s = sa will be a point on root locus if for that value of  s, the 

argument or phase of G(s)H(s) is equal to an odd multiple 180   . 

     a asumof theangleof vectorsfromzeros to thepoint s s sumof theangleof vectorsfrompoles to thepoint s s 180 2q 1      

  

20. How will you find the root locus on real axis?   (MAY/JUNE 2016) 

 To find the root locus on real axis choose the test point on real axis to the right of this test point 

is odd number then the test point lie on the root locus. If it is even the test point does not lie on the root 

locus. 

21. What is characteristic equation? May/June 2016 

 The denominator polynomial of C(s)/R(s) is the characteristic equation of the system. 

22. How the roots of characteristic are related to stability? Nov/Dec 2015 



 If the root of characteristic equation has positive real part then the impulse response of the 

system not bounded. Hence the system will be unstable. If the root has negative real part then the 

impulse response is bounded. Hence the system will be stable. 

23. What is necessary condition for stability?  (MAY/JUNE 2013, 2016 ,APRIL/MAY 2017, 

Nov/Dec 2017) 

 The necessary condition for stability is that all the coefficient of the characteristic polynomial be positive 

 The necessary and sufficient condition for stability is that all of the element in the first column of the 

routh array should be positive. 

24. What are the requirements of BIBO stability?    (Nov/DEC 2016) 

  

 The requirement of BIBO stability is that the absolute integer of the impulse response of the system should 

take only the finite value. 

 

 

PART- B 

ROUTH HURWITZ CRITERION 

 

1. Construct Routh array and determine the stability of the system whose characteristic equation is 
4 3 2s 8s 18s 16s 5 0      

Solution: 

  The characteristic equation of the system is , 4 3 2s 8s 18s 16s 5 0      

The order of the equation is  4, so it has 4 roots 

4s :   1 18 5 … Row 1 

3s :   8 16 
 

… Row 2 

4s :   1 18 5 … Row 1 

3s :   1 2 
 

… Row 2 

2s :   16 5 
 

… Row 3 

1s :   1.7 
  

… Row 4 

0s :   5 
  

… Row 5 

  Column 1 



2

2

1 18 1 2 1 5 1 0
s ;

1 1

s ; 16 5

     
 

1

1

16 2 5 1
s ;

16

s : 1.7

  
 

0

0

1.7 5 16 0
s ;

1.7

s ; 5

  
 

On examining the first column of routh array it is observed that all the elements are positive and there is 

no sign change. Hence all the roots are lying on left half of the s plane and the system is stable. 

2. By routh stability criterion, determine the stability of the system represented by the characteristic 

equation 7 6 5 4 3 2s 5s 2s 4s 3s 8s 2s 8 0          

Solution: Routh array  

7s :   1 2 3 2 …… Row1 

6s :   5 4 8 8 …… Row2 

5s :   1.2 1.4 0.4 
 

…… Row3 

4s :   -1.8 6.3 8 
 

…… Row4 

3s :   5.6 5.7 
  

…… Row5 

2s :   8.1 8 
  

…… Row6 

1s :   0.17 0 
  

…… Row7 

0s :   
8 

   

…… Row8 

   Column 1 

Explanation  

5

5

5 2 1 4 5 3 1 8 5 2 1 8
s ;

5 5 5

s ; 1.2 1.4 0.4

        
 

4

4

1.2 4 5 1.4 1.2 8 5 0.4 1.2 8
s ;

1.2 1.2 1.2

s ; 1.8 6.3 8

      


 



3

3

1.8 1.4 1.2 6.3 1.8 0.4 1.2 8
s ;

1.8 1.8

s ; 5.6 5.7

       
   

 2

2

5.6 6.3 1.8 5.7 5.7 8 0
s ;

5.6 5.7

s ; 8.1 8

     
 

1

1

8.1 5.7 5.6 8
s ;

8.1

s : 0.17

  
 

0

0

0.17 8 8.1 0
s ;

8

s ; 8

  
 

 Result  

  There are two sign changes in the first column of the routh array. Therefore 2 roots are 

located on the right half of the s p lane & remaining five roots are located on the left half of the 

plane. Therefore System is unstable  

3.  By using routh criterion, determine the stability of the system represented by the following 

characteristic equation 5 4 3 2s s 2s 2s 11s 10 0        

 Solution: 

  The characteristic equation is 5 4 3 2s s 2s 2s 11s 10 0      , the order of the equation is 

5& so it has 5 roots 

Routh array; 

5s :   1 2 11 … Row 1 

4s :   1 2 10 … Row 2 

3s :   0   -2 
 

… Row 3 

3s :      -2 
 

… Row 3 

2s :   2 2 


 10 
 

… Row 4 

1s :    
 

210 4 4

2 2

   


 

  
… Row 5 

0s :   
5 

  

… Row 6 

   



     





3

3

1 2 1 2 1 11 1 10
s ;

1 1

s : 0 2

replace 0by

  

 

 



2

2

2 2 10 0
s ;

10
2 2

s ; 10

  

     




   
    

 


1

2

2
1

2 2 2 10

s ;
2 2

4 4 10
10 4 4

s ;
2 2 2 2

 

   
  

   


2

0

2

10 4 4

2 2s ; 10 10
10 4 4

2 2

   

  

   

On letting 0  we get 

5s :   1 2 11 …… Row1 

4s :   1 2 10 …… Row2 

3s :   0 -2 
 

…… Row3 

2s :   
   10 

 
…… Row4 

1s :   
-2 

  
…… Row5 

0s :   
5 

  
…… Row6 

   Column 1 

  On observing the first column, there are two sign changes. Therefore two roots are 

located on the right half of the s plane & remaining 3 roots are located on the left half of the s 

plane. System is unstable. 



4. The characteristic polynomial of a system is 7 6 5 4 3 2s 9s 24s 24s 24s 24s 23s 15 0         Determine 

the location of roots on s plane & hence the stability of the system 

Solution: 

 The characteristic equation is 7 6 5 4 3 2s 9s 24s 24s 24s 24s 23s 15 0           

Routh array  

s
7
:  1 24 24 23 ROW 1 

s
6
: 9 24 24 15 ROW 2 

Divide s
6
 ROW by 3 

7s :   1 24 24 23 …… Row1 

6s :   3 8 8 5 …… Row2 

5s :   1 1 1 
 

…… Row3 

4s :  1 1 1 
 

…… Row4 

3s :   0 0 
  

…… Row5 

3s :   2 1 
  

…… Row5 

2s :   0.5 1 
  

…… Row6 

1s :   -3 
   

…… Row7 

0s :   
1 

   

…… Row8 

  1
st

 column 

 

 

5

5

3 24 8 1 3 24 8 1 3 23 5 1
s ;

3 3 5

s ; 21.3 21.3 21.3

1 1 1

        

 

4

4

1 8 1 3 1 8 1 3 1 5 0 3
s ;

1 1 1

s ; 5 5 5

1 1 1

        

 

3

3

1 1 1 1 1 1 1 1
s ;

1 1

s ; 0 0

     
 



The auxiliary polynomial  

4 2

3

3

2

A s s 1

dA
4s 2s

ds

s 4 2

s 2 1

  

 





 

 
2

2

2 1 1 1 2 1 0 1
s ;

2 2

s ; 0.5 1

     
 

1

1

0.5 1 1 2
s ;

0.5

s ; 3

  


 

0

0

3 1 0.5 0
s ;

3

s ; 1

   
  

  

On examining the first column element routh array it is found that there are two sign changes. 

Hence two roots are lying on the right half of s plane and the system is unstable. 

The rows of all zeros indicate the possibility of complex roots 

 The auxiliary equation is 4 2s s 1 0    

Put s
2
= x in auxiliary equation, 

 4 2 2s s 1 0 x x 1 0         

 The roots of the quadrant equation  

  
1 1 4 1 3

x j
2 2 2

1 120 ,1 120

  
   

    
  

 But s
2
 = x,   s = x 120 , 120         

   

   

1 120 / 2, 120 / 2

60 , 60

0.5 j0.866 , 0.5 j0.866

      
    

    

  



  The two roots of auxiliary polynomial all lying on the right half of s plane & the 

remaining two on the left half of s plane. The roots of the auxiliary equation are also roots of the 

characteristic equation. No roots are lying on the imaginary axis. 

    The system is unstable  

    Two roots are lying on right half of s plane & five roots are lying on left half of s 

plane. 

5. Use the routh stability criterion to determine the location of roots on the s plane and hence the 

stability for the system represented by the characteristic equation 5 4 3 2s 4s 8s 8s 7s 4 0       

 

Solution:  

The characteristic equation is  5 4 3 2s 4s 8s 8s 7s 4 0       

The order of the characteristic equation is 5& it has 5 roots  

Routh array 

5s :   1 8 7 …… Row1 

4s :  4 8 4 …… Row2 

Divided s
4
 row by 4 

 

5s :   1 8 7 …… Row1 

4s :   1 2 1 …… Row2 

3s :   1 1 
 

…… Row3 

2s :   1 1 
 

…… Row4 

1s :   0   
  

…… Row5 

0s :   1 
  

…… Row6 

   1
ST

 column  

3

3

3

1 8 2 1 1 7 1 1
s ;

1 1

s ; 6 6

s ; 1 1

     

 



2

2

1 2 1 1 1 1 0 1
s ;

1 1

s ; 1 1

     
 

1

1

1

s ; 1 1 1 1

s ; 0

Let 0

s ;

  





 

0

0

1 0 1
s ;

s ; 1

  
  

   

When 0  there is no sign change in the first column of routh array. But we have a row of all 

zeros (s
1
 row). 

  So there is a possibility of roots on imaginary axis this can be found from the roots of 

auxiliary equation. 

 Auxiliary equation is s
2
+1 = 0  

          s
2
 = -1 

         s 1 j1       

 The roots of auxiliary equation are +j,-j lying on imaginary axis. 

 Two roots are lying on imaginary axis and there are no sign changes in the first column of routh array , 

remaining three roots are located in the  left half of s plane  

 Hence the system is limitedly or marginally stable. 

 

6. For each of the characteristic equations of feedback control system given, determine the range of K 

for stability.  Determine the value of K so that the system is marginally stable & find the frequency of 

sustained oscillations. 

 

4 3 2

4 3 2

3 2

4 3 2

i)s 25s 15s 20s K

ii)s Ks s s 1 0

iii)s 3Ks K 2 s 4 0

iv)s Ks 5s 10s 10K 0

   

    

    

       

 

Solution: 



 

i) Given   
4 3 2s 25s 15s 20s K     

 

4s :
  1 15 K … Row 1 

3s :
  25 20 

 

… Row 2 

2s :
  

71

5   
K 

 

… Row 3 

1s :
  

284 25K

71/ 5



  
0 

 

… Row 4 

0s :
  K 

  

… Row 5 

  Column 1 

  

2

2

25 15 20 1 25 K 1 0
s ;

25 25

71
s ; K

5

     

 

1

1

71
20 25K

5s ; 0
71

5

284 25K
s ;

71

5

 


 

0

0

284 25K
K 0

71

5
s ;

284 25K

71

5

s ; K

 
 

 
  
 

 



 

  For the system to be stable all the element in the first column must be positive  

Therefore for s
1
 row, to be positive, 



  
284 25K

0 284 25K 0
71/ 5


     

  
284

K ; K 11.36 (1)
25

  
  

  From s
0
 row,  K > 0  (2) 

Combining 1 and 2 

The range of K for stability is0 < K <11.36. When K=11.36 the elements in s
1
 row , becomes zero & 

the root are on the j  axis . Hence the system is under sustained oscillations. 

