1C8451 CONTROL SYSTEMS

SYLLABUS

COURSE OBJECTIVES
The student should be made to:

e To understand the use of transfer function models for analysis physical systems and introduce the
control system components.
To provide adequate knowledge in the time response of systems and steady state error analysis.
To accord basic knowledge in obtaining the open loop and closed—loop frequency responses of systems.
To introduce stability analysis and design of compensators
To introduce state variable representation of physical systems

UNIT | SYSTEMS AND REPRESENTATION 9

Basic elements in control systems: — Open and closed loop systems — Electrical analogy of mechanical and
thermal systems — Transfer function — AC and DC servomotors — Block diagram reduction techniques — Signal
flow graphs.

UNIT Il TIME RESPONSE 9

Time response: — Time domain specifications — Types of test input — I and Il order system response — Error
coefficients — Generalized error series — Steady state error — Root locus construction- Effects of P, PI, PID
modes of feedback control —Time response analysis.

UNIT Il FREQUENCY RESPONSE 9
Frequency response: — Bode plot — Polar plot — Determination of closed loop response from open loop response
- Correlation between frequency domain and time domain specifications

UNIT IV STABILITY AND COMPENSATOR DESIGN 9

Characteristics equation — Routh Hurwitz criterion — Nyquist stability criterion- Performance criteria —Effect of
Lag, lead and lag-lead compensation on frequency response-Design of Lag, lead and laglead compensator using
bode plots.

UNIT V STATE VARIABLE ANALYSIS 9
Concept of state variables — State models for linear and time invariant Systems — Solution of state and output
equation in controllable canonical form — Concepts of controllability and observability.
L TPC
3 2 0 4

TOTAL (L: 45+T:30): 75 PERIODS
COURSE OUTCOMES

At the end of the course, the student should have the:
e Ability to develop various representations of system based on the knowledge of Mathematics, Science
and Engineering fundamentals.
Ability to do time domain and frequency domain analysis of various models of linear system.
Ability to interpret characteristics of the system to develop mathematical model.
Ability to design appropriate compensator for the given specifications.
Ability to come out with solution for complex control problem.



e Ability to understand use of PID controller in closed loop system.
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Unit—1
SYSTEMS COMPONENTS AND THEIR REPRESENTATION
Part — A

What is control system?  Nov/Dec 2016
A system consists of a number of components connected together to perform a specific function. In a
system when the output quantity is controlled by varying the input quantity then the system is called control system

Define open loop control systems Nov/Dec 2017
The control system in which the output quantity has no effect upon the input quantity is called open loop control system. This
means that the output is not feedback to the point for correction

Define closed loop control systems Nov/Dec 2017
The control system in which the output has an effect upon the input quantity so as to maintain the desired output values are
called closed loop control systems

What are the components of feedback control system? Nov/Dec 2016
The component of feedback control system are plant, feedback path elements, error detector actuator and controller

Distinguish between open loop and closed loop system May/June 2013, 2016, Nov/Dec 2019
S.No. OPEN LOOP CLOSED LOOP
1. Inaccurate Accurate
2. Simple and economical Complex and costlier
3. The changes in output due to external | The changes in output due to external disturbance
disturbance are not corrected are corrected automatically
4. Always stable Generally great efforts are needed to design a
stable system

Define transfer function Nov/Dec 2011& April/May 2017
The transfer function of a system is defined as the ratio of the Laplace transform of output to Laplace transform of input with
zero initial conditions.

What are the basic elements used for modeling mechanical translational system May/Junel3/Nov/Dec16&17/April/May 19
e Mass M,.Kg
e  Stiffness of spring K, N/m
e Viscous friction coefficient dashpot B,N-sec/m

What are the basic elements used for modeling mechanical rotational system? April/May 2019
e Moment of inertia J,Kg- m* /rad
e Dashpot with rotational frictional coefficient B,N-m/(rad/sec)
e Torsional spring with stiffness K,N-m/rad

Name two types of electrical analogous for mechanical system
The two types of analogies for the mechanical system are

e Force voltage analogy

e  Force current analogy

What is block diagram? ~ Nov/Dec 2015, April/May 2017
A Block diagram of a system is a pictorial representation of the functions performed by each component of the system and
shows the flow of signals.
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What are the basic component s of block diagram? April/May 2017
The basic elements of block diagram are blocks, branch point and summing point

What is the basis for framing the rules of block diagram reduction technique?
The rules for block diagram reduction technique are framed such that any modification made on the diagram does not alter
the input output relation

What is a signal flow graph?

A signal flow graph is a diagram that represents of set of simultaneous algebraic equations. By taking Laplace transform the
time domain differential equations governing a control system can be transferred to a set of algebraic equations in a s-
domain.

What is transmittance?
The transmittance is the gain acquired by the signal when it travels from one node to another node is signal flow graph.

What is sink and source?
Source is the input node in the signal flow graph and it has only outgoing branches. Sink is a output node in the signal flow
graph and it has only incoming branches.

Write Masons Gain formula April/May 2015/2016, April/May 2018, April/May 2019
Masons gain formula states that the overall gain of the system as follows overall gain,
z“KAKPK

T(s) A
T(s) = Transfer Function of the system
K = Number of forward path in the signal flow
Pk = Forward path gain of the Kth forward pain
A = 1- (Sum of individual loop gains) + (Sum of gain products of all possible combinations of two both touching loops) —
(Sum of gain products of all possible combinations of three non touching loops) +....
Ak = (A for the part of the graph which is not touching Kth forward path)

Write the analogues electrical elements in force voltage analogy for the elements of mechanical translational system
Force — f — Voltage, e

Velocity, V —current , i

Displacement, x — charge, q

Fricitional coefficient, B — Resistance, R

Mass, M — inductance, L

Stiffness, K — Inverse of capacitance 1/C

Newton’s second law — Kirchhoff’s voltage law.

Write the analogous electrical elements in force current analogy for the elements of mechanical translational system
Force, f— current, i

Velocity, V — Voltage, e

Displacement, x — flnx @

Fricitional coefficient, B — Conductance, G = 1/R

Mass, M — capacitance C

Stiffness, K — Inverse of inductance, 1/L

Newton’s second law — Kirchhoff’s current law

Write the analogous electrical elements in torque voltage analogy for the elements of mechanical rotational system
Torque, T — Voltage, e

Angular Velocity, o - current, i

Angular Displacement, 6 - charge, q
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Frictional coefficient, B — Resistance, R

Moment of Inertia, J- inductance, L

Stiffness of the spring, K-— Inverse of capacitance 1/C
Newton’s second law — Kirchhoff’s current law

Write the analogous electrical elements in torque current analogy for the elements of mechanical rotational system
Torque, t—current, i

Angular Velocity, o - voltage, e

Angular Displacement, 6 - flux, @

Frictional coefficient , B- Conductance , G = 1/R

Moment of Inertia, I- capactitance, C

Stiffness of the spring , K — Inverse of inducatance, 1/L

Newton’s second law — Kirchhoff’s current law

Write the force balance equation of an ideal mass, dashpot and spring element
Let a force f be applied to an ideal mass M. The mass will offer an opposing for f_ which is proportional to acceleration.

f=f, =Md°X/dt’
Let a force f be applied to an ideal dashpot, with viscous frictional coefficient B. the dashpot will offer an opposing
force f, which is proportional to velocity.

f:fb:BE

Let a force f be applied to an ideal spring, with spring constant K. The spring will offer an opposing force f, which is
proportional to displacement.

f=f =KX

Why negative feedback is invariably preferred in closed loop system?
The negative feedback results in better stability in steady state and rejects any disturbance signals.

State the principles of homogeneity (or) superposition

The principles of superposition and homogeneity states that if the system has responses

yi(t) and y»(t) for the inputs xa1(t) and xo(t) respectively then the system response to the linear combination of the individual
outputs aixa(t) + axXa(t) its given by linear combination of the individual outputs a1yi(t) +azy2(t) where a; ,a; are constant.

y, (t) and y, (t) for the inputs x, (t) and x, (t) respectively then the system respsonse to the linear combination of the
individual outputs a,x, (t) +a,x, (t)is given by linear combination of the individual outputs a,y, () +a,y, (t) where a,
a, are constant

What are the basic properties of signal flow graph?