To find the frequency oscillation: 

  

2

2

71
s K 0 ; K 11.36

5

71
s 11.36 0 s j0.894

5

0.894 rad / sec

  

    

 

  

ii) Given  4 3 2s Ks s s 1 0      

 

 

Routh array 

4s :
  1 1 1 … Row 1 

3s :
  K 1 

 
… Row 2 

2s :
   

K 1

K


  

  
… Row 3 

1s :
  

K 1
K

K
K 1

K





  

  
… Row 4 

0s :
  1 

  
… Row 5 

 

For the system to be stable , all the elements in the first column must be positive 

 From s
3
 row, K > 1 



 From s
2 

row ,
K 1

0 K 1
K


     

 From s
3
 row,

K 1
K 0

K


   

                        
2

K 1
K

K

K 1 K


 

  

  

  If both condition,K > 1 &K-1 > K
2
 are satisfied, then the system is stable. But when K>1, K 

-1 > K
2
 is not satisfied therefore for all values of K, the system is unstable. 

iii) Given   3 2s 3Ks K 2 s 4 0      

3s :
  1 K+2 … Row 1 

2s :
  3K 4 … Row 2 

1s :
   3K K 2

3K


  0 … Row 3 

0s :
  4 

 
… Row 4 

 

For the system to be stable, 

 
 

   

2

1

3K 0 K 0 from s row

3K K 2 4 0 from s row

  

  
  

  

2

2

3K 6K 4 0

K 2K 1.33 0

K 2.2527 K 0.527 0

  

  

  

  

From which  K > 0.527 

 For the system to be stable , 

 K 0.527    

To find auxiliary equation & frequency of sustained oscillation. 

When K= 0.527, s
1
 row become zero. 

The auxiliary equation  



 

2

2

3K s 4 0 putk 0.527

1.581s 4 0.

1.59 rad / sec

  

 
 

  

4 3 2iv)s Ks 5s 10s 10K 0      

4s :
  1 5 10K … Row 1 

3s :
  K 10 

 
… Row 2 

2s :
  5K 10

K


  10k 

 
… Row 3 

1s :
  25K 10

10 10K
K

5K 10

K

   
 


  

  
… Row 4 

0s :
  10K 

  
… Row 5 

 

0s 10K   

For the system to be stable, 
5K 10

K


 >0 K>2  (From s

2
 row ) 

(
5K 10

K


)10-10K

2
 >0 (from s

1
row) 

  

3 2

3

2

10K 50K 100 0

K 5K 10 0

K 2.9055 K 2.9055K 3.442 0

   

  

   

  

K is real when K < -2.9055 

 Therefore the condition for stability are K > 2, &K< -2.9055.the condition are contradicting to 

each other. So unstable for all value of k. 

 

7. Using routh Hurwitz criterion determine the stability of a system representing the characteristic 

equation 6 5 4 3 2s 2s 8s 12s 20s 16s 16 0       and comment  on the location of root of the 

characteristic equation. 

 

Solution:  



The characteristic equation is 6 5 4 3 2s 2s 8s 12s 20s 16s 16 0        

 The order of the equation is 6 & number of roots are 6. 

Routh array 

6s :  1 8 20 16 … Row 1 

5s :  2 12 16 0 … Row 2 

4s :  2 12 16 
 

… Row 3 

4s :
 0 0 

  
… Row 4 

3s :
 4 12 

  
… Row 4 

2s :
 6 16 

  
… Row 5 

1s :
 

1.33 

   

… Row 6 

0s :
 16 

   

… Row 7 

  Column 1 

  There is no sign change in first column. But row of zeros indicates the presence of 

complex roots. 

4

4

2 8 1 12 2 20 1 16 2 16 0
s ;

2 2 2

s ; 2 12 16

       
 

3

3

2 12 2 12 2 16 2 16
s ;

2 2

s ; 0 0

     
 

Row of zeros;  

Auxiliary  equation is  

4 2

4 2

3

2s 12s 16 0

s 6s 8 0

dA
4s 12s

ds

  

  

 





2

2

4 12 2 12 4 16 0 1
s ;

4 4

s ; 6 16

     
 

1

1

6 12 4 16
s ;

6

s ; 1.33

  
 

0

0

1.33 16 0
s ;

1.33

s ; 16

 
 

From auxiliary equation 

  
  

4 2

2

2

2

s 6s 8 0

put s x.

x 6x 8 0

x 4 x 2 0

x 4, 2.

s 4, 2

s 4, 2

s j 2, j1.414

  



   

  

  

  

    
  

   

The roots are +j2, -j2,+j1.414,-j1.414. The four roots are lying on imaginary axis. Remaining 2 roots 

are located on the left half of the s plane. Hence the system is limitedly or marginally stable. 

 

8. Using Routh Hurwitz criterion, determine the stability of the system represented the characteristic 

equation 5 4 3 2s s 2s 2s 3s 5 0      . Comment on location of roots of the characteristic equation  

Solution: 

The characteristic equation is 5 4 3 2s s 2s 2s 3s 5 0      , the order of the equation is 5  & the 

number of the roots is 5. 

Routh array  

5s :  1 2 3 … Row 1 

4s :  1 2 5 … Row 2 

3s :
 0 -2 

 
… Row 3 

3s :
    -2 

 
… Row 3 



2s :
 2 2


  5 

 
… Row 4 

1s :
  2 4 4

2 2

   


  

  
… Row 5 

0s :
 

5 

  

… Row 6 

  

3

3

3

1 2 1 2 1 3 1 5
s ;

1 1

s ; 0 2

replace 0 by

s ; 2

     





 

 

 2

2

2 2 5 0
s ;

2 2
s ; 5

  
 



 

 

 

1

2

1

2 2
2

s ;
2 2

4 4
s ;

2 2

     



  




 

 

 

2

0

2

0

4 4
5

2 2

s ;
4 4

2 2

s ; 5

  





  



 

   On letting 0   

5s :  1 2 3 … Row 1 

4s :  1 2 5 … Row 2 

3s :
 0 -2 

 
… Row 3 

2s :
    5 

 
… Row 4 



1s :
 -2 

  
… Row 5 

0s :
 5 

  
… Row 6 

  Column 1 

 There are two sign change in the first column of routh array. Therefore two roots are located on 

the right half of the s plane and remaining three roots are located on the left half of the s plane. 

Hence the system is unstable. 

  

 

9. The open loop transfer function of a unity feedback control system is given by 

 
   2

K
G s

s 2 s 4 s 6s 25


   
. By applying the routh criterion, discuss the stability of the closed l 

loop system as a function of K. Determine the value of K which will cause sustained oscillation in the 

closed loop system what are the corresponding oscillation frequency. 

Solution: 

The closed loop transfer function 
 
 

 
 

C s G s

R s 1 G s



  

  
 
 

   

   

2

2

k

s 2 s 4 s 6s 25C s

kR s
1

s 2 s 4 s 6s 25

   



   

      

 The characteristic equation is given by the denominator 

 polynomial of closed loop transfer function  

  The characteristic equation is  

 

   
  

2

2 2

4 3 2

s 2 s 4 s 6s 25 K 0

s 6s 8 s 6s 25 K 0

s 12s 69s 198s 200 K 0

     

     

     

  

The routh array is constructed as below  

4s :  1 69 200+k … Row 1 

3s :
 12 198 

 
… Row 2 



 

Divided s
3
 by 12 

4s :  1 69 200+K … Row 1 

3s :
 1 16.5 

 
… Row 2 

2s :
 52.5 200+K 

 
… Row 3 

1s :
 

666.25 K

52.5


  

  
… Row 4 

0s :
 200+K 

  
… Row 5 

  Column 1 

2

2

1 69 16.5 1 4 (200 K)
s ;

1 1

s ; 52.5 200 K

    


 

 1

1

52.5 16.5 200 K 1
s ;

52.5

666.25 K
s ;

52.5

   


 

 
0

0

666.25 K
200 K

52.5s ;
666.25 K

52.5

s ; 200 K


 





  

For the system to be stable, all the element in the first column is positive  

 

666.25 K 0

K 666.25 ...1

200 K 0

K 200

but practical value of K starts from 0

K 0 ...2

 
 

 
 

 

  

Combining   1& 2 

The change K for stability 0 <K < 666.25 

To find the sustained oscillation frequency: 

 When K=666.25, s
1
 row will become zero  



The auxiliary equation is  

 

2 2

2

2

52.5s 200 K 0 from s row

put K 666.25

52.5s 200 666.25 0

200 666.25
s 16.5

52.5

s 16.5 j 16.5 j4.06

  


  
 

  

       

  

When K = 666.25, the system has roots  on imaginary axis & so it oscillates. 

The frequency of the oscillation is given by the value of root on imaginary axis. 

The frequency of oscillation  4.06 rad / sec   

 

 

NYQUIST STABILITY  

1. A unity feedback control system has 
10

G(s)
s(s 1)(s 2)


 

. Draw the Nyquist plot and determine the closed 

loop stability. 

Solution:-  

Given that 
10

G(s).H(s) as H(s) 1
s(s 1)(s 2)

 
 

  

i. Number of poles in the right half of the s – plane P = 0 

ii. For stability no of encirclements N = - P =0 

 The nyquist plot should not encircle (-1+j0) point for absolute stability of this system. 

iii. As there  is one pole at origin, the Nyquist contour is as shown in figure which contains section C1, C2, C3 & C4 

 

 

 

 

 

 

 

jω 

+j∞ 

+j0 

-j0 

-j∞ 

C1 

C2 

C3 

R= 0 

R→∞ 

σ 



iv. Mapping of section C1:  

 In section C1 ,0 to ∞, that is mapping of section C1 gives the pole of G(j) H(j) in (u-v) plane. 

Put s= j in G(s) H(s) 

  

2 2

1 1

10
G( j j )

j 1 j 2 j

10
H G( j )H( j )

1 4

G( j )H( j ) 90 tan tan
2

 

  
    

   
  

       

  

   M    

0 

   

   
0 

-90
0
  

-270
0
  

 

  

  

  
  
  

  
  

2

2

2 2

2 3

4 2 2

10
G( j )H( j )

j 1 j 2 j

10

j 2 j

j 2 j10

j 2 j j 2 j

10 3 j 2

4

  
    


    

    
 

         

   


  

  

To find crossing point on –ve axis, equate imaginary of G(j) H(j) = 0 

 

 
  

  

2

4 2 2

2

10 2
0

4

2 0 2

30 2 60
G( j )H( j ) 1.667

4 2 4 2 36

 


  

     
  

     
 

  

Equate real part of G(j) H(j) = 0 

   
2

4 2 2

30
0

4

 
    

  
  

Thus mapping of section C1 in (u-v) planes is as follows  

 

 

 

jv 

-270 

ω→∞ 

-1.667 

-180° 

-90° 

0° 

ω →0 

u 



 

 

 

5. Mapping of section C3: In section C3,  is varying from -∞ to 0. The mapping of section C3 is given by the locus 

of G(j) H(j) where  is varying from - ∞ to 0. The inverse polar  plot is given by the minor image of polarplot 

with respect to real axis as shown in fig. 

 

 

 

 

 

6. Mapping of section C2: The mapping of section C2 from s – plane to (u-v) planes is obtained by putting 

j

R
s lmt Re inG(s)H(s)


  and varying θ from to

2 2
  . Since s  Re

jθ and R → ∞, 
G(s) H(s) can be approximate as (1+s T ≃ sT)  

 

R

3

j j3

3 j3s Lt

R

10
G(s).H(s)

s(s 1)(s 2)

10 10 10

2s(1 0.5s)(1 s) 2 s 0.5s s s

10
G(s)H(s) Re 0e

Lt R e

  





 

  
    

 

  

When 
3

j
2,G(s)H(s) 0e

2




     

When 
3

j
2,G(s)H(s) 0e

2




     

Therefore in (u-v) plane, θ varies from 
3 3

to
2 2

 
  and magnitude of radius R reduces  to 0. 

 

 

 

 

 

-270 

-180° 

-90° 

0° u 

jv 

jv 

-270 

-180 

-90 

R→0 

0 
u 



 

 

 

7. Mapping section C4: The mapping of section C4 from s – plane to (u-v) plane (ie.G(s)H(s) plane) is obtained by 

putting 
j

R 0
s Lt Re 


  in G(s) H(s) & varying  from to

2 2

 
 since j0s Re ,& R 0,G(s)H(s)   can be 

approximated as 1+sT ≃ T. 