The basic properties of signal flow graph are

Signal flow graph is applicable to linear systems

It consists of nodes and branches

A node adds the signal of all incoming branches and transmits this sum to all outgoing branches.
Signals travel along branches only in the marked direction and is multiplied by the gain of the branch.
The algebraic equations must be in form of cause and effect relationship

Define non touching loop
The loops are said to be non touching if they do not have common nodes

List the advantages of closed loop system? Nov/Dec 2015 & April/May 2017
It is accurate.



The change in output due to external disturbances are corrected automatically.

Part B and C question & Answers
1. Explain the features of closed loop feedback Control system May/ June 2015
Control system in which the output has an effect upon the input quantity in order to maintain the desired output values
are called closed loop systems.

Error detector

Reference

Output c(t)

+ Controllers ,| Open loop system plant

)\ 4

Ll

Input r(t)

Feedback

A 4

The open loop system can be modified as closed loop system by providing a feedback. The provision of feedback
automatically corrects the changes in output due to disturbances. Hence the closed loop system is also called automatic control
systems

The general block diagram of an automatic control system is shown in fig. In consists of an error detector, a controller, plant
and feedback path elements.

The reference signal (or input signal) corresponds to desired output. The feedback path elements samples the output and
converts it to a signal of same type as that of reference signal. The feedback signal is proportional to output signal and it is fed to the
error detector.

The error signal generated by the error detector is difference between reference signal and feedback signal. The controller
modifier and amplifies the error signal to produce better control action. The modified error signal is fed to the plant to correct its
output.

Advantages of closed loop system:

1. The closed loop systems are accurate.

2. The closed loop systems are accurate even in the presence of non linearties.

3. The sensitivity of the systems may be made small to make the system more stable
4. The closed loop systems are less affected by noise.

Disadvantages of closed loop systems.

1. The closed loop systems are complex and costly

2. The feedback in closed loop system may lead to oscillatory response.

3. The feedback reduces the overall gain of the system

4, Stability is a major problem in closed loop system and more care is needed to design a stable closed loop system

2.Compare open loop and closed loop control system Nov/Dec 2016, Nov/Dec 2018
S.No. Open Loop Closed loop
1. Any change in output has no effect on the input | Changes in output, affects the input which is
(i.e.) feedback does not exists possible by use of feedback
2. Output measurement is not required for operation | Output measurement is necessary
of system




3. Feedback element is absent Feedback element is present

4. Error detector is absent Error detector is necessary

5. It is inaccurate and unreliable Highly accurate and reliable

6. Highly sensitive to the disturbances Less sensitive to the disturbances

7. Highly sensitive to the environmental changes Less sensitive to the environmental changes

8. Bandwidth is small Bandwidth is large

9. Simple to construct and cheap Completed to design and hence costly

10. Generally are stable in nature Stability is the major consideration while designing
11. Highly affected by non linearities Reduced effect of non linearities

Mathematical Models of Electrical Systems

- The basic elements of electrical system are resistor, inductor, capacitor

- The differential equations of the electrical systems can be formed by applying Kirchoff’s laws

COMPONENTS VOLTAGE ACROSS THE CURRENT THRO’ THE
ELEMENT ELEMENT
Resistors
<« V(t) — .
V(t) = Ri(t) L V()
SVAVAVANEE i(t) ==
R
it) R
Inductor
<« V(t) — di(t) . 1
t)=L——= =—
i V() =L= i)=r j v(t)dt
i(t) L
Capacitor
«~ VO - 1. Sy~ dv(t)
) ’ v(t)—Ej'l(t)dt i(t)=C St
-
ity C
Problems

1. Obtain the transfer function of the electrical network shown in fig.

VAVA A VA VA W

e(t C: T

R2

C T

v, (1)

—




Input — e(t)
Output — Va(t)

V,(8)
E(s)

Transfer function =

Using source transformation technique, voltage source is converted into current source.

RZ
V1 V2
| AN/
o)
R R, — -
< C, — C —(— v, (t)
Apply KCL at node 1, |
VoM, VoV, e @
R, dt R, R
Apply KCL at node 2
VZ_V1+CZ‘M=0 ©)
R, dt

Equations (1) and (2) forms differential equations/mathematical form of the electrical network shown in fig,

To find transfer function V,(s) / E(s)
Apply Laplace transform to egn (1)

Vi(8) Vis) _Vo(s) _E(s)

——=+C;sV(s)+
1 ' 2 R, R,
Vl(S)|:i+SC1+i:|—V2—(S)=@ (3)
R, 2 R, R,

Apply Laplace transform to egn (2)



VZ—(S)—Vl—(S)+C sV,(s)=0
R 25 12

RZ 2

: Loicsl-viel L=
..Vz(s){R2+Czs} Vl(s){Rj 0
V() =[1+5C;R, ]V, (s) —(4)

L[x(t)] = X(s)
ax(t) |
L[T} =5X(s)

I{dzx(t)
dt?

LU x(t)dt}:@

}z sX(s)

Substituting for V,(s) from (4) in (3), we get

Vz(s)[1+sC2R2]{Ri+sCl +i}_VF22_(S) _ Eng)

1 2

R, +sC,R,R, +R R E(s
V,(s) (l+sC2R2)[ 2 RlRl 2 l]_RI; :Iz RE)
1"%2 1"%2 1

V.o (1+5C,R,)(R, +R, +SCRR,)-R, | | E(s)

L RiR, R,

V,(5) R, ©
E() (1+SC,R,)(R,+R, +sCRR,)-R,

Eqgn (5) Is the required transfer function

2. Obtain the transfer function of the following n/w

L.
(oM

TA

Cc

l i(t) i (0

R, L,
/ATt .
ei(t) ) ___QL

Input > e,(t)



Output —e_(t)

Transfer function = EO—(S)
Ei(s)

Applying KVL to mesh 1,

. di, 1, ,. .
e‘(t):R1'1+L1d_tl+5f (i, =1 )at )
Applying KVL to mesh 2,

di A

0=L2d—tz+R2|2+Ej (i, —i;)dt —(2)
&)=, (HR, @)

Applying Laplace transform to egns. (1), (2) and (3)
E,(9) = Rub(©) +LsL(©) + < [L6) -1,

1 1
Ei(S)={R1+L15+a}|1(8)—a|2(5) (4)

1
0=L,sl,(s)+ Rz'z(5)+a[|z(5)— 1,(s)]

1 1
Oz—&ll(s)+[R2Lzs&}lz(S) —(5)

E,(8)=R,1,(s) —(6)

Expressing egn (4) & (5) in matrix form

1 il
R, +LsS+— -—
|:Ei (S):| _ ! : Cs Cs |:I1(S):|
0 L R2+Lzs+i 12(5)
Cs Cs
F21+Lls+i b L
A= . Cs Cs .
-— R,+L,;s+—
Cs Cs

B 2
= (R1+Lls+ij R2+Lzs+ij— 1
Cs Cs Cs



A= B
- 0 S
Cs
1
E () -
|2(S) — AIZ(S) _ Cs

A 2
R1+Lls+i RZ+L25+i - 1]
Cs Cs Cs

E,(8) =1,(9)R,

1 1
E,(s) R E(5)_¢R
_ Ok _ es
2 2 2
(R1+Lls+lj(Rz+LZS+lj—(lj [(RiCs+L,Cs? +1)(R,Cs+L, (s +1)-1)
Cs Cs Cs c?s?
E,(5)R,Cs

[(R,Cs+L,Cs” +1)(R,Cs+L,Cs” +1)-1]

E,(s) _ R,C,
Ei(s) [L,Cs®+R,Cs+1][L,Cs*+R,Cs+1]-1

3. An electrical circuit is shown in fig. obtain the transfer function relating the output voltage e, (t) to the input voltage e, (t) in
the form
E,(s) _K (1+ST1)
E(s)  °(1+sT,)

—

R, % G Z,(s)
(> &
a

. %j C, 0 %0 Eo(s)
| v

Fig (a) fig(b)

L

e ()

/

Sol: The components R, & C, form one parallel combination R, & C, form are one parallel combination and representation
in fig (b)



1

e
. Cs R,
. Z(s) = =
R1+i (1+R.Cps)
Cs
similarly,
R

Z,(8) = —— 2 —

(1+R,C,3)

By voltage division d rule,

A0
RN ACEFAC M

RZ
Eo(s)  Z,(9) _ 1+R,C,s
EQ) 20+ R R,

1

1+R,Cs 1+R,C,s

RZ
1+ R;Cs

~ R,(1+R,C,8)+(1+R,CS)R,

(1+R,Css) (1£R5C5S)

_ R, (1+R,Css) ~ R, (1+R,Css)
" R,(1+R,C,5)+R,(1+R,Cs) R,+R,+R,R,Cs+RR,C,s
R,(1+R,C;s)
(R +R,) 1+ R,R,C;s+R,R,C,s
R, +R,
Eo(s) R,(1+R,Cys)
E6) ’
(R+R,)[ 1+ R,R,C, +R,R,C,
R, +R,
1+5T,
E,©) _ K, (1+sT,) where K, = R, ;
E;(s) (1+sT,) R, +R,
ToRC: T, |14 R,R,C, +R,R,C,
R, +R,

Mathematical Modeling of Mechanical Systems

1. What are the basic elements of Mechanical rotational systems? Write its torque balance equations Nov/Dec 2015, May/ June
2015

The basic elements of Mechanical rotational system are

0] Moment of Inertia (J)
(i) Viscous fiction (B)
(iii) Torsional stiffness (K)

Torque Balance Equation

1. Moment of Inertia



—2| ) T =199

dt?

T 0

2. Dashpot [one end is fixed]

B
/| l_| NN
/{ i I A "
3. Torsional Spring [one end is fixed]
K
T 6 T () =K6

4. Dashpot [both ends are free]
B

d
TB(t) = Ba(e1 _92)

= [V

T 6

5. Spring [both ends are free]

91 @, T TK (t) = K(el —92)

2. Write the differential equations governing the mechanical system and determine the transfer function
(May/June 2016) (April/May 2019)

X1 B
- m
4 ooon ] Y
; —C OO0 __| ft)
- —> K —
A

/S S S S S S e

Bl BZ



Sol

Free body diagram for Mass 1

— x

> fMl
D — fBl

A

—— le

d’x
fMl = M1 dtzl le = K1X1
dx
for = ld_tl fKZK(Xl—X)
d
f, =B.—(X,—X
° dt( 1)

By Newton’s second law,
¥ applied force = X opposing force

f(t)y="f,, +fg, +fs +f

d?x dx d
f)=M,—+B, —+B.—(x—%x, )+ K(x—-X,)— (3
(t) e OIt( ) +K(x=x,) > (3)

On taking Laplace transform,

H,s?X(s) + B,sX(s) + Bs[X(s) = X, (s)]
+K[X(s) =X, ()] = F(s)
X(s) = [Mzs2 +(B, +B)s+k]-X,(S)[Bs+K]=F(s) (4)

Substituting eqn (2) in eqgn (4)

X(s) =[ M,$* +(B, +B)s+K |- X(s)

(Bs+K)’
M;s? +(B, +B)s+(K+K,)

[Ms*+(B, +B)s+(K, +K) ][ M,s* +(B, + B)s+K |- (Bs+K)’

M,s? +(B, +B)s + (K, + K) =F6)




CX(s) M,s® + (B, +B)s + (K, +K)

TRS)  [Ms?+ (B, +B)s+ (K, +K)][M,s? + (B, + B)s + K] — (Bs + K)? -6

Egn (1) and (3) forms the Mathematical model/differential equation of the given mechanical system equation (V) is the required
transfer function

. . - . . . . . . Y,(s
3.For the mechanical translational system shown in fig. determine the differential equation and obtain the transfer function #())
S

Nov/Dec 2019

4‘]
N D
=

<«

Y1
M1
Sol: Free body diagram for M,
—
— ()
— fMl
Ml fBl
<___
«— le
d2
fMl = Ml%
le = Kl(yl _yz)
d
fBl = Bl a()ﬁ _YZ)
By Newton’s second law,
f(t)= f|v|1 +fBl + le
d’y, d
f(t):M1_+B _(yl_y2)+Kl(y1_y2) ->@®

dt2 't



Taking Laplace transform
F(S) = MlszYl (S) + Bls [Yl (S) - Yz (S)] + Kl [Yl(s) - Yz (S)]

F(s)=[Ms* +Bis+K, ] Y,(5)-[Bs+K,]Y,(s) —(2)

Free body diagram for M,

—>Y1

d’y
fM2 = Mz- dt22 le = K1(yz _yl)
d
fm = Bl'a(yZ _yl) fK = Kz (yz)
dy
f, =B, =2
B 274t

By Newton’s second Law,

fu, + o+ +f +fc =0

d’y,

M
2 dt?

d d
+B1a(y2_y1)+8%+K1(y2_y1)+szz:O - 3)

Taking Laplace transform

M,52Y,(s) + Bis[ Y, () = Y, (5)]+ BsY, (5) + K, [ Y, (5) - Y, (5) ] + K, Y,(s) =0

[M,8* +Bs+Bs+K, +K,Y,(s) |- [Bs +K,] Y, (s) =0

[M,s*+(B, +B)s+(K, +K,)]Y,(s) =[Bs +K,]Y,(s)

M,s* +(B, +B)s+(K, +K,)
(Bs+K,)

Substituting equation (4) in equation (2)

Y,(s) = Y,(s) —(4)

(Ms*+Bs+ Kl)[Mzs2 +(B, +B)s+(K, +K2)]Y2(s)

Fe) = (Bs+K,)

—[Bis+K,]Y,(s)

F(s)=(Mls Bls+K1)[Mzs +(Bl+B)s+(K1+K2)]—[Bls+K1] .6
(Bs+K,)




Y,(s) Bis+K,
FS)  [Ms*+Bs+K, [M,s*+(B, +B)s+(K, +K,)]-[Bs+K,]

- (5)

Egn (1) and (3) forms the mathematical model/ differential equations of the given system eqgn (5) gives the required transfer function
of the given mechanical system

4. Determine the transfer function of the system shown in fig.

K B — X(t)

'ﬁ Mo f(t)
B

Sol: Given system can be redrawn as follows

1

f(t)

Free body diagram for Mass M

M f
[ ¢—— 'B1
—— fB
d?x

fu=Mge
dx

fBlzBla
d



By Newton’s second law

f(t)="f, +fs +1;

d?x dx d
M—+B, —+B.—(x—-X,)=f(t -1
dt2  dt dt( )=f @

On taking Laplace transform

Ms?X(s) + B,SX(s) + Bs[X(s) — X, (s)] = F(s)
[ Ms? +(B, +B)s | X(s) — BsX, (s) = F(s) - (2)

Free body diagram for M, =0

> X1
fo =Kx;
fe d
M, =0 fs =B.—(x,—X)
dt
fB
By Newton’s second law,
fo+f, =0
.'.B%(xl—x)+ Kx, =0 —(3)
On taking Laplace transform
Bs[X,(s) - X(s)]+ KX,(s) =0
[Bs+K]X,(s)+BsX(s) =0
X, (s)[Bs+ K] =Bs.X(s)
Bs
X, (s)=——X(s 4
= 5,1 O -4
On substituting egn. (4) in egn (2)
2
[Ms” +(B, + B)SIX(5) -~ X(s) = F(s)

Bs+K



[ Ms®+ (B, +B)s |[Bs+K]—(Bs)’
Bs+K

X(s) = F(s)

X(s) _ Bs+K
F(s) [Ms®+(B,+B)s|[Bs+K]-(Bs)

— (%)

Equation (1) and (3) are differential equations governing the given system
Equation (5) is the required transfer function of the given mechanical translational system
5.Derive the transfer function of system shown in fig May/June 2015
X1
— > X2
flty — 3 Mi=2Kg ‘ ) M; =2 Kg
K

JS L ), S S S S S s s S s S S

Freebody diagram for M,

|—> X1
—> (1) )
My foom K
M1 1 dtz
2Kg |¢— fi
fo =K(x,—X,)

— fx

By Newton’s second law,

f(t) =, +f,
2

d°x
f(t):MlTﬁK(xl—xz) —> ()

On taking Laplace transform,
F(s) = M;s"X, (8) + K(X,(s) ~ X, (5))
F(s) =(M,s” + K) X, (s) =KX, (s) —(2)

Free body diagram for M,

——

Xz
M, [ fw

2Kg




d?x
sz = 2'?22

fo =K(x, —x,)

By Newton’ second law

T + T

d’x,
dt?