 

j

R 0

j

js Lt Re

R 0

5 5 5
G(s)H(s)

s(1 0.5)(1 s) s 1 1 s

5
G(s)H(s) e

Lt Re




 




  
   

  
  

When 
j

2,G(s)H(s) e
2


      

When 
j

2,G(s)H(s) e
2


      

Therefore section C4 in the s- plane is mapped as a circle of infinite radius with arguments varying from +90to -90
0
 

  

 

 

 

 

 

 

8. Complete Nyquist plot: The complex Nyquist plot is G(s)H(s) plane can be obtained by combining the mappings 

of individual sections 

-270° 

-180° 

-90° 

R→∞ 

jv 

u 



 

9. The number of encirclements of (-1+j0) are N = +2 

However, for stability, N = 0, the given system is unstable  

According to mapping theorem, N = Z – P 

    2 = Z – 0→ Z = 2 

There are two zeros of 1+ G(s) H(s) encircled by Nyquist path, i.e two closed loop poles are there in the right half of 

the s – plane due to which the closed loop system is unstable. 

2. The open loop transfer function of a system is given as 
  2

1 4s
G(s).H(s)

s 1 s 1 2s




 
 . Determine the stability 

of closed loop system by using Nyquist criterian. If the closed loop system is not stable, then find the number 

of closed loop poles bying on the right half of the S – plane. 

Solution: 

Given that 
  2

1 4s
G(s)H(s)

s 1 s 1 2s




 
  

1. Number of poles in the right half of the s – plane P = 0 

2. For stability, N = -P = 0 

3. As there are two poles at origin, the nyquist contour is as shown in fig which contains the section C1, C2, C3 & 

C4 



 

4. Mapping of section C1: in section C1, 0t   i.e, the mapping of section C1 gives the poles plot of  

G(j) H(j) in (u-v) plane 

Put s = j in G(s)H(s), 

 

    

  
   

2

2

2 2 2

1 1 1

1 j4
G(j )H( j )

j 1 j 1 j2

1 16
M G(j )H( j )

1 1 4

G j H j 180 tan tan 2 tan 4  

 
  

    

 
   

   

         

  

   M    

0 

   

1.5 

0 

-180
0
 

-270
0
   

 

 

     
 

 
 
 

 
 
 

 
 

 

2 2

2

2 2 2

2 3

2
2 2 2

2 3

2 2
2 2 2 2 2 2

1 j4
G j H j

1 2 j3

1 2 j31 j4

1 2 j3 1 2 j3

1 10 j 8

1 2 9

1 10 j 8

1 2 9 1 2 9

 
  

    

     
 
        

       
       

    
 

                  

 



To find crossing point on –ve real axis,  

Equate imaginary part to zero 

 

 
 

3

2
2 2 2

2

1
2

8

8
0

1 2 9

1 8 0

1
0,

2 2

1
1 10

8
G( j )H( j )

1 1 9
1 2

8 8 8

OQ 10.64



 


       

   

    

    
   

      
   

 

   

Thus the mapping of section C1 in (u-v) plane is as shown in figures. 

 

5. Mapping of section C2: Mapping of section C2 from s – plane to (u-v) plane is obtained by taking 

j

R
s Lt Re isG(s)H(s)


  & varying θ from to

2 2

 
 .  

Since js Re ,R ,1 sT sT     

 
  

j

R

2 2 3

j3

3 j3s Lt Re

R

1 4s 4s 2
G(s)H(s)

s 1 s 1 2s s s 2s s

2
G(s)H(s) 0e

Lt R e




 





  

   

 
  

When 
3j

2,G(s)H(s) 0e
2


     

When 
3j

2,G(s)H(s) 0e
2


     



In (u-v) plane, θ varies from 
3 3

to
2 2

   
of magnitude of radius R reduces to 0. 

  

 

6. Mapping of section C3: In section C3, to0  i.e the mapping of section C3 gives the inverse polar plotof 

G(j)H(j) as shown in fig. 

 

7. Mapping of section C4: mapping of section C4 from s plane to (u-v) plane can be obtained by substituting 
j

R 0
s Lt Re & R 0,1 sT 1


     

  

j

R

2 2 2

j2

j2s Lt Re

R

1 4s 1 1
G(s)H(s)

s 1 s 1 2s s 1 1 s

1
G(s)H(s) e

Lt Re




 





   

   

  
  

When 
j,G(s)H(S) e

2

 
      



When 
j,G(s)H(s) e

2

 
      

Section C4 in the s – plane is mapped into a circle of infinite radius with arguments varying from to    

 

8. Complete Nyquist plot: The complete Nyquist plot in G(s)H(s) (or) (u-v) plane can be obtained by combining the 

mapping of the individual sections as shown in fig. 

 

9. The number of encirclement of (-1+jθ) are  

 N= +2 (clockwise encirclements) 

However, for stability, N = 0 



The closed loop system is unstable  

According to the mapping theorem, we have  

N = Z – P 

2 = Z – 0→ Z = 2 

There are 2 zeros of 1+G(s)H(s) encircled by Nyquist path, that is 2 closed loop poles are there in the right half of 

the s – plane, due to which the closed loop system is unstable. 

3. Draw the Nyquist plot for the system whose open loop transfer function is 
  

K
G(s)H(s)

s s 2 s 10


 
  

Determine the range of K for which the closed loop system is stable. 

Solution:-  

Given that 
K

G(s)H(s)
s(s 2)(s 10)


 

  

1. Number of poles in the right of half of s – plane P = 0 

2. For stability N= -P = 0 

3. As there is one pole at origin, the Nyquist contour is chosen as shown in fig. which contains sections C1, C2, C3, 

& C4. 

 

4. Mapping of section C1: In section C1, t   that is mapping of section C1 gives the polar plot of 

G(j)H(j) in (u-v) plane  

Put s = j in G(s)H(s) 



      

2 2

1 1

K
G j H j

j j 2 j 10

K
M G( j )H( j )

4 100

G( j )H( j ) 90 tan 0.5 tan 0.1 

   
  

   
    

        

  

   M    

0 

   

   
0 

-90
0
  

-270
0
  

 

 

   

  

 
 

   

 
 

2 2

2 2

2 2 2 2

22

2
4 2 2

K
G(s)H(s)

s 2 1 0.5s 10 1 0.1s

0.05K

s 1 0.5s 1 0.1s

0.05K
G(j )H( j )

0.6 j 1 0.05

0.05K 0.6 j 1 0.05

0.6 j 1 0.05 0.6 j 1 0.05

j0.05K 1 0.050.05K 0.6

0.36 1 0.05 0.36


   


 

  
     

       
                 

    
 

     2
4 2 21 0.05   

  

To find crossing point on –ve real axis equate imaginary part to zero 

 

 

2

pc

2

2
2 2 2

1
1 0.05 0 4.47

0.05

4.47 rad / sec

0.05K 0.6 4.47
OQ G( j )H( j )

0.36 4.47 4.47 1 0.05 4.47

OQ 0.00417K

      

  

  
   

   

 

  

Thus the mapping of section C1 in the (u-v) plane gives the following figure. 

 



5. Mapping of section C2: the mapping of section C2 from S – plane to (u-v) plane is obtained by putting 

j

R
s Lt Re in G(s)H(s)


  and varying θ from to

2 2

 
. Since js Re &R   G(s)H(s) can be approximates as 

 1 sT sT   

 
  

j

R

3

j3

3 j3s Lt Re

R

K
G(s) H(s)

s(s 2)(s 10)

0.05K 0.05K

s 1 0.5s 1 0.1s 3 0.5s 0.1s

K

s

K
G(s)H(s) 0e

Lt R e




 





 


   



 

  

When 
3j

2,G(s)H(s) 0e
2


     

When 
3j

2,G(s)H(s) 0e
2


     

In (u-v) plane, θ varies from 
3 3

to
2 2

   
 and  magnitude of radius R reduces  to 0. 

 

6. Mapping of section C3: In section C3, to 0  that is mapping of section C3 gives the inverse polar plot of 

G(j)H(j) as shown in fig. 

 



7. Mapping of section C4: The rapping of section C4 from S – plane to (u-v) plane can be obtained by substituting 

j

R 0
s Lt Re inG(s)H(s)


  & varying θ from to

2 2

 
 since js Re &R 0, 1 sT 1     

 

  

  

j

R 0

j

js Lt Re

R 0

K
G(s)H(s)

s s 2 s 10

0.05K 0.05K

s 1 0.5s 1 0.1s s

0.05K
G(s)H(s) e

Lt Re




 





 

 
 

  

  

When 
j

2,G(s)H(s) e
2


      

When 
j

2,G(s)H(s) e
2


      

Section C4 is the S – plane mapped into a circle of infinite radius with arguments varying from +90
0
 to -90

0
 as 

shown in fig  

 

8. Complete Nyquist plot: The complete Nyquist plot in (u-v) plane can be obtained by combining the mapping of 

individual section as shown in fig. 



 

9. For absolute stability N = 0 i.e [-1+j0] point should be located on the left side of point Q. 

 

OQ 1

0.00417K 1

1
K 240

0.00417K





 

  

The range of value of K for stability is  

 0 K 240    

4. Describe about Nyquist contour & its various segments.   [MAY/JUNE 2016] 

In order to investigate the presence of poles of G(s)H(s) on the right half of s – plane a contour C is chosen such that 

it enclose the entire right half of s – plane. Such a contour is called Nyquist contour. 

 

Nyquist contour is directed clockwise and comprises  of three segments. 

1. An infinite line segment C1 along the positive imaginary axis 



2. An are C2 of infinite radius, enclosing entire right half of s – plane  

3. An infinite line segment C3 along the negative imaginary axis. 

Along C1, s = j with  varying from 0 to ∞  

Along C2, 
j

R
s Lt Re 


  with θ varying from to

2 2

 
  

Along C3, s = j with  varying from to0   

5. State Nyquist stability criterion and explain the situations while examining the stability of linear control 

system.   [NOV/DEC 2016] 

Nyquist stability criterion can be stated as follows. 

If the G(s)H(s) contour in the G(s)H(s) plane corresponding to Nyquist contour in the s – plane encircles the 

point -1+j0 in the number of right half of s plane poles of G(s)H(s), then the closed loop system is stable”. 

1. No encirclement of -1+j0 point: 

This impiles that the system is stable if there are no poles of G(s)H(s) in the right half of s – plane. If there are 

poles on right half of s – plane then the system is unstable. 

2. Anti clockwise encirclements of -1+j0 point: 

In this case the system is stable if the number of anticlockwise encirclements is same as the number of poles 

of G(s)H(s) in the right half of s – plane. If the number of anticlockwise encirclements is not equal to number 

of poles on right half of s – plane, then the system is unstable. 

3. Clockwise encirclements of the -1+j0 point:  

In this case, the system is always unstable. Also in this case if no poles of G(s)H(s) in the right of s – plane, 

then the number of clockwise encirclements is equal to number of poles of closed loop system on right half of 

s – plane., 

Relative Stability 

1. Write detailed notes on relative stability with its roots of S – plane  AU NOV/DEC 2015 

The relative stability indicates the closeness of the system to stable region. It is an indication of the strength 

or degree of stability. 

In time domain, the relative stability may be measured by relative settling times of each root (or) pairs of 

roots. The settling time is inversely proportional to the location of roots of characteristic equation. If the root 

is located far away the imaginary axis then the transient dies out faster and so the relative stability of the 

system will improve. The transient response and so the relative stability for various locations of roots in s – 

plane are shown in fig  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

*INCLUDE THIS* 

1. Write down the procedure for designing lag compensator using bode plot 

The steps to design the lag Compensator are 

1. Determine K in uncompensated system to meet the steady state error requirement 

2. Sketch the bode plot of the uncompensated system 

3. Determine phase margin of the uncompensated system from the bode plot. If the phase margin does 

not satisfy the requirement then lag compensation is required. 

4. Choose a suitable value for the phase margin of the compensated system. 

Let d = Desired phase margin of the compensated system 

n = Phase Margin of the compensated system 

Now n = d + ϵ 

Where ∈ = additional phase lag to compensate for shift in gain crossover frequency. 