MZ

=0

+K(x,-x,)=0 —(3)

On taking Laplace transform

M,s2X, (s) + K[ X, (s) - X,(s)] =0
(M,s* +K) X, (s)~KX,(s) =0

(M,8* +K) X, (s) = KX, (s)

Xz (s)=

x1 (S) =

M,s? +K
K

M2 1K X,(s) —>(4)

X, (8) - (%)

On substituting egn (4) in (2)

F(s) = (Ms” +K)X,(s) v

(M$K)(M,s* +K)-K?

KZ
X, (s
S8 +K )

F(s) =

X,()

X, (s
M,s? + K )

M,s® + K

F(s)

(Mys? +K)(M,s* +K)-K? ~®

Put M;=2; M>=2in eqgn (6)

X,(s) 2s°
F(s) (252+K)(252+k)—K2
X,(s) 2s°
FO) (252 +K) -K?
B 25
4s* + K? + 4Ks® — K?
Y
45* + 4Ks? 2(54 + Ksz)
s? 1

2s? (s2 + K) 2(52 + K)



X, (s) 1
F(s) 2(32 + K) — )

On substituting egn (5) in egnn (2)

F(s) = (M,8° +K)(M,s* +K)

X,(8) =KX, (s)

K
HQZFM§+KX%f-HQ—K}XA$
X,(9) K
- 8
FE)  [(Ms® +K)(M,s +K)-K? | -0
put M, =2, M, =2
L X,0) _ K ___ K

0] _[(232+K)2_K2J 2(s4+Ksz)

RO K
" F(s) 2s? (s2 + K)

—(9)

Egn (7) & (9) are the required transfer function.

6.For the mechanical rotational system shown in fig determine the transfer function.

065) g 6,()
TG) 1)

B
K —_—
L 000D
T 0 Bi2 (S

ST S S LSS S S S S S S S S S S

Sol : Free body diagram for mass with moment of intertia J,

le Tb12 Tk
RY 3 444
(rr

T6,




dzel )
dt? ’

Jil =‘]1

By Newton’s second law, T, +T,,, +T, =

2
do, , Bu.i(e1 -0)+K(6,-6)=T

J __ 1
bdt? dt

On taking Laplace transform,

T

@)

d
T, =By, a(el_e); Te = K(Gl—e)

15°6,(s) +5B,, [6,(5) - 0(5) ]+ K[6,(5) - 0(5)| = T(s)
0,(5)[ J;8° +5By, + K |- 0(s)[sB,, + K] =T(s)

(2)

Free body diagram of mass with moment if intertia J,

le TblZ Tb Tk

PN YUY

MG

d%0 d
Ty, :‘]ZW; T, =By, a(

T,=BLi T =K (0-0)

0-06,)

By Newton’s second law

sz +Tp, +T,+T, =0

2

Y.B —(9—61)+B—+K

2772 g2 " 12t

On taking Laplace transform,

de
dt

(9‘91

J,5%0(s) + B,5[0(5) =0, (5)] + Bs[0(s) | + K[6(s) —6,(s)] =0

0(s)[ J,8° +5(By, +B)+K|-0,(5)[B,,s + K] =0

2
0.(5) = {st +s(B,, +B) + K}e(s)
B,s+K

0(s) = — Bos+K 0,(5)
,$°+s(B,, +B)+K

Substituting equation (4) in eqn (2)

4)

®)

):o

-3



[3,° +B,,s+K][J,8° +5(B,, +B) + K|
(By,s+K)

8(s) —[B,,5+K]0(s) = T(s)

[3:8° +Bys+ K[ 1,8 +5(B,, +B) + K|~ (B,s+K)

B,s+K 0() =T6)
0(s) _ B,s+K ©)
T(s) [J8° +B,s+K][1,8° +5(B,, +B)+K]—(B,s+K)’
Substituting eqgn (5) in egn (2)
2 (Blzs + K)Z _
0,(5)[ 3,8 +5By, + K]~ TP +e(B 2B 7K 0,(s) = T(s)
" [(0s*+Bys+ K)(Jzzsz +5(By, +B) +K) = (B,s +K)* | 1)
J,8°+s(B, +B)+K
0,(s) J,8° +s(B, +B) +K @
T(s) (3,8 +Bp,s+K)(J,52 +5(By, + B) + K) — (Bys +K)?

The equation (1) and (3) are called differential equations of the given mechanical rotational systems.

The equation (6) and (7) are the required transfer functions of the given mechanical rotational systems.

Analogous Systems

7.Write the differential equations governing the mechanical system shown in fig. Draw the force voltage and
force current elec*-*~~" analogous circuits and verify by writing mech and node equations.

L5 X1
—> X,

— VA K1 Ly V2 Kz

f(t) L /TS 5
M1 |\/|2 —
" ﬂjBi — |
O 0O
— 5B B,

/7 /777777 7777 7777777777777

Solution:

Freebody diagram for mass M
}—» X1, Vi

—» (1)

— fu




f =M, i o =K (%, —X,)
fo, =B, %(x1 -X,)

By Newtons second law,

foy +Tgy + o + T =T(1)

Ml%Jr l%JrBH%(xl—x2)+Kl(x1—x2):f(t) A

Free body diagram for Mass M,

X,
‘ M d’x,
— >

v, fuo 2742
f fe, =B, %
— M2 dt
M, d
—— fao fo, =By a(xz _Xl)
le = Kl(XZ _X1)
— fe12
fK2 = szz
< fka
[ — Tz
By Newtons second law,
fMZ +fsz +fK2 +f312 +le =0
d?x dx d
MzTZZ+BZd—t2+K2x2+Bua(x2—x1)+K1(x2—xl):0 —(2)

On replacing the displacements by velocity in differential equations (1) and (2) of the mechanical system



(ie,)v, d’x _v dx—vx .[vdt}

dt?  dt’ dt
dv
Mld—tl+Blvl+Blz(vl—v2)+K1j (v, —v,)dt =F(t) -3
dv,
M2F+BZVZ+KZJ. vzdt+Blz(v2—v1)+K1I (v,—v,)dt=0 —(4)

FORCE VOLTAGE ANALOGOUS CIRCUIT

The electrical analogous elements for mechanical system are given below

f(t) >e(t);, v, =i; v, =i,;
M, —»L, B —>R, K =1/C
M,—>L, B,->R, K,=1/C,

BlZ - R].Z

Force voltage electrical analogous circuits is shown below

Ll Rl L2
— /M

L AW\
e(t)’ ﬁcl E w
|

1 %

1

Applying KVVL to mesh 1

Ll%-l‘Rlil+R12(i1_i2)+£-‘.(il—iz)dt:e(t) (5)

di, A Y
L, dt+R|+ J'ldt+R12(| |1)+C—1I(|2—|1)dt:0(6)

It is observed that the mesh basis equations

Egn (5) and (6) ar similar to the differential equations
Egn (3) and (4) governing the mechanical system
FORCE CURRENT ANALOGOUS CIRCUIT

The electrical analogous elements for the elements of mechanical system



f(t) =i(t) M, - C, B, »>1/R; K, —>1/L,

v, =V, M, > C, B, >1/R, K, >1/L,
v, =V, B, >1/R,,
RlZ
v, AN Vs
/0T0)

C. L,

Force-current electrical analogous circuit

Applying KCL at node 1

dav, 1 1 1 .
Gt Verp MV [ (M-v)d=i0 @)

dv, 1 1 1 1

e A e [ ~®

It is observed that the node basis equations
Eqgn (7) and (8) are similar to the differential equations
Egn (3) and (4) governing the mechanical system

8. Write the differential equations the mechanical system shown in fig.Draw the force — voltage and force current electrical analogous
circuit and verify by writing mesh and node equations. NOV/DEC 2015

| |
i) = B
« F 1 W
M1

o)
K, l
M; I X5, V,

Sol: Freebody dlagrlam of M |

——-> 1
M3 I )\5,—‘0‘3—" v
1
—
f,(t)




d’x dx,

fMl = Ml‘del BL — 1-?

sz =K, (X1 _Xz); le =Kx

By newton’s second law,

Ty + e + T T =T(1)

2
Mlﬂ+81d—’(tl+|<2(xl—x2)+|<lxl:fl(t) )

dt? d

Free body diagram of M X
| —— "2

v

By Newtons second law,

fM2 +f53 +fK2 +fK3 = fz ()

d?x d
Tzz BaZBs'a(Xz_xs)

sz = Kz (Xz _Xl); st = Ks(xz _X3)

f, =M,.

d?x d
M, =% +B; — (X, = X3 )+ K, (X, =% )+ K5 (X, = X5 ) =, (1) —-(2)

dt? dt

Free body diagram for M3

X3
>
L > V,
fM3
fB3

By N fes

d*x
st = M3 dt23
d
fas =B, a(xa X,)



fys + a3 T3 =0
d’x, d

M +B,—
Ptz Cdt

(X3 =%, )+K;(X;-%,)=0 > (3)
On replacing the displacements by velocity in the differential equation (1) and (2) and (3) governing the mechanical system

Ml%-i- Blv1+Kl.|' v,dt + sz (vl—vz)dt:fl(t) - (4)

dv,

M2E+B3(V2_v3)+|<zj (V, =V )dt+K, [ (v, =vg)dt=F,(t)  —(5)

M3%+Bg(v3—v2)+K3I (V,-v,)dt=0 —(6)

FORCE VOLTAGE ANALOGOUS CIRCUIT

The electrical analogous elements for the elements of mechanical system are given below.

f.(t)=e,(t) M, > L, B, >R, K, —>1/C,
f,(t)=e,(t) M, —>L, B, >R, K, »>1/C,
v, =1 M, > L, K, >1/C,
Vo =l e, (1)

V, =1, R, G L,

e, (t) i, y T i

Applying KVL to mesh (1), (2) and (3)



di, . Lo L. .
Lla-l-Rlll+C—ljlldt+c—2j(|1_|2)dt:el(t) (7)

di, N N Lo i

LS # Ryl i)+ [ (1, i it - G~ =e, () (@

di N P
L3d—t3+R3(|3—|2)+C—3J‘(|3—|2)dt=0 ©)

It is observed that the mesh equations (7), (8) and (9) are similar to the differential equations (4), (5) and (6) governing the mechanical
system

FORCE CURRENT ANALOGOUS CIRCUIT

The electrical analogous elements for the elements of mechanical system are given below

f.(t) =i, (t) M, - C, B, »1/R, K,—>1/L,
f,(t) =1i,(t) M, - C, B, »>1/R, K, >1/L,
v, =V, M, »C,

v, = Ry
V2 B Vl L2 VZ V.
/oa0)
l PZoor=p)
3 (D& 7
© (D S o U c. S

Cl R, L

I

On applying KCL at node (1), (2) and (3)

v, 1., 1 1 .

Coq TR ) V] (Y-Va)a=i 10)
av, 1 1 1 .
C2T+R—3(V2—V3)+L_3J.(V2_V3)dt+L_ZJ.(V2_Vl)dtZIZ(t) (11)
av, 1 ?
C3T+R_3(V3_\/1)+L_3J(V3_\/l)dt:o (12)

It is observed that node basis equations (10). (11) and (12) are similar to the differential equations (4), (5) and (6) governing the
mechanical system

9. Write the differential equations governing the mechanical rotational system shown in fig. Draw the torque voltage and torque —
current electrical analogous circuits and verifying by writing mesh and node equations.



N e BN/

i ~
/4///////}///////////
B, B,
Sol

Free body diagram of J;

% B2 2

T 6 Ty Ty T
d’e
Tl
do
T. =B —2
b1 Lt
Ty = Kl(el —92)

By newtons second law

le + T, +T, =T

d’0, . do

‘]1 dt2 +Bld—tl+K1(91—92)=T (1)

Free body diagram of J,

J2 ~N N DN
v vV vV

92 sz sz Tk2 Tkl
d’o do
sz =J, Tzz; T, =B, d_tz; T =K,0,; Tk1 =K,(6,-6,)
T, +Ty+ T, +T, =0
By Newtons second law, d%o do
2?22"'82 d_,[2+K292+K1(92_91) (2)

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing the mechanical
rotational system, we get



d’0  do, dO

ie—=—; ;0= dt

( di?  dt’ dt Im)
do

U —2+Bo +K, [ (0 -0,)dt=T —@3)
do

JZTZZ+BZ<D2+K2I (mzdt)+K1I (wz—ml)dtzo (4

TORQUE - VOLTAGE ANALOGOUS CIRCUIT

The electrical analogous elements for the elements if mechanical rotational system are given below

T —e(t) J—-L B >R, K,—1/C,
o, > J,-»>L,B,>R, K, »1/C,
®, ~> 1,
Rl
M

(000
S N -
@ | |

Applying KVL to mesh (1) and (2)

1
i

2

CZ

Ll%+R1i1+ij(il—iz>=e(t) ©

L +R|+ j.dt+ j(u i,)dt=0 (6)

It is observed that mesh basis equations (5) and (6) are similar to differential equations (3) and (4) governing the mechanical system.

TORQUE CURRENT ANALOGOUS CIRCUIT

The electrical analogous elements for the elements of mechanical rotational system are given below.

T—i(t)J, »C, B, >1/R, K,—>1/L,
o, >V, J,>C,B, >1/R, K, —>1/L,
o, =V,
Ll
V,
v, :
(000
i(t) —|— — L
Ci R, C R, 2




Applying KCL at node (1) and (2)

av, 1 1 .
C,—2+—V,+—| (V,-V,)dt=i(t

o TR L) (rv)d=io

av, 1 1 1
C,—2+—V,+— |V, dt+=|(V,-V,)dt=0 (8
A AC iy WAL LNO

It is observed that the node basis equations (7) and (8) are similar to the differential equations (3) and (4) governing the mechanical
system.

10.Write the differential equations governing the mechanical rotational system shown in fig. Draw the torque-voltage and torque-
current electrical analogous circuits and verify by writing mesh and node equations.

Kl Bz K3

T

Bl

Solution

Freebody diagram of J;

J
2 22

T 91 le Tbl Tkl
d?e
Ti=d dtzl
d(e,-6,)
Ty = Blld—tz

Tkl = Kl(el _62)

By newtons second law, Ti+Ty+Tu=T
d’e d(e,-o
% dt21 +B, ( 1d'[ 2)+K1(61—92)=T @)

Freebody diagram of J,



J2

NN N NN

A 2 &

Te =hge
0, Ty Too Ta T d(e,-o,)
T, =B, T

T =K(6,-6))
d(®,-0,)
T -g 2% "5%)
=P g

By newtons second law,

sz +T,+T,+T,=0
d?e

d d®, -0,
2d?+82a(62_e3)+81#

+ Ki(ez _91) =0 2

Free body diagram of J3

J
—y B2 2 . d,

0 T, T, T Tj3_ Cdt

3 j3 'b2 k3 d(e _e )
T, =B, 3dt :
T = K6,

By Newton’s second law,

Tj3 +T,+T,,;=0

2 p—
80, g d06,-0,)
dt dt

+K,0, =0 3)

On replacing the angular displacements by angular velocity in the differential equations (1) and (2) governing the mechanical
rotational system, we get

40 do do

e -=—"=0 0= odt
e G g = g = 0=] o)
do,
J1T+Bl(0)1_(02)+K1J- ((Dl—wz)dt:T _)(4)
szd%+81(0)2—®1)+Bz(®2—m3)+KlI (0, —,)dt=0 - (5)
do,
J3F+Bz(@3_®z)+K3J‘ 0,dt=0 — (6)

TORQUE - VOLTAGE ANALOGOUS CIRCUIT

The electrical analogous elements for the elements of mechanical rotational system are given below.