Choose an initial value of ϵ = 5° 

t 

t t 

t 

j 

s Plane 

 



5. Determine the new gain crossover frequency, gcn. The new gcn is the frequency corresponding to a 

phase margin of n on the bode plot of uncompensated system. 

Let, gcn = Phase of the G(j) at new gain crossover frequency, gcn 

Now, n = 180° + gcn; gcn = n - 180° 

The new gain crossover frequency, gcn is given by the frequency at which the phase of G(j) is gcn 

6. Determine the parameter,  of the compensator. The value of  is given by the magnitude of G(j) at 

new gain crossover frequency, gcn. Find the db gain (Agcn) at new gain crossover frequency, gcn 

Now, Agcn = 20 log  or 
gcnA

log ,
20

    = 10Agcn / 20 

7. Determine the transfer function of the lag compensator 

Place the zero of the compensator arbitrarily at 1/10
th

 of the new gain crossover frequency, gcn 

 Zero of the lag compensator,  Zc = 
gcn1

T 10


  

Now, T = 
gcn

10


 

Pole of the lag compensator, pc = 
T

1


 

Transfer function of lag compensator Gc(S) = 

1
s

1 sTT
1 1 s T

s
T

  
    



 

8. Determine the open loop transfer function of compensated system. The lag compensator is 

connected in series with the plant as shown below 

 

When the lag compensator is inserted in series with plant, the open loop gain of the system is amplified 

by the factor . If the gain produced is not required then attenuator with gain 
1


can be introduced in 



series with the lag compensator to nullify the gain produced lag compensator. The open loop transfer 

function of the compensated system, 

        
     

   0 c

1 sT 1 sT1 1
G s G s G s G s G s

1 s T 1 s T

 
      
     

 

9. Determine the actual phase margin of compensated system. Calculate actual phase angle of the 

compensated system using the compensated transfer function at new gain crossover frequency, gcn 

Let, gco = phase of G0 (j) at  = gcn 

Actual phase margin of the compensated system, 0 = 180° + gc0; 

If the actual phase margin satisfies the given specification then the design is accepted. 

Otherwise repeat the procedure from step 4 to 9 by taking ∈ as 5° more than the previous design. 

2. Write down the procedure for designing lead compensator using bode plot 

The steps to design the Lead Compensator are 

1. Determine K in uncompensated system to meet the steady state error requirement 

2. Sketch the bode plot of the uncompensated system 

3. Determine phase margin of the uncompensated system from the bode plot. 

4. Determine the amount of phase angle to be contributed by lead network by using the formula 

 m d      ∈ 

Where, m = maximum phase lead angle of the lead compensator 

d = desired phase margin 

 = Phase margin of the uncompensated system 

 = Additional phase lead to compensate for shift in gain crossover frequency. Choose an initial choice 

of  as 5° 

5. Determine the transfer function of the lead compensator.  

Calculate a using the equation m

m

1 sin

1 sin

 
 

 
 

From the bode plot, determine the frequency at which the magnitude of G(j) is – 20log 
1


db. This 

frequency is m. 



Calculate T from the relation, m = 
1

T 
  T = 

m

1

 
 

Transfer function of lead compensator Gc(s) = 
 

 

1
s 1 sTT

1 1 sT
s

T

  





 

6. Determine the open loop transfer function of compensated system. 

The lead compensator is connected in series with the plant as shown below 

 

When the lead compensator is inserted in series with plant, the open loop gain of the system is 

attenuated by the factor , so an amplifier of gain 
1


can be introduced in series with the lead 

compensator to nullify the gain produced lead compensator. 

The open loop transfer function of the compensated system, 

 

       
     

   0 c

1 sT 1 sT1 1
G s G s G s G s G s

1 s T 1 s T

 
      
     

 

7. Verify the design. 

Finally the bode plot of the compensated system is drawn and verify whether it satisfies the given 

specifications. If the phase margin of the compensated system is less than the required phase margin 

then repeat step 4 to 7 by taking ∈ as 5° more than the previous design. 

8. Write down the procedure for designing lag – lead compensator using bode plot 

The steps to design the Lag – Lead compensator are 

1. Determine K in uncompensated system to meet the steady state error requirement 

2. Sketch the bode plot of the uncompensated system 



3. Determine phase margin of the uncompensated system from the bode plot. If the phase margin does 

not satisfy the requirement then lag compensation is required. 

4. Choose a suitable value for the phase margin of the compensated system. 

Let d = Desired phase margin of the compensated system  

n = Phase Margin of the compensated system. 

Now, n =d + ∈ 

Where ∈ = additional phase lag to compensate for shift in gain crossover frequency. 
5. Determine the new gain crossover frequency, gcn. The new gcn is the frequency corresponding 

to a phase margin of n on the bode plot of uncompensated system. 

Let, gcn = Phase of the G(j) at new gain crossover frequency, gcn 

Now, n = 180° + gcn ; gcn = n - 180° 

The new gain crossover frequency, gcn is given by the frequency at which the phase of G(j) is gcn 

Choose the gain crossover frequency of the lag compensator, gct greater than gcn 

6. Calculate  of the lag compensator. 

Let Agcl = |G(j)| in db at  = gcl 

From the bode plot find Agcl 

Now, Agcl = 20 log   or  
gclA

log ,
20

     = 10 Agcl / 20 

7. Determine the transfer function of the lag section 

Place the zero of the compensator arbitrarily at 1 / 10th of the new gain crossover frequency , gcl 

 Zero of the lag compensator, Zc1 = 
gcl

1

1

T 10


  

Now, T1 = 
gcl

10


 

Pole of the lag compensator, pc1 = 
1

1

T
 



Transfer function of lag section G1(s) = 1 1

1

1

1
s

T 1 sT

1 1 s T
s

T


 

    


 

8. Determine the transfer function of the lead compensator. 

Calculated  using the equation  = 
1


 

From the bode plot, determine the frequency m. At which the db gain is -20log
1


db 

Calculate T2 from the relation, T2 = 
m

1

 
  T = 

m

1

 
 

Transfer function of lead section G2(s) = 
 

 
22

2

2

1
s

1 sTT

1 1 sT
s

T


 






 

9. Determine the transfer function of lag – lead compensator. 

Transfer function of lag – lead compensator GC(s) = G1 (s)  G2 (s) = 
 

 
21

1 2

1 sT1 sT

1 s T 1 sT

  
     

 

Since = 
1


, Gc(s) =

 
 

21

1 2

1 sT1 sT

1 s T 1 sT

 
    

 

10. Determine the open loop transfer function of compensation system. 

The lag-lead compensator is connected in series with G(s) as shown below 

 

The open loop transfer function of compensated system 

    
   21

0

1 2

1 sT1 sT
G s G s

1 s T 1 sT

 
      

 

 



11. Draw the bode plot of compensated system and verify whether the specifications are satisfied or 

not. If the specifications are not satisfied then choose another choice of a such that 
1

 


 and repeat 

the steps 8 to 11. 

3. Design a phase lag compensator for the given transfer function G(s) = 
  

K

s s 1 s 4 
 with the unity 

feedback has specifications a) Phase Margin is 40° b) Steady state error ess  0.2 

Solution 

Step 1: Find the value of K for the uncompensated system. 

G(s) = 
  

K

s s 1 s 4 
; H(s) = 1 

      v
s 0 s 0

K K
K Lt s G s H s Lt s

s s 1 s 4 4 
     

 
 

The steady state error ess = 0.2 

 Kv = 
ss

1 1
5

e 0.2
   

Also Kv = 
k

4
 K = 4 Kv = K = 4  5 = 20 

Step 2  Construct the Bode plot for uncompensated system & find the value of phase margin () 

       
20 5

G s
s s 1 s 4 s 1 s 1 0.25s

 
   

 

Put s = j 

G(j) = 
  

5

j 1 j 1 j0.25    
 

Corner frequencies are c1 = 
1

1
= 1 rad/sec 

   c2 = 
1

0.25
= 4 rad/sec 

Term Corner frequency 

rad/sec 

Slope 

dB/dec 

Change in slope 

(dB/dec) 



5

j
 

- -20  

1

1 j 
 c1 = 

1

1
= 1 

-20 -20 -20 = -40 

1

1 j0.25 
 c2 = 

1

0.25
= 4 

-20 -40 -20 = -60 

 

Choose l = 0.1 rad/sec & h = 10 rad/sec 

Calculation of Gain A. 

(i) when  = l = 0.1, A = 20 log 
5

j
 = 20 log 

5

0.1
= 33.97 dB 34dB  

(ii) when  = c1 = 1, A = 20 log 
5

j
= 20 log 

5

1
= 33.97 dB 14dB  

(iii) when  = c2 = 4, A =[change in slope from c1 to c2]  log c2

c1




 + A at  = c1 

= - 40 log 
4

13.9 10.102dB 10dB
1

      
 

 

(iv) when  = h = 10, A = [change in slope from c2 to h]  log h

c2




+ A at  = c2 

= - 60 log 
10

4

 
 
 

- 10.102 = -33.978dB 34dB  

 

rad/sec 

A 

dB 

0.1 34 

1 14 

4 -10 

10 -34 



 

 



 

 

Phase Angle Plot 

  1 1G j 90 tan tan 0.25          

 

rad/sec 

0.1 0.5 1 1.5 2 

 

Degrees 

-97.14 -123.7 -149 -167 -180 

 

From graph, Phase Margin is -7.3 

Step 3 Select the suitable Phase Margin for compensated system 

Desired Phase Margin d = 40 

The small value of correction ∈ = 5 

n = d + ∈ = 40 + 5 = 45 

Step 4 Find the new gain crossover frequency (gcn) corresponding to new phase margin  

gcn = n - 180 

gcn =45 - 180 = -135 & corresponding 

gcn = 0.67 rad/sec (graph) 

Step 5 Obtain  corresponding to the magnitude G(j) at gcn 

Agcn = 15.6 dB corresponding to gcn = 0.67 rad/sec (from graph) 

Agcn = 20 log    = 10 
Agcn/20

 

  = 10 
15.6/20 

=6.025 

Step 6: Obtain the transfer function of lag compensator 

Zero of lag compensator Zc = 
gcn1

T 8


  

 T = 
gcn

8 8
11.94

0.67
 


 



Poles of lag compensator Pc = 
1

T
 

The compensated transfer function, 

Gc(s) = 
 
 

 
 

1 sT 1 11.94s

1 s T 1 71.94s

 


  
 

Step 7 Determine the open loop transfer function 

G0(s) = Gc(s) G(s) 

= 
 
    
1 11.94s 20

1 71.94s s s 1 s 4




  
 

Step 8: Determine the phase angle of the compensated system at new frequency (gcn) 

gcn = G(j) G(j) | = gcn 

gcn = -90 - tan
 -1

  - tan 
-1

 25  + tan
-1

 (11.94) – tan
-1

(71.94) 

Put  = gcn = 0.67 rad/sec 

gcn = -90 –tan
-1

(0.67) – tan
-1

(0.25  0.67) + tan
-1

(11.94  0.67) – tan
-1

 (71.94  0.67) 

= -139.26 

The phase margin of compensated system 

new = 180 - 139.26 = 40.74 

The given phase margin is 40 & the obtained value of phase margin is 40.74. Hence the design is 

acceptable. 