T —e(t) J,—-L B >R, K,—>1/C,

®, > i; J,»>L,B,—>R, K, »>1/C,
0, >1i, J; > L,
®; > i,
Ll I‘2 L3
(0o, (0o (000

1
Ch e e Dl

Applying KVL to mesh (1), (2) and (3)

L1%+R1(i1_i2)+CilI(i1_i2)dt:e(t) (7)

di, S S 1¢. .
LZE"'Rl('Z_'1)+R2('2_'3)+C_2.[('2_'1)dt20 (8)
di, o 1.
L3E+R2(|3—|2)+C—3J.|3dt:0 9

It is observed that mesh basis equation (7), (8) and (9) are similar to the differential equations (4), (5) and (6) governing the
mechanical system.

TORQUE — CURRENT ANALOGOUS CIRCUIT

The electrical analogous elements for the elements of mechanical rotational system are given below.

T—i(t) o, >V, J,—C, B —>1/R, K,—>1/L,
®, >V, J,—»>C,B,>1/R, K, >1/L,
0, >V, J, > C,
Rl
Vi AN e RV
M
__ /o0y |

- L L ]
i(t) 1 C1 C2 . g 3




Applying KCL at node (1), (2) and (3)

dv, 1 1

Cld_tl+R_l(V1_V2)+|—_1'[ (Vi —V,)dt=i(t) —(10)
dv, 1 1 1

Q7f+§ﬂ%—%FﬁjMﬁvﬁ*qj(W_%w“w —> (@)
dv, 1 1

3Gf+§ZOG—VJ+[;me=O —(12)

It is observed that the node basis equations (10), (11), and (12) are similar to the differential equations (4), (5) and (6) governing the
mechanical system

BLOCK DIAGRAMS

1. Write the rule for eliminating negative and positive feedback in block diagram reduction

NOV/DEC 2015
(A) Elimination of —ve feedback loop
R

@ R-CH (R-CHG ¢
> » G >

> —> G
ICH C

v

1+ GH

Proof

C=(R-CH)G

C=RG-CHG

C+CHG =RG

C(l+HG)=RG

C G

R (1+GH)

(B) Elimination of positive feedback loop

> > G >

_’ G
1-GH
CH c

v




Proof

C=(R+CH)G
C=RG+CHG

C-CHG =RG
C(1-GH)=RG

C G

R 1-GH

C(s) Gle(G2+G4)

R(s) 1+G,H,+G,G,G,+G,G,G,

2. Using the block diagram reduction technique. Find the closed loop transfer function of the system whose block diagram is
shown in fig

—p 64
R(s) ‘ Cs)

I
N
A

»

Sol

Moving the branch point before the block G,

_> 64
R(s) ‘ C(s)

Hlez <




Combining the cascade blocks G2 and Gz parallel block G

R(s)

C(s)

G, » G,G,+G,

A

Hlez <+

v

Moving the summing point before G;
R(s)

A 4
o
50
+
o

C(s)

A

Interchanging the summing points

R(s)

G,G,+G,

v

C(s)

Gl
A [
HlGZ

HZGl

A




Eliminating the inner most negative feedback

G—->G,
H—->HG,
G G,
ﬁ
1+GH 1+G,G,H,

R(s) C(s)
_G&
—>®_® 1+G,G,H, > G,G;+G, >
A A
HZGl
Combining cascade blocks
R(s) C(s)

Gl(GZG3 —+ G4)
— R R
A A

1+G, G H,;

v

Eliminating the inner|feedback loop

H,G,
G _, Gi{G.G; +Gy) <
1+ G,G.H,
H->H,/G,
G,(G,G,+G,) G,(G,G,+G,)
G 11 G,G,H, 1+ GE7H,

1+ GH :1+ 6{(G,6,+G,) H, L1+G.G,H,+G,GH,+GH,

1+G,G,H, & 1+ G,GH,




— Gl(GZG3+G4)
1+G,G,H, +G,G;H, + G H,

C(s)

R(s)
Gl(GZGB +G4)

—b( % ) 1+G,G,H, +G,G,H, +G,H,

v

Eliminating the negative, unity feedback

Gl(GZGS +G4)
1+G,G,H, +G,G,H, +G,H,
H—-1

G,(G,G, +G,)
G _ 1+G,G,H,+G,G,H, +G,H,
1+GH _1+ G,(G,G,; +G,)
1+G,G,H, +G,G,H, + G H,

Gl(GZGS +G4)

1+G,G,H, +%+G4HZ

B N G,G,H, +G,G,H, +G,H,+G,G,G,+G,G,

1
1+G,G,H, + G,G5H, +G,H,

— Gl(GZGB+G4)
1+G,G,H, +G,G,H, +G,H, +G,G,G, + G,G,

R(s) G, (Gst +G4) C(s)
————— 1+G,G,H, +G,G,H, +G,H, + G,G,G, +G,G,

C(s) _ G,(G,G, +G4)
R(s) 1+G,G,H,+G,G;H,+G,H,+G,G,G,+G,G,




3.Using block diagram reduction technique, find C/R

R(s)
f a
H1 <
b
Sol : Moving th branch point a ahead of G,
1/G;
R(s) C
f a
H1 <
b
So, Moving the branch point b, before H;
1/G;
R(s) C
A a
Hl
H, &
Eliminating the feedback H;
1/G;
R(s) C(s)
G1 > G, >
1+G,H,
‘—




Combining the cascade blocks

R(s)

Eliminating the negative feedback, H:

R(s)

1/G;

v

C(s)

1/G,

__GG,
1+G,H,

H=H,

G

G,G,
1+G,H,

1+GH

G,G,
1+G,H, *
Glez

1+

:1+Gz

H, +G,G,H,

e Ve,

T1+G,H, +G,G,H, '

G

GlGZ
1+G,H, +G,G,H,

A 4

GG,

v

C(s)

1+G,H, +G,G,H,

GIGZ

1-GH

R()

GG,

1+G,H, +G,GH, -G,

CE)

B, 1 11G,H,+G,G,H, -G,
1-_ =tz
1+G,+G,G,H, 67

v



CO _

GG,

R(S) 1+G,H,+G,G,H, -G,

R

_.@?_.

_.Q?_.

4.Using block diagram reduction technique find C/R NOV/DEC 2016
H, c
G, G, _>®—> G, G, >
H e
Sol: Moving the branch a ahead of G4
H,/G,
G, G, _.®—> Gs G |——»
Hi

A

Combining the cascade blocks G; and G4

—0—

G.G,

H:

A

v



Eliminating the feedback H:

H,/G,
R
_>®_’ G, G, » GG, G,

4
A
H e
Combining the cascade blocks
H,/G,

_.®_> G, G, > GG,

4 1+G,G,H,
Eliminating the feedback, H, /G,
G,G,G
—2=2=4_  HoH,IG,
1+G,G,H,
GZGSG4
G _ 1+GGH, N G,G,G,
1+GH G,6,6{ H, 1+G;G,H,+G,G;H,
1+G,G,H, G,
R
G, > G,G,G,G,

1+G,G,H, +G,G,H,

v

v

v



Combining the cascade blocks

Cc
> G,G,G,G, —>
1+G,G,H, +G,G;H,
Eliminating the feedback (unity)
- 6,6,6,6, H-1
1+G,G,H, +G,G,H,
G,G,G,G,
G _ 1+G,G,H, +G,G,H, - G,G,G,G,
1+GH 14 G,G,G,G, 1+G,G,H, +G,G;H, +G,G,G,G,
1+G,G,H, +G,G,H,
G,G,G,G,

C
“11+G,G,H, +G,G,H, +G,G,G.,G, |~

G,G,G,G,
1+G,G,H, +G,G,H, +G,G,G.G,

¢
R

5.Using block diagram reduction technique, find C/R

HZ
‘ C(s)
R(s)
G, “>®—> G, > G, >

Sol: Moving the branch point a, ahead of G3

HZ
‘ C(s)
R(s)
G, —@—» G, > G,

H, /G,

v




Combining the cascade blocks G, and G,

H2
. | c(s)

G, >® > G,G, >
A
H, /G,
H, |
Eliminating the feedback H,
C(s)
R(s) G.G
23 o
G, >  11G,GH, >
A
H, /G,
H, |
Combining the cascade blocks C(s)
R(S) GZLGZG3
>| 1+G,G,H, g
A
1
H, /G,
I

T
A




Eliminating the feedback parts H, / G,
G,G,G,
1+G,G,H, G,G,G,
=
GleZ% H, 1+G,G;H, +G,G,H,

+ - =
1+G,G,H, 67

C(s)
> G,G,G, >
1+G,G,H,+G,G,H,
Hy, [
Eliminating the feedback path H,,
- GlG263 , Ho H3
1+G,G;H, +G,G,H,
G,G,G,
G 1+G,G,;H, +G,G,H, G,G,G,
= =
1+GH G,G,G, H 1+G,GH,+G,G,H,+G,G,G;H,

1+G,G,H, +G,G,H, °

GlGZG3
1+G,G,H, +G,G,H, + G,G,G,H,

R(S) ce)

C(S) _ GlGZGS
R(s) 1+G,G.,H, +G,G,H, +G,G,G;H,

6.Using block diagram reduction technique, find the closed loop transfer function of a system, whose block diagram is shown

in fig
GZ
l C

._\I
A

A 4




Sol: Combining the parallel blocks

v

G, ’ G,+G,

A\ 4

G,

Combining the cascade blocks

v

v

G,(G,+G;)
H, e
GA
Moving the summing point ahead of H,
> 6,(6,+Gy)
H, |e o[

4| G,H,

Cascading H, and H, combining the summing points.