4) Design a phase lead compensator for the given transfer function G(s) = 
 

K

s s 2
with a unity 

feedback system has the specifications a) Phase Margin  55 b) The steady state error for unit ramp 

input  0.40 

Solution 

Step 1 Find the value of K from the steady state error ess (or) velocity error constant Kv 

For Ramp input 

ess = 
1

0.4
Kv

  Kv = 
1

2.5
0.40

  



Given G(s) = 
 

K

s s 1
, H(s) = 1 

Kv =      s 0 s 0

k k
Lt s G s H s Lt s

s s 2 2 
    


 

K = 2Kv = 2  2.5 = 5 

Step 2 Draw the bode plot for uncompensated system and find the value of Phase Margin () 

The uncompensated transfer function G(s) = 
 

K

s s 2
 

= 
 

5

s s 2
 

Put s = j 

 G(j) = 
   

5 2.5

j j 2 j 1 j0.5


    
 

The corner frequencies 
c1

1
2rad/sec

0.5
    

Term Corner Frequency  

rad/sec 

Slope 

dB/dec 

Change in slop 

dB/dec 

2.5

j
 

 -20  

1

1 j0.5 
 c1

1
2

0.5
    

-20 -20 -20 = -40 

 

Assume l = 0.1 rad/sec & h = 10 rad/sec 

Calculation of Gain A 

When  = l = 0.1, A = 20 log 
2.5 2.5

20 log
j 1




 

   = 27.96 dB 

   28dB  

 



When  = c1 = 2, A = 20 log 
2.5 2.5

20 log
j 2




 

   = 1.94 dB 

   2dB  

When  = h =10, A = [change in slope from c1 to h]  h

c1

log
 

  
 

   A at  = c1 

 
10

40log 1.94
2

    
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 = -26.09 dB 

 

rad/sec 

A 

dB 

0.1 28 

2 2 

10 -26 

 

Phase angle plot 

Phase angle  = G(j) = -90 - tan
-1

 0.5 

 

rad/sec 

0.1 0.5 1 5 8 20 40 

 

Degrees 

-92.86 -104.03 -116.56 -158.19 -165.96 -174.28 -177.13 

Phase Margin 180 180 132 48
gc

         

Step 3: maximum phase lead angle of the lead compensatorm is given by 

m

m

1 sin 1 sin12 0.792
0.6557

1 sin 1 sin12 1.2079

   
    

   
∈ 

The desired phase margin d 55    

Uncompensated phase margin d 48   (from graph) 

Small correction value = 5  

m 55 48 5 12        



Step-4 Obtain the transfer function of lead compensator 

m

m

1 sin 1 sin12 0.792
0.6557

1 sin 1 sin12 1.2079

   
    

   
 

 

The value of magnitude dB corresponding to 

 m

1
20log  


 

 
1

20log 1.833dB
0.6557

     

From uncompensated bode plot for dB value -1.833, corresponding value of frequency m is 2.2 rad/sec 

 
m

1 1
T 0.5613

2.2 0.6557
  
 

 

The transfer function of lead compensator 

   
 

 
 c

1
s

1 sT 0.6557 1 0.5613sT
G s

1 1 s T 1 0.6557 0.5613 s
s

T

        
      

 

 0.6557 1 0.5613s

1 0.3680s





 

Step 5 Open loop transfer function of compensated system 

The block diagram of compensated system 

 

  

- 

+ 1

0.6557
 

 0.6557 1 0.5613s

1 0.3680s




  
5

s s 2
 

 



The open loop transfer function of lead compensator = G0 (s) = Gc(s)  G(s) 

 
 

 
0.6557 1 0.5613s1 5

0.6557 1 0.3680s s s 2


  

 
 

 
 

  
5 1 0.5613s

s s 2 1 0.3680s




 
 

 
 

  
2.5 1 0.5613s

s 1 0.5s 1 0.3680s




 
 

Step 6 Draw the Bode plot for the compensated system 

    
  c

2.5 1 0.5613s
G s

s 1 0.5s 1 0.3680s




 
 

Put s = j 

    
  

2.5 1 j0.5613
G j

j 1 j0.5 1 j0.3680

 
 

    
 

The corner frequencies are 

 
c1

1
1.78rad sec

0.5613
    

c2

1
2rad sec

0.5
    

 c3

1
2.7 rad sec

0.3680
    

Magnitude plot 

Term Corner frequency 

rad/sec 

Slope 

dB/dec 

Change in slope 

dB/dec 

2.5

j
 

- -20  

1+j0.5613ω 
c1

1
1.78

0.5613
    

20 -20+20=0 

1

1 j0.5 
 c2

1
2

0.5
    

-20 0 - 20 = -20 

1

1 j0.368 
 c3

1
2.717

0.368
    

-20 -20 - 20 = -40 

 

Assume l = 0.1 rad/sec   & h =100 rad/sec 

Calculation of gain A, 



When  = l = 0.1, 
2.5 2.5

A 20log 20log
j 0.1

 


 

= 27.95 dB 

= 28 dB 

When  = c1 = 1.78,  
2.5 2.5

A 20log 20log
j 1.78

 


 

= 2.95 dB 

3dB  

When  = c2 = 2, A = change in slope from c2 to c1  2c

c1

log
 

 
 

 

   + A at  = c1 

 
2

0 log 3 3dB
1.78

     
 

 



 



When  = c3 = 2.717, A = (change in slope from c2 to c3)  c3

c2

log



  

   + A at  = c2 

= -20  
2.717

log
2

 
 
 

+3 

= 0.3388 0.34dB  

When  = h = 100, A = (change in slope from c3 to h)  h

c3

log



  

   + A at  = c3 

 
100

40 log 0.34
2.717

     
 

 

 = -62.296 

 62.3dB  

 

rad/sec 

A 

dB 

0.1 28 

1.78 3 

2 3 

2.717 0.34 

100 -62.3 

  

Phase angle plot 

       1 1 1G j 90 tan 0.5613 tan 0.5 tan 0.368              

 

rad/sec 

0.1 0.5 1 5 8 15 30 50 

 

Degrees 

-91.76 -98.79 -107.5 -149.3 -159.3 -168.91 -174.4 -176.6 

 

Step 7 

Phase Margin of the compensated system 

gcn180      

= 180 + (-125.5) = 54.5 55  



Phase Margin of the compensated system is matching with desired phase margin 

Therefore  the design is acceptable. 

5) Consider the unity feedback system, whose open loop transfer function is     
K

G s
s s 3 s 6


 

. 

Design a lag-lead compensator to meet the following specifications. i) Velocity error constant Kv = 80 

ii) Phase Margin   35 

Solution 

Step 1: Determine K 

For unity feedback system 

Velocity error constant,  v
s 0

K Lt S G s


   

     s 0 s 0

K
Lt s G s Lt S 80

s s 2 s 6 
   

 
 

K
80

3 6
 


 

K 80 3 6 1440      

     
1440

G s
s s 3 s 6


 

 

 
   

1440

s 3 1 0.33s 6 1 0.167s


   
 

 
  

80

s 1 0.33s 1 0.167s


 
 

Step 2: Bode plot of uncompensated system. 

In G(s),  put s = j 

    
80

G j
j 1 j0.33 1 j0.167

 
    

 

Magnitude Plot 

The corner frequencies are 



c1

1
3rad/sec

0.33
    

c2

1
6rad/sec

0.167
    

Term Corner frequency 

rad/sec 

Slope 

dB/dec 

Change in slope 

dB/dec 

80

j
 

- - 20 - 

1

1 j0.33 
 c1

1
3

0.33
    

- 20 - 20 - 20 = - 40 

1

1 j0.167 
 c2

1
6

0.167
    

- 20 - 40 - 20 = - 60 

 

Choose  l = 0.5 rad/sec 

 h = 20 rad/sec 

At  = l ,  
80 80

A 20log 20log 44dB
j 0.5

  


 

At  = c1 ,  
80 80

A 20log 20log 28.5dB 28dB
j 3

  


  

At  = c2 ,  
c2

c1 c2 c1

c1

A slopefrom to log Aat
 

         
  

6
40 log 28 16dB

3
      

At  = h, h

c2 h c2

c2

A slopefrom to log Aat
 

         
 

20
60 log 16 15dB

6
       

 

rad/sec 

A 

dB 

0.5 44 

3 28 

6 16 

20 -15 

 



Phase angle plot 

  1 1G j 90 tan 0.33 tan 0.167          

 

rad/sec 

0.5 1.0 3.0 6 10 20 

G(j) 

Deg 

-104 -118 -161 -198 -222 -244.7 

244  

 

Step 3 Find the phase margin of uncompensated system. 

Let gc = Phase of G(j) at gain cross over frequency 

  = Phase margin of uncompensated system 

From bode plot of uncompensated system, 

gc = - 226 

 = 180 + gc = 180 -226 = -46 

Step 4 Choose a new phase margin 

The desired phase margin d = 35 

The phase margin of compensated system 

n = d + ∈ Let ∈ be 5 

 n = 35 + 5 = 40 

Step 5: Determine new gain crossover frequency 

Let gcn = New gain cross over frequency 

gcn = Phase of G(j) at gcn 

Now n = 180 + gcn 

 gcn = n - 180 = 40 - 180 = -140 

From the bode plot, we found that the frequency corresponding to a phase of -140 is 1.8 rad/sec. 

Let gcl = Gain cross over frequency of lag compensator 

Choose gcl such that, gcl > gcn 

Let gcl = 4 rad/sec 



Step 6: Calculate  of lag compensator 

From the bode plot, we found that the dB magnitude at gcl is 23 dB. 

 |G(j)| in dB at ( = gcl) = Agcl = 23 dB 

Also Agcl = 20 log ;   = A 10
Agcl /20

 = 10
23/20

 = 14 

Step 7: Determine the transfer function of lag section 

The zero of the lag compensator is placed at a frequency one-tenth of gcl 

 Zero of lag compensator, Zc1 = 
gcl

1

1

T 10


  

1

gcl

10 10
T 2.5

4
   


 

Pole of lag compensator, 
c1

1

1 1 1
P

T 14 2.5 35
  
 

 

Transfer function of lag section 

   
 

 
 

1

1

1

1 sT 14 1 2.5s
G s

1 s T 1 35s

  
 

  
 

Step 8: Determine the transfer function of lead section 

Let 
1

 


 
1

0.07
14

     

The dB gain (Magnitude) corresponding to m 
1

20log 


 

1
20log 11.5dB 12dB

0.07
      

From the bode plot of uncompensated system, the frequency m corresponding to a dB gain of  

-12dB is found to be 17 rad/sec. 

m 17rad/sec    

2

m

1 1
T 0.22

17 0.07
  
 

 



Transfer function of lead section G2 (s) 
 

 
2

2

1 sT

1 s T

 


 
 

 
 

 
0.07 1 0.22s

1 0.0154s





 

Step 9: Determine the transfer function of lag-lead compensator 

Transfer function of lag-lead compensator      c 1 2G s G s G s   

   
 

 
 c

14 1 2.5s 1 0.22s
G s 0.07

1 35s 1 0.0154s

 
 

 
 

  
  

1 2.5s 1 0.22s

1 35s 1 0.0154s

 


 
 

Step 10: Determine open loop transfer function of compensated system. 

The lag-lead compensator is connected in series with G(s) as shown in fig. 

 

 

 

 

 

 

    
    0

80 1 2.5s 1 0.22sOpen loop transfer function
G s

 of compensated system s 1 35s 1 0.0154s 1 0.33s 1 0.167s

 


   
 

Step 11 Bode plot of compensated system 

Put s = j in G0(s) 

    
    0

80 1 j2.5 1 j0.22
G j

j 1 j35 1 j0.0154 1 j0.33 1 j0.167

   
  

        
 

Magnitude Plot 

Corner frequencies: 

- 

+ 
  
  

1 2.5s 1 0.22s

1 35s 1 0.0154s

 
 

 
   

80

s 1 0.33s 1 0.167s 
 



c1

1
0.03rad/sec

35
    

c2

1
0.4rad/sec

2.5
    

c3

1
3rad/sec

0.33
    

c4

1
4.5rad/sec

0.22
    

c5

1
6rad/sec

0.167
    

c6

1
65rad/sec

0.0154
    

Term Corner frequency 

rad/sec 

Slope 

dB/dec 

Change in slope 

dB/dec 

80

j
 

- -20  

1

1 j35 
 

c1

1
0.03

35
    

-20 -20 -20 = -40 

1 + j2.5  
c2

1
0.4

2.5
    

+20 -40 + 20 = -20 

1

1 j0.33 
 

c3

1
3

0.33
    

-20 -20 -20 = -40 

1 + j0.22 
c4

1
4.5

0.22
    

+20 -40 +20 = -20 

1

1 j0.167 
 

c5

1
6

0.167
    

-20 -20 -20 = -40 

1

1 j0.0154 
 

c6

1
65

0.0154
    

-20 -40 -20 = -60 

 

Choose l = 0.01 rad/sec & h = 80 rad/sec 

Calculation of Gain: 

  0 0A G j   in dB 

At  = l ,  0

80
A 20log 78dB

0.01
   

At  = c1 ,  0

80
A 20log 68dB

0.03
   

At  = c2 ,  0

0.4
A 40 log 68 23dB

0.03
      

At  = c3 ,  0

03
A 20 log 23 5dB

0.4
      



At  = c4 ,  0

4.5
A 40 log 5 2dB

3
       

At  = c5 ,   0

6
A 20 log 2 4dB

45
        

At  = c6 ,   0

65
A 40 log 4 45dB

6
        

At  = h ,   0

80
A 60 log 45 50dB

65
        

Phase plot 

0 = G0(j) = tan
-1

2.5 + tan
-1

0.22 - 90 - tan
-1

35 - tan
-1

0.0154 - tan
-1

0.33 - tan
-1

0.167 

 

rad/sec 

0.01 0.03 0.1 0.4 1 4 10 65 80 

0  

deg 

-108 -132 -152 -138 -126 -144 -168 -220 -228 

 

From the Bode plot of the compensated system, 

Let gco = Phase of G0(j) at gain crossover frequency of compensated system, 

0 = phase margin of compensated system 

gco = -144 (From bode plot) 

0 =180 + gc0 = 180 - 144 = 36 

Conclusion 

 The phase margin of the compensated system is satisfactory. Hence the design is acceptable. 



 

 



 



UNIT – 5 

STATE VARIABLE ANALYSIS 

Part - A 

1. Define state and state variable. 

 The state of a dynamical system is a minimal set of variables (known as state 

variables) such that we knowledge of these variables at 
0t t  together with the knowledge of 

the input for t > t0, completely determines the behaviour of the system for t > t0. 

 The state variables are the minimal or the smallest set of variable which determines 

the dynamic behaviour of the linear system. 

2. Write the general form of state variable matrix. 

 The most general state space representation of a linear system with m inputs,p output 

and n state variable is written in the following form: 

.

X AX BU

Y CX DU

 

 

    

Where X  = state vector of order n 1, 

            U = input vector of order n 1, 

 A = system matrix of order n n 

B = input matrix of order n m 

C = output matrix of order p n 

D = transmission matrix of order p m 

3. What is the necessary condition to be satisfied for design using state feedback?  

 The state feedback design requires arbitrary pole to achieve the desire performance. 

The necessary and sufficient condition to be satisfied for arbitrary pole placement is that the 

system is completely state controllable. 

4. What is controllability? April/May 2017 

 A system is said to be completely state controllable if it is possible to transfer the 

system state from any initial stated X(t), in specified finite time by a control vector U(t). 

5. What is observability? April/May 2018 

 A system is said to be completely observable if every state X(t) can be completely 

identified by measurement of  the output Y(t) over a finite time interval. 



6. Write the properties of state transition matrix. 

 The following are the properties of state transition  matrix  

 

   

     

       1 2

Ax0

1 1At At

A t t

1 2 1 2

1. 0 e I unit matrix

2. t e e t .

3. t t e t t

 



  

       

     

 . 

9. What is nyquist rate? 

 The sampling frequency equal to twice the highest frequency of the signal is called 

nyquist rate fm= 2fm  

10. What is similarity transformation? 

 The process of transforming a square matrix A to another similar matrix B by a 

transformation 1P AP B   is called similarly transformation. The matrix P is called 

transformation matrix. 

11. What is mean by diagonalization? 

 The process of converting  the system matrix A into a diagon al  matrix by a similarity 

transformation using the model matrix M is called diagonalization . 

12. What is modal matrix? 

The modael matrix is a matrix used to diagonalize the system matrix. It is also called 

diagonalization matrix. 

If  A = system matrix  

 M = Modal matrix  

And M-1= inverse of modal matrix 

Then M-1AM will be a diagonalized system matrix. 

13. How the modal matrix is determined? 

 The modal matrix M can be formed from eigenvectors. Let 1 2 3 nm ,m ,m ,....m  be the 

eigenvector of the nth order of the system. Now the modal matrix M is obtained arranging all 

the eigenvector column wise asshown below. 

Modal matrix, M = [ 1 2 3 nm ,m ,m ,....m  ]. 

14. What is need for controllability test ? 

 The controllability test is necessary to find the usefulness of the state variable. If the 

state variables are controllable then by controlling the state variable the desired output of the 

system are achieved. 



15. What is need for observability test? Nov/Dec 2018, Nov/Dec 2019 

` The observability test is necessary to find whether the state variable are measurable or 

not. If the state variables are measurable then the state of the system can be determined by 

practical measurement of the state variables. 

16. State the condition for controllability by Gilbert’s method. 

Case (i) when the eigen values are distinct 

Consider the canonical form of state model shown below which is obtained by using the 

transformation  

X MZ

Z Z BU

Y CZ DU



  

 

  

Where   = M-1 AM: C = CM , B= M-1B and M = modal matrix 

In this case the necessary and sufficient condition for complex controllability is that, the 

matrix must have no row with all zeroes. If any row of the matrix is zero then the 

corresponding state variable is uncontrollable    

Case ii) when eigen value have multiplicity  

In the case the state modal can be converted to Jordan canonical form shown below 

1

Z JZ BU

Y CZ DU Where J M AM

 

  
  

In this case the system is completely controllable if the element of any row of that 

corresponding to the last row of each Jordan block is not all zero. 

17. State the condition for observability by Gilbert’s method. 

 Consider the transfer function canonical or Jordan canonical form of the state model 

shown below which obtained by using the transformation,  

X MZ

Z Z BU

Y CZ DU



  

 

  

or 

1

Z JZ BU

Y CZ DU Where J M AM

 

  
 Where   = M-1 A M: C = CM , B= M-1B and M = modal 

matrix 



The necessary and sufficient condition for complete observability is that none of the column 

of the matrix be zero. If any of column is of  all zeroes then corresponding state variable is 

not observable. 

18. State the duality between controllability and observability. 

 The concept of controllability and observability are dual concept and it is proposed by 

Kalman as principle of duality. The principle of duality states that a system is completely 

state controllable if and only if its dual system is completely state controllable if its dual 

system is completely observable or vice versa. 

19. Enumerate the advantages of state space analysis. April/May 2018, April/May 2019 

 It can be applied to non linear systems, time variant systems and multiple input 

multiple output systems  

20. When a System is said to be completely observable? Nov/Dec 2015, May/ June 2016 

 A System is said to be completely observable if all the possible initial states of the 

system can be observed. Systems that fails this criteria are said to be non observable 

21. When a System is said to be completely controllable? Nov/Dec 2015 

 A System is said to be completely controllable if it is possible to transfer the system 

state from any initial state X(t0)  at any other desired state X(t), in specified finite time by a 

control vector v(t). 

    

Part – B 

1. Obtain the state model of the given mechanical system . 

 

Solution: 

Free body diagram  



  

By D’Alembert’s principle, 

   applied forces opposing forces    

     M B Kf t f f f     

   
2

2

d x dx
f t M B Kx ...1

dtdt
    

Equation 1 represents the differential equation covering the system. Let position and 

velocity be chosen as state variables then stable variable x1and x2  & input variable be 

u(t). 

  

 

 

   

1

2

x x t .....2

x x t .....3

u t f t .....3a







    

Therefore  1 2x x t x .....4    

   2x x t .....5   

From the equation 1,  

  
     

 
2

2

d x t f t dx tB K
x t ....6

M M dt Mdt
     

         
1 B K

x t f t x t x t ...7
M M M

    

Substituting the state variable,  

   2 2 1

1 B K
x u t x x ...8

M M M
      

 the state equation are  

  1 2x x ...9   

   2 1 2

K B 1
x x x u t ...10

M M M


     

Equation 9&10, forms the state equation 



Let the displacement x(t) be the output of the system  

  1y x   ....11  

Equation 11 is the output equation.  

State & output equation in matrix form  

   1 1

2 2

0 1 0
x x

u t ...12K B 1
x x

M M M

   
                

   

  

      1

2

x
y 0 1 ....13

x

 
  

 
  

Equation   12 & 13 forms the state model. 

2. Obtain the state model of the mechanical system by choosing minimum of these state 

variables . 

 

Solution: 

  Let the the stable variable be 1 2 3x , x , x  input variable is u(t) they are related to 

the physical variables, 

     1

1 1 2 2 3 1

dy
x y , x y , x v , u t f t

dt
      

Free body diagram of mass M is shown in fig  

  

  
2

1

m K1 1 1 k2 2 1 22

d y
f  M ; f K y ; f K (y y )

dt
      

DAlemberts principle  

  applied forces opposing forces   



    M k1 k2f t f f f    

 
2

1

1 1 2 1 22

d y
M K y K (y y ) f t

dt
     

   
2

1

1 2 1 2 22

d y
M (K K )y K y f t

dt
     ..1 

    

Put  
2

1

3 1 1 2 22

d y
x ; y x ; y x

dt
    & f(t) = u(t) in equ 1. 

  
   

 

3 1 1 2 2

1 2 2

3 1 2

M x k k2 x k x u t

k k k 1
x x x u t ...2

M M M

   

 
  

    

  The free body diagram of node 2 

       
2

2

B K2 2 2 12

d y
f B ; f K y y

dt
     

 Writing force balance equation at the meeting point of K2 & B, we get  

  B K2f f 0    

   
2

2

2 2 12

d y
B K y y 0

dt
     

  
2

2 2 2

1 22

d y K K
y y ....3

B Bdt
     

 Put  
2

2

2 1 1 2 22

d y
x , y x , y x in equ 3

dt
     

  2 2
2 1 2

K K
x x x ...4

B B
     

State variable x1 = y1 

  1

1

dy
x

dt
    

Let  1 1

1 3 1 3

dx dy
x , x , x x ...5

dt dt
     

The equation 2,4 & 5 are called state equations 



  

 

1 3

2 2

2 1 2

1 2 2

3 1 2

x x

K K
x x x

B B

K K K 1
x x x u t

M M M



 


   

  

 State equation in matrix form  

 
1 1

2 2

2 2

3 3
1 2 2

0 0 1
x x 0

K K
x 0 x 0

B B
x x 1

K K K
0 M

M M

 
  
     
             
                

 ..a 

 If the desired output are y1 &y2 then y1 = x1,   y2 = x2 

The output equation in matrix form  

  1 1

2 2

y x1 0

y x0 1

    
     
    

   ..b 

Equation a& b form the state model of the given mechanical system.. 

3.   Obtained the state model of the electrical  network shown in fig choosing minimal 

number of state variable. 

   

Solution: 

  Let us chosen the current through the inductance i1 & i2 & voltage across the 

capacitor vc be the stable variables 

Let the stable be  



 

   1 2 3x ,x &x u t  are the input variable  

  

   

l 1 1

2 2 2

3 c

x i current through L

x i current through L

x v voltage across C;

u t e t ;

 

 

 



  

  At node A, by  KCL,  

  c

1 2

dv
i i C 0

dt
     ..1  

  On substituting the stable variables, 

  1 2 3x x Cx 0     

  3 1 2

1 1
x x x

C C
     

By krichoff ‘s voltage law to mesh1 

  1

1 1 1 c

di
e(t) i R L v

dt
     

On substituting the state variables, 

  
1 1 1 1 3

1 1 3 1 1

1

1 1 3

1 1 1

u x R L x x

L x x x R u

R 1 1
x x x u ...4

L L L

  

  

   

  

By krichoff’s voltage law to mesh 2 

  
2

c 2 2 2

di
v L i R

dt
   …..5 

On substituting the state variable,  



3 2 2 2 2

2 2 3 2 2

2

2 2 3

2 2

x L x x R

L x x x R

R 1
x x x

L L

 

 


 

-----6 

 The equation 2, 4 & 6 are the state equation of the system 

  

1

1 1 3

1 1 1

2

2 2 1

1 1

3 1 2

R 1 1
x x x u

L L L

R 1
x x x

L L

1 1
x x x

C C

   

  

  

  

On arranging state equation in matrix form we get  

   

1

1 1

11 1

2

2 2

2 2

3 3

R 1
0 1

L L
Lx x

R 1
x 0 x 0 u

L L
x x 0

1 1
0

C C

 
   

                               
     

 

  

 Let uis chosen the voltage across the resistance as output variable are denoted by y1 

&y2. 