Elimination of summing point by multiply signs

H1H2

v



H1H2

\ 4
N

v

R
» G,(G,+G,)

G4H2

\ 4

Feedback path H,,H, elimination

\ 4
v

G,(G,+G,)

A 4

GAHZ

Combining parallel path

R
.%@ 1+G,G,H,H, +G,G,H,H,

G, (G, +Gy)

\ 4

—> 1-G,H,

1+G,G,HH, +G,G,HH,

Combining cascade blocks

R | _(1-GiHy)(Gi(G,+Gy))

1+G;G,HH, + GG3H H,

C_ Gyi(G,+G,)(1=GH,)
R 1+G,G,H,H,+G,G,H,H,

v

v



7.Using block diagram reduction technique, find C/R

T

O

>

H, <
G, G, > G, >
r H1 &
»| G
Sol: Moving the branch point a before H;
H, <
C
G, G, > G, > % |
A Py
H, <
Hl
»| G
Elimination of feedback H,
H, <
] : 3 G1 GZ > G3
4 1+G,H;

v




Moving the branch point ahead of Gs

H, /G,

A

H2

1+ G,H,

v

G4

Combining the cascade blocks and eliminating feedback H.

R

T

A

T

G, > >
GZGS g
1+G,H, +G,G,H,
H, /G,
»| G
Combining the cascade blocks
. GlGZG3 =<Z ;:
1+G,H, +G,G,H,

v

H, /G,




Eliminating the feedback path,

G- G,6,G, i H —>i
1+G,H, +G,G,H, G,
GIGZGB
G _ 14G,H,+G,GH, G,G,G,
1-GH GG,6{ H, 1+G,H,+G,G;H,-G,G,H,

1— -1
1+G,H, +G,G;H, G,

\ 4

GlGZG3
1+G,H, +G,G,H, -G,G,H,

G4

Combining the parallel paths,

l

G162G3
+G,
1+G,H, +G,G,H, -G,G,H,

G,G,G,+G,(1+G,H, +G,G,H, —G,G,H,)

C
R 1+G,H, +G,G,H,~G,G,H,
8.Find C(s)/R(s) of the system shown in fig using block diagram reduction technique
GZ
R(s) C(s)
o] g G, >
Hl
H, <
»| G




Sol: Combining the parallel blocks G, and G,

R(s) C(s)
] i G, +G, >
Hl
H, <
» G,
Eliminating the feedback H,
R(s) C(s)
G, +G,
] " 1+ (G, +G,)H, >
H, <
»| G A
Moving the summing point (a) ahead of H,
R(s) C(s)
G, +G,
h 1+ (G, +G,)H, >
H, <
N G.H,




R(s)

Eliminating the summing point by multiply signs

G3H2

R(s)

Eliminating feedback H, and combining pa

1+G,H,

Combining the cascade blocks

CE) _

(1+G;H,)(G, +G,)

v

C(s)
G, +G,
1+(G, +G,)H, >
H, <

C(s)

G,+G, -

1+(G, +G,)H, + (G, +G,)H, "

C
—

R(s) 1+(G,+G,)H, +(G, +G,)H,

9.

R(s)

Find C(s)/R(s) of the system shown in fig. using block diagram reduction technique.

A 4

o

A 4

C(s)

A




(5)

Sol: Moving the summing point a ahead of G,

-
e No=e

A 4

G3

A\ 4
®
N

C(s)

A

GlHl

Inter changing the summing points,

+

Gs

A 4

R(s)

\4

Gy

C(s)

+ -
Gl | =%

Gi1H:

Combining the parallel blocks & Eliminating the feedback path GiH.

R(s) Gy +Gs : GGé . C(s)
+ 2-10 "1

Combining the cascade blocks

R(s) G, (G, +G,) C(s)
1+G,G,H,

C(s) _ G,(G,+Gy)
R(s) 1+G,G,H,




C(s)

10. Determine the transfer function m for the following block diagram
S

v

Solution:- Moving the branch point before G..

R(s)

R(s)

Combining the parallel blocks

Gl

Moving the branch point ahead of (G,andG,)

Gl

Gl

Eliminating the unity feedback path,

» G3
p G » G
H:
» G3
Gl > GZ
H1 G2
C(s)
o G,+G;
A =
Hi G2
C(s)
> »  G,+G,
HlGZ
G,+G,
C(s)
—> (G, +G,) >
1+(G, +G,)

HG,/G,+G,




Combining the cascade blocks and eliminating the feedback

_)Gl(Gz+Gs), H_, G2

1+(G,+G,) G, +G,
G _ 1+(G, +G;,) _ G,(G,+G,)
1+GH ) G(G,+6G;) HG, 1+G,+G,+G,G,H,

+ :
1+(G, +G,) G, +G,

R(S) C(s)

> Gl(GZ+GS)
1+G, +G,; +G,G,H,

C)_  Gy(G,+Gy)
RS) 1+G,+G,+G,G,H,

11. Using block diagram reduction technique find the transfer function from each input to the output C for the system shown in
fig.
X(s .
() M g,
R(S) C(s)
= e @@ o o e
A T
H, [
HZ
Sol: To find €6 —putX(s)=0
R(s)
R(s) C(s)




R(s) ] C(s)
— G, —>®—> G, > G, 5
Y 1+G, 1+G.H,
HZ
R(s) C(s)
’ G1 ) (E;) ’ GstGs
A A+G,)A+GgH,)
HZ
R(s) C(s)
—> G, > G,G,G,
1+G,)1+G,H,)+G,G,G,H,

C(s
R(S) 616263(35 ( )

(1+G2)(1+GSH1)+GZG3GSH2

C(S) _ GlGZGBGS
R(S) (1+G,)(1+G,H,)+G,G,GH,

0 Cy(8) -
To find m put R(s)=0,

XE) —

C(s)

A v 5

H5




XE) ———

C(s)
'y > S & =®_> G,
1+G,
1+GH,
_HZ
X(s)
C,(s
N 2(8)
— > Gy
1+G4H,
_GzGaHz
1+G, L
65 Gy, GGH,
1+GH, ' 1+G,
G5
G 1+GgH, Gs(1+G,)

1+GH 1 Gy G,GiH, (1+G,)(1+G4H,) +G,G,G:H,
1+G,H; 1+G,)

() G,(1+G,) Ca(s)
G4 (1+Gz)(l+G5H1)+GzG3GsH2

\ 4

X(9) G,G;(1+G,) Ca(s)
(1+G,)(1+G.H,)+G,G,G.H,




C,9) _ G,G,(1+G,)
X))  (1+G,)(1+G4H,)+G,G,G:H,

When both R(s) and X(s) are simultaneously present, the output
C(s) =C,(s)+C,(s) as per superposition theorem

R(s)G,G,G,G; + X(5)G,G, (1+G, )
(1+G,)(1+G;H, ) +G,G,GH,

Hence C(s) =

SIGNAL FLOW GRAPH

PROBLEMS

1. Obtain the overall transfer function of the following signal flow graph using Mason’s gain formula

Sol:
Step 1:Forward path gains No. of forward path K=1

Forward path gain path — X; = X, = X; = X, > X5 = Xz = X,
)
: G o1y
M.;
Lo B
y 9L‘ A DC_g
P, =G,G,G,G,
Step 2: Individual loop gains