  1 1 1

2 2 2

y i R ...8

y i R ...9




  

 On substituting the state variables, 

  1 1 1

2 2 2

y x R

y x R

 

 
  ...10 

 On arranging output equation in matrix form, 

  l 1 1

2 2 2

y R 0 x

y 0 R x

     
     

     
   ....11 

The stable equation 7 & the output equation 11 together constant the state model of the 

system. 

4. Construct a state model for a system characterized by the differential equation, 
3 2

3 2

d y d y dy
6 11 6y u 0

dtdt dt
     given the block diagram representation of the state model. 

Solution: 



  Let us choose y and their derivation as state variables the system is governed 

by third order differential equation & the number of state variable are three 

  Let the state variable be 
1 2 3x , x , x  are related to phase variable as follows  

  

1

2 1

2

3 22

x y

dy
x x

dt

d y
x x

dt



 

 

   ` 

Put  
2 3

1 2 3 32 3

dy d y d y
y x , x , x & x

dt dt dt
     the given equation  

  3 3 2 1x 6x 11x 6x u       

  3 1 2 3x 6x 11x 6x u       

The state equations are  

  
l 2

2 3

3 1 2 3

x x

x x

x 6x 11x 6x u





    

  

On arranging the state equation in matrix form,  

   
l 1

2 2

3 3

x 0 1 0 x 0

x 0 0 1 x 0 u

x 6 11 6 x 1

       
       

 
       
                 

  

 Let        
1

2

3

x

y 1 0 0 x

x

 
 


 
  

  

  The state equation and output equation constitutes the state model of the 

system . Block diagram   of the state model is shown in fig 

 



5. For the transfer function 
 

 

 

  

Y S 10 s 4

U S s s 2 s 5




 
 , obtain the state space representation 

using  1) controllable canonical form  2) Observe  canonical form using mason’s gain 

formula. 

Given:1.Controllable canonical form 

  
 

 

 

   3 2

Y s 10 s 4 10s 40

U s s s 2 s 5 s 7s 10s

 
 

   
 

  
 

 

 

 

 

 
1

3 2

1

Y s Y s X s 10s 40
.

U s X s U s s 7s 10s


 

 
  

  Where  
 

 

 

 
1

3 2

1

X s Y s1
and 10s 40

U s X ss 7s 10s
  

 
  

  
 

 
1

3 2

X s 1

U s s 7s 10s


 
 

   

   

 

 

     
1

1 1

Y s
10s 40

X s

Y s 10sX s 40X s ...2

 

 

  

 Realization  of equation 1 & 2 are shown fig  

 

Let the state variable be 1 2 3x , x , x ,  are marked at the output of integrators. 

  
1 2

2 3

3 3 2

x x

x x

x u 7x 10x ...3





  

  

 The output is given by 

  1 2y 40x 10x ...4    

The state equation and output equation in matrix form. 



   
1 1

2 2

3 3

x 0 1 0 x 0

x 0 0 1 x 0 u ...5

x 0 10 7 x 1

       
       

 
       
               

  

And   
1

2

3

x

y 40 10 0 x ...6

x

 
 


 
  

  

Equation 5& 6 gives the state model in controllable canonical form. 

ii) Observable canonical from using mason’s gain formula. 

   
 

 

 

   3 2

Y s 10 s 4 10s 40
G s ...1

U s s s 2 s 5 s 7s 10s

 
  

   
  

   
2 3

2

10 40

s s

7 3
1

s s




 

   
 

  

 Comparing with masons gain formula, there are two forward path with gain 
2

10

s
,

3

40

s
 

 Two feedback loop with gain 
2

7 3
and .

s s

 
  

Signal flow graph 

 

From fig 

  

1

2 1 3

3 2 3

3

x 40u

x x 10x 10u

x x 7x

y x



  

 



  

   
1 1

2 3

3 3

x 0 0 0 x 40

x 1 0 10 x 10 u

x 0 1 7 x 0

       
       

  
       
              

  



And     
1

2

3

x

y 0 0 1 x

x

 
 


 
  

   

6. Obtain the state model of the system by drawing the signal flow graph whose t/f is 

given as
 

  3 2

Y s 10

U s s 4s 2s 1


  
  . 

Solution:  

Given  

  

 

  3 2
3

2 3

3

2 3

Y s 10 10

4 2 1U s s 4s 2s 1
s 1

s s s

10

s

4 2 1
1

s s s

 
    

   
 


 

    
 

 

Comparing with mason gain formula, forward path gain = 
3

10

s
   

Three individual loop gain  = 
2 3

4 2 1
, ,

s s s

 
   

   

Assign state variable at the output of the integrators 

  

 

The state equations are 

  
1 1 2

2 1 3

3 1

x 4x x

x 2x x

x x 10u

  

  

  

  



 The output equation is y = x1 

 The state model in the matrix form  is  

  

 

   

1 1

2 2

3 3

1

2

3

x 4 1 0 x 0

x 2 0 1 x 0 u and

x 1 0 0 x 10

x

y 1 0 0 x

x

       
       

  
       
              

 
 


 
  

 

7. Determine the diagonal canonical state model of the system, whose transfer function 

is  
 

   

2 s 5
T s

s 2 s 3 s 4




    

   

Solution: 

Given: 

 Let  
 

 

 

   

Y s 2 s 5

U s s 2 s 3 s 4




    

  

By partial fraction expansion,   

  
 

 

 

   

Y s 2 s 5

U s s 2 s 3 s 4




    

=
     

A B C

s 2 s 3 s 4
 

  
  

  

 

  

 

  

 

  

 

  

 

  

 

  

s 2

s 3

s 4

2 s 5 2 2 5 2 3
A 3

s 2 s 4 2 3 2 4 1 2

2 s 5 2 3 5 2 2
B 4

s 2 s 4 3 2 3 4 1 1

2 s 5 2 4 5 2 1
C 1

s 2 s 4 4 2 4 3 2 1







   
   

      

   
    

       

   
   

       

  

  
 

 

Y s 3 4 1

U s s 2 s 3 s 4
   

  
  ...1 

 Equation 1 can be rearranged a follows  

  
 

 

Y s 3 4 1

2 3 4U s
s 1 s 1 s 1

s s s

  
     
       

     

  

         

1 1 1

s s sY s 3 U s 4 U s 1 U s
1 1 1

1 .2 1 .3 1 .4
s s s

     
     
           
          
                      

    ...2 



 Equation 2 can be represented in block diagram  

 

Assign state variables at the output of the integer as shown in fig. at the input of the 

integrators the derivation of the stable variable are assigned. 

 State equation s are 

  
1 1

2 2

3 3

x 2x u

x 3x u

x 4x u

  

  

  

   

  The output equation is y =  3x1 -4x2+x3. 

  

 

   

1 1

2 2

3 3

1

2

3

x 2 0 0 x 1

x 0 3 0 x 1 u

x 0 0 4 x 1

x

y 3 4 1 x

x

       
       

  
       
              

 
 

 
 
  

 . 

8. Obtained the state space representation in Jordan canonical form for the given 

transfer function 
 

     

2

2

Y S 2s 6s 7

U S s 1 s 2

 


 
  

Solution: 

Given  

  
 

     

2

2

Y s 2s 6s 7

U s s 1 s 2

 


 
=
 

2

A B C

s 1 s 2s 1
 

 
  



  A =  
  

   

22

2s 1

2s 6s 7 s 1
Lt

s 1 s 2

   
 
  
 

  

      =
2

s 1

2s 6s 7 2 6 7
Lt 3

s 2 1 2

    
  

   
  

  
  

   

22

2s 1

2s 6s 7 s 1d
B Lt

ds s 1 s 2

   
 
  
 

  

     
    

 

22

2s 1 s 1

s 2 4s 6 2s 6s 7d 2s 6s 7
Lt Lt

ds s 2 s 2 

       
   

     

  

  
   

 
2

4 6 2 6 7 2 3
1

11 2

     
  

 
  

  
  

   

2

2s 2

2s 6s 7 s 2
C Lt

s 1 s 2

   
 
   

 

         

2

2s 2

2

2s 6s 7
Lt

(s 1)

8 12 7
3

( 2 1)



  
  

 

 
 

 

  

  
 

     2

Y s 3 1 2

U s s 1 s 2s 1


  

 
 

   
 

 

 

 

 
2

3U s U s 2U s
Y s

s 1 s 2s 1


  

 
  

Let the state variable be  

  

 
 

 

 
 

 

 
 

 

1 2

2

3

U s
X s

s 1

U s
X s

s 1

U s
X s

s 2










  

  

 

   

     

     

     

1

2

1 1 2

2 2

3 3

X s 1

X s s 1

sX s X s X s

sX s X s U s

sX s 2X s U s




  

  

  

  



         1 2 3Y s 3X s X s 3X s     

Taking inverse Laplace transform   

  

1 1 2

2 2

3 3

1 2 3

x x x

x x u

x 2x u

y 3x x 3x

  

  

  

  

  

This equation can be represented in matrix form  

   
1 1

2 2

3 3

x 1 1 0 x 0

x 0 1 0 x 1 u

x 0 0 2 x 1

       
       

  
       
              

  

   
1

2

3

x

y 3 1 3 x

x

 
 

 
 
  

  

9. Obtain the transfer function model for the following state space system. 

   
0 1 1

A , B , C 1 0 , D 0 .
6 5 0

   
     

    
  

Solution: 

  
 

 
 

1Y s
C sI A B D

U s


     

    
 

 

 
 

 
 

1

1 0 0 1 s 1
sI A s

0 1 6 5 6 s 5

s 5 11
sI A

6 ss s 5 6

Y s s 5 1 11
1 0 0

6 s 0U s s s 5 6



     
        

       

 
   

   

   
    

     

  

  
 

 

2

2

11
s 5 1

0s 5s 6

1
s 5

s 5s 6

 
   

   

 
 

  

  
 

  2

Y s s 5

U s s 5s 6




 
  



10. Find the transfer function for the system, which is represented in the state space 

representation as follows

 

 

1 1

2 2

3 3

1

2

3

x 2 1 0 x 0

x 0 3 1 x 0 u

x 3 4 5 x 1

x

y 0 1 0 x

x

       
       

  
       
                

 
 


 
  

  

Solution: 

  
 

 

2 1 0 0

A 0 3 1 , B 0 , C 0 1 0

3 4 5 1

D 0

   
   

   
   
        

  

  
 

 
 

1Y s
C sI A B D

U s


     

  

 

1 0 0 2 1 0

sI A s 0 1 0 0 3 1

0 0 1 3 4 5

s 2 1 0

0 s 3 1

3 4 s 5

   
   

   
   
        

  
 

  
 
  

  

   
 

 
1 adj sI A

sI A
det sI A

 
 


  

   

 

2

2

2

s 8s 19 s 5 1

adj sI A 3 s 7s 10 s 2

3 s 3 4s 11 s 5s 6

   
 

      
       

  

  

      

  2

3 2

det sI A s 2 ( s 3 s 5 4) 1 3

s 2 s 8s 19 3

s 10s 35s 41

         

    

   

  

   

 

2

1 2

3 2

2

s 8s 19 s 5 1
1

S I A 3 s 7s 10 s 2
s 10s 35s 41

3 s 3 4s 11 s 5s 6



   
 

          
       

  

  
 

 
 

 

2

2

3 2

2

s 8s 19 s 5 1
Y s 1

0 1 0 3 s 7s 10 s 2
U s s 10s 35s 41

3 s 3 4s 11 s 5s 6

   
 

       
       

 



  2

3 2

0
1

3 s 7s 10 s 2 0
s 10s 35s 41

1

 
           
  

  

  
3 2

1
. s 2

s 10s 35s 41
 

  
  

  
 

  3 2

Y s s 2

U s s 10s 35s 41




  
  

11. A linear time invariant system is characterised by the state equation  

 1 1

2 2

x x1 0 0
u

x x1 1 1

      
       
      

 when u is a unit step function complete the solution of these 

equation assuming initial condition 0

1
x

0

 
  
 

 use inverse Laplace technique. 

Solution: 

Given  A = 
1 0 0

, B
1 1 1

   
   

   
    

  
         1 1X t L s X s L s B U s .             

     
1

s sI A


     

  
1 0 1 0 s 1 0

sI A s
0 1 1 1 1 s 1

     
        

      
  

  

 
 

   

 

1

2

2

adj sI A s 1 01
sI A

1 s 1det sI A s 1

1
0

s 1

1 1

s 1s 1

   
    

    

 
 
 
 
  

  

   

 
2 2

1 1
0

s 1 0 s 1
s X(0)

1 1 11

s 1 (s 1)s 1

   
            
    
       

 

 
t

1 1

t

2

1

es 1
L [ s X(0)] L

1 te

(s 1)

 

 
   
     
   
  

 



 

 
2

1
0 0

s 1 0
S B 11 1 1

s 1s 1s 1

 
                    

 

  

    

  

   
 

   
 

   

   

1 1

1

1

t

00
1

s B U s 11
s

s s 1s 1

0

L s B U s L 1

s s 1

0

L s B U s 1 1

s s 1

0
L s B U s

1 e

 





  
            

      

 
 

     
   

 
       
  

 
        

  

  

 

 
 

t

tt

t

t

0e
X t

1 ete

e
X t

1 t 1 e

   
    

   

 
   

   

  

12. Test the controllability & observability of the system by any one method whose state 

space representation is given as.
1 1

2 2

3 3

x 0 0 1 x 0

x 2 3 0 x 2 u

x 0 2 3 x 0

       
       

   
       
              

,  
1

2

3

x

y 1 0 0 x

x

 
 


 
  

 . 

Solution:  

Method: Gilberts Method. 

 

0 0 1 0

A 2 3 0 , B 2 C 1 0 0

0 2 3 0

   
   

    
   
      

  

To find Eigen values. 

The characteristic equation is I A   = 0  

   

1 0 0 0 0 1

I A 0 1 0 2 3 0

0 0 1 0 2 3

   
   

      
   
      

  



  

0 1

2 3 0

0 2 3

  
 

  
 
    

  

  `

0 1

I A 2 3 0

0 2 3

 

    

  

  

  
     

       

2 2 3 2

2

3 1 4 6 9 4 ( 6 9 4

1 1 4 1 4

                  

           
  

The Eigen values are 1, 1, 4           

To find eigen vectors  

  
1 1

1 0 0 0 0 1

I A 0 1 0 2 3 0

0 0 1 0 2 3

   
   

      
   
      

  

   
1

1

1

0 1

2 3 0

0 2 3

  
 

  
 
    

  

 Let 11 12 13C ,C ,C be the cofactore along  the 1st row of the matrix  1I A    

   

   

 

    

1 2 2

11 1 1 1

1

12 1 1

1

1

13

3 0
C 1 ( 3) 6 9

2 3

2 0
C 1 2 3 2 6

0 3

2 3
C 1 4

0 2

 
         

  

         
 

 
  



  

    

2

11 1 1

1 12 1

13

C 6 9 1 6 9 4

m C 2 6 2 6 4

C 4 4 4

           
      

              
              

  

   

11

1

1

12
2

1

13

1

dC

d
2 6 2 6 4

dC
m 2 2 2

d
0 0 0

dC

d

 
 

          
       

                          
 

  

  



    3

1 0 0 0 0 1 4 0 1

I A 4 0 1 0 2 3 0 2 1 0

0 0 1 0 2 3 0 2 1

      
     

        
     
            

  

 Let 11 12 13C ,C ,C  be the cofactor along 1st row of the matrix  3I A    

   

 

 

 

11

12

13

1 0
C 1 1

2 1

2 0
C 1 2

0 1

2 1
C 1 4

0 2


  

 

  



   



  

   
11

3 12

13

C 1

m C 2

C 4

   
   

 
   
      

  

To find the canonical form of state from of state model 

 The model matrix, M is given by  

   1 2 3

4 4 1

M m m m 4 2 2

4 0 4

 
 

   
 
   

  

  
 

T T

1 cof
Cofactor of M M

M
Deter min ation of M M

  


  

       

4 4 1

M 4 2 2 4 8 4 24 1 8 72

4 0 4

         

 

  

  

T

T

cof

8 24 8 8 16 10

M 16 12 16 24 12 12

10 12 8 8 16 8

   
   

      
   
        

 

  1

8 16 10 2 4 25
1 1

M 24 12 12 6 3 3
72 18

8 16 8 2 4 2



     
   

    
   
        

   

  1

2 4 25 0 0 1 4 4 1
1

J M AM 6 3 3 2 3 0 4 2 2
18

2 4 2 0 2 3 4 0 4



       
     

     
     
            

  



  

8 7 5.5 4 4 1
1

6 3 3 4 2 2
18

8 16 8 4 0 4

18 18 0 1 1 0
1

0 18 0 0 1 0
18

0 0 72 0 0 4

   
   

     
   
        

    
   

   
   
       

  

  

1

2 4 2.5 0
1

B M B 6 3 3 2
18

2 4 2 0

8 /18 4 / 9

6 /18 3 / 9

8 /18 4 / 9



     
   

 
   
      

    
   

 
   
      

  

  
 

 

4 4 1

C CM 1 0 0 4 2 2

4 0 4

4 4 1

 
 

   
 
   



  

The Jordan canonical form of state model  

  
Z JZ B U

Y C Z DU

 

 

 

 

 

 

1
1

2 2

3
3

1

2

3

Z
1 1 0 Z 4 / 9

Z 0 1 0 Z 3 / 9 u and

0 0 4 Z 4 / 9
Z

Z

Y 4 4 1 Z

Z

 
        
       

         
             
 

 
 


 
  

 

Conclusion  

 The elements of the row of B  are not all zero. Hence the system is completely 

controllable. 

 The elements of the column of C  are not all zero. Hence the system  is 

completely observable  

13. Consider the system defined by X AX BU, Y CX     

Where 

0 1 0

A 0 0 1

6 11 6

 
 


 
    

 

1

B 0

1

 
 


 
  

  C 10 5 1   



Check controllability and observability of the system  Nov/Dec 2015 

using Kalman’s method  

i) To check for controllability 

  

1

B 0

1

 
 


 
  

  

  

0 1 0 1 0

A.B 0 0 1 0 1

6 11 6 1 12

     
     

 
     
             

 

   2

0 1 0 0 1

A B A. A.B 0 0 1 1 12

6 11 6 12 61

     
     

   
     
             

  

The composite matrix for controllability  

  

2

cQ B AB AB

1 0 1

0 1 12

1 12 61

   

 
 

 
 
  

  

     

c

1 0 1

Q 0 1 12

1 12 61

1 61 144 1 1

83 1 84

  



   

    

   

 Since 
cQ 0  the rank of  Qc is 3 hence the system is completely controllable. 

To check for observability 

  T T

0 0 6 10

A 1 0 11 , C 5

0 1 6 1

   
   

  
   
      

  



   

T T

T 2 T T T T

0 0 6 10 0 0 6 6

A .C 1 0 11 5 10 0 11 1

0 1 6 1 0 5 6 1

0 0 6 6 0 0 6

(A ) C A . A C 1 0 11 1 6 0 11

0 1 6 1 0 1 6

6

5

5

          
       

      
       
                 

        
     

       
     
             

 
 


 
  

  

The composite matrix for observability  

  

 
2

T T T T T

oQ C A C A C

10 6 6

5 1 5

1 1 5

 
  

 
 

 
 
  

  

  

     

   
oQ 10 5 5 6 25 5 6 5 1

6 20 6 4

120 24 96

        

  

  

  

  Since 
oQ 0,  the rank of Qo is 3. Hence the system is completely observable. 

 

18. State the properties of state transition matrix. 

  Att e state transition matrix    

1.   A 00 e I Identity matrix     

2.      
1 1At Att e e t
          

i.e.,    1 t t     

3.    1 2 1 2
A t t At At

1 2t t e e e


      

   1 2t t    

   2 1t t    

4.  A t s At Ase e e


   

5.  A B t At Bte e e


   only if AB = BA 

6.    
nn At Antt e e nt           



7.      2 1 1 0 2 0t t t t t t        

This property states that the process of transition of state can be divided into number of 

sequential transition. Thus t0 to t2 can be divided as t0 to t1 & t1 to t2, as stated in the property 

In terms of (t), the solution is expressed as 

         
0

t

0 0
t

X t t t X t t B U d           

Where    0A t t

0t t e


    &    A t
t e


     

8. (t) is an non-singular matrix for all values of t. 

19. Draw the state model of a linear single input-single output system and obtain its 

corresponding equations. 

The state model of a linear single input single output system can be obtained by putting m = 1 

& p = 1 in the state model of a linear multi input – multi- output system as 

     x t Ax t B u t State Equation


     

     y t Cx t D u t Output Equation     

Where  

 

 

 

1

1

.

.

n n 1

x t

x t

x t State Vector
.

x t


 
 
 

  
 
 
  

 

11 12 1n

21 22 2n

.

.

n1 n2 nn n n

a a ... a

a a ... a

A System Matrix
.

a a ... a


 
 
 

  
 
 
 

 

1

2

.

.

n n 1

b

b

B Input Matrix
.

b


 
 
 

  
 
 
 

 

 1 2 3 n 1 n
C C C C ...C Output matrix


   

d = Transmission Constant 

u(t) = Input (or)  Control Variable (Scalar) 

y(t) = Output Variable (Scalar) 



The Block diagram representation of the state model of linear single input single output 

system is shown in fig. 

 

20. Consider the following system with differential equation given by. 

y 6 y 11y 6y 6u
  

    obtain the state model in diagonal canonical form Nov/Dec 2015 

Solution 

Given y 6 y 11y 6y 6u
  

     

Taking Laplace transform on both sides 

         3 2s Y s s 6Y s 11sY s 6Y s 6U s     

   3 2s 6s 11s 6 Y s U s 6        

 

  3 2

Y s 6

U s s 6s 11s 6


  
  

 

     

Y s 6

U s s 1 s 2 s 3
 

  
 

     

A B C

s 1 s 2 s 3
  

  
 [By partial fraction expansion] 

  
s 1

6 6
A 3

s 2 s 3 1 2


  
  

 

     
s 2

6 6
B 6

s 1 s 3 1 1


   
  

 

     
s 3

6 6
C 3

s 1 s 2 2 1


  
   

 

 

       

Y s 3 6 3

U s s 1 s 2 s 3


   

  
  (1) 

Equation (1) can be rearranged as follows 



 

 

Y s 3 6 3

1 2 3U s
s 1 s 1 s 1

s s s

  
     
       

     

 

       
3 6 3

s s sY s U s U s U s
1 1 1

1 1 s 1 2 s 1 3
s s s

     
     
          

     

 

Equation 2 can be represented in block diagram 

 

Assign state variables at the output of the integrators as shown in fig. At the input of the 

integrators, the derivatives of the state variables are assigned. 

The state equations are 

1 1

2 2

3 3

x x u

x 2x u (3)

x 3x u







  

   

  

 

The output equation is  

y = 3x1 – 6x2 + 3x3  (4) 

Equation (3) & (4) forms the state model 

State model in Matrix form 

1

1

2 2

3
3

x
1 0 0 x 1

x 0 2 0 x 1 u

0 0 3 x 1
x







 
       
       

         
             
 

 

 
1

2

3

x

y 3 6 3 x

x

 
 

 
 
  

 