X, =Xy =X, =X, X3 =X, =X, Xz =X, = Xg = Xg —> X,



P.=-G,G,H, P, =—G,H,
X5 = Xg —> X
1y

M@ 1y,

W3z
P41 = _G4H3
Step 3: Non touching loops —Gain products
There are two pairs of non touching loops

: G
Ha Ag Ay,
Gl Ga Z
G A H

P, =G,G,G,H,H,
W) o Gy

A Gy Y i3

Poo = Giabiy MH3

P, =G,G,H,H,
Step 4: To find A and Ak

A=1—[P, +Py +P; +P, | +[P, +Ps,]

¢ .’__515‘ ’3:(& '_>13

=
w3 ¢ Glgaug; ' %"’

P31 = _GzG3G4H4

=1+G,G,H, +G,H, +G,H, +G,G,G,H, +G,G,G H,H, +G,G,H,H,




A, =1Since there in no part of the graph is not touching with first forward path

Step 5: Transfer function

By Mason’s gain formula
13 1
T(s)=—) PA =—(RA
() Aé k=k A( 1 1)

T(s) = G,G,G,G,
1+G,G,H, +G,H, +G,H, +G,G,G,H, +G,G,G,H,H, +G,G ,H,H,

2.Find the overall gain of the system whose signal flow graph is shown in fig. Nov/Dec 2017

Sol: Step 1: Forward path gain No. Of forward path K=2
Forward path gain
Path 1:1-2-3-4—-5-6

C’”C’IZCQBG-’V‘\‘
. Q2 & 5 6

P =G,G,G,G,

Path 2: 1-2—-3-5-6



P, =G,G,G,

Step 2: Individual loop gain

253542 454

&2
2 &2 2 & Y
e

P, =-G,H, P, =-G,G;H, Py =G5

2—>3->2

G2 Gz & & Sy
——Hg —Hg
F)41 = —G2G3G4H3 P51 = _GzGeHs

Step 3:  Non touching loops — gain products. There are two pairs of non touching loops

Gia Ga &
2@7 3 % 2 @6’% S
4 A
~Hg, i g He
P, =—G,G;H, Py =-G,G;GsH,

Step 4: To find A and Ak
A=1-[R, +P, +Py +P,, + P, 1+[P, + Py, ]

A=1+G,H, +G,G,H, -G, +G,G,G ,H, +G,GH, -G,G.H, -G,G.,G,H,

A, =1-0=1 Since there is no part of the graph is not touching with first forward path

A, =1-G, — Since when forward path 2 being removed remaining part of the graph is as shown
G5

%



STEP 5: Transfer function:

By Mason’s gain formula
1 1

TS =— z PKAK = (PlAl + PzAz)
AR A

GleGsGA + GlezGe(l_ Gs)

T(S) =
) 1+G,H, +G,G,H, -G, +G,G,G,H, +G,G,H, -G,G.H, -G,G.,G,H,

3.The signal flow graph for a feedback control system is shown in fig. Determine the closed loop transfer function C(s)/R(S).
Nov/Dec 2015

Ge
Gy Bs f Bz Gg N Sis
& > ™ re S —— =
\ 2 R) s é
H Ha_ B3

Sol:

Step : 1 forward path gains
No. of forward path K=2
Pathl 1-2-3-4-5-6

o Gz Gy Gs
G\‘ C),Q_ \g N i’;—-——ﬁ—
% s S

P =G,G,G,G,G,



Path2 1-2-3-4-5-6

L

20
SCe st Sl e he S
1 2 z Y 5 ]
P, =G,G,G,Gq
Step 2: Individual loop gains
G G
G, Gs 4 : °
@ : 5
H. Hs
H,
H, H,

P.=G,H, P, =G;H, Py =G,H; Py =GgH,H,

G, G,
ZU | 4@ |
H, Hs

P, =G,G,HH,
Step:4Tofind A+A,

A=1-[P,+Py +Py +P, |+[P,]

=1-G,H, - G,H, — G,H, — G,H,H, + G,G,H,H,
A =1-0=1
A,=1-0=1

Since there is no part of the graph is not touching with first and second forward path respectively.

Step 5: Transfer function by Mason’s gain formula
1 1

T(s) = _z PA ——(RA +RA,)
A5 A

G,G,G,G,G, +G,G,G.G,
1-G,H, —~G,H, -G,H, —~GH,H, + G,G,H,H,

S T(s) =



4.0btain the overall transfer function of the following signal flow graph using Masons gain formula.

Sol: Step 1 forward path gain
No. of forward path K=2

Path 1-1-2—-3-54—-5-56—>7-8-9

~‘W
> , & 9

b L

=

1 9. 2 s o
P, =G,G,G,G,G;G,

Path 2 »1-52-56-57-8-9

P,=G,G,G,

STEP:2 individual loop gains

3-4-3 4-5-4 6—-7-6
G 2
GB GS
4
’ 4 5 s 7
_H1

H, —H,



235455562

2 3 45 6

_H4

|P41 =-G,G,G,G,H,

Step:3  Gain productions of non touching loops

GZ GS

-Hi —H,

P, =G,G;H,H,

-Hi —H,

P, =G,GsH,H,

5.

2562

1= _G7H4



P, =G,G;HH,

_Hz _H4

Pp =G,G;H,H,
Step:4 Determination of A & Ak

A1=1; Since there is no part of the graph is not touching with first forward path

A1=1-[L1+ L]

=1+ G,H, +G,H,
G1 G5
1 2 W 6
_Hl 'H3

Individual loops

Li1=-G,H,
L, =—G,H,
A=1-[P, +Py +Py +Py +P; |+[P, + Py, + Py, + Py, |

=1+G,H, +G,H, +G.H, +G,G,G,G,H, +G,H,
+G,G4H,H; +G,G,H,H, +G,G,HH, +G,G,;H,H,

Step:5 Transfer function by Hason'’s gain formula



PA, PA +PA
T(S):Z kAk: 11A2 2

k

G,G,G,G,G.G, + GGG, (1+G,H, +G.H,)

B 1+G,H, +G,H, +G.H, +G,G,G,G,H, +G,H, +G,G,H,H, + G,G,H,H, +G,G,H,H, +G,G,H,H,

5.Determine the overall transfer function of SFG using Mason’s gain formula

Sol
Step1: forward path gain

No. of forward paths K=2

G, G, G, G,
R _ N P =G,G,G,G,G,

Xl Xz Xa X4 X5
G, 6 G G Xs
R * * * Pl :GleGsG4G6
X X, X, X,
Gs

Step2: Individual loop gains

H,
p P, =H, Py =G,H,
X

H4 %i )
Pau=Gs Hz Pa=Ha
Cc



Step:3 Gain products of non touching loops Two non touching loops

X2
X3

Two non touching loops

H1 ;:)
X

1

H, ;: )
P, =HH,G,

Hz
G3 X3

Hs
Xy

G, X,

H, H,

p p P, =HH,
X C

Three non touching loops

H,
H, H,
p p Ps =G;H,H,H,
X c
X,y G X
H,
H, H,
ﬁ Py =G,H,H;H,
C
X, G, X,

Xy

Step :4 Determination of A and Ak

:1_[P11 + P21 + P31 + P41]+[P12 + P22 + Psz]_[Pla + st]
=1-H, -G,H, -G,H, —H, + H,H,G, + H,H,G, + H,H, -G ,H,H,H, -G,H,H.H,

A, = A, =1 Since there is no part of the graph is not touching with forward path s



Step:5 Transfer function
‘e g _ v PA
By Mason'’s gain formula T(s) = ZT
k

T(s) =

o) = G,G,G,G,G;, +G,G,G,G,G,
1-H,-G,H,—G,H, —H, + H,H,G, + H,H,G, + H,H, —-G,H,H,H, —G,H,H,H,

PA, +P,A,
A

X
6. Using Mason'’s gain formula to find —%

Gy

+H|

1. No. of forward paths k=4

’ 3 C’,& G“g’ s P, =G,G,G,G,G,G
;, ;W =19,5,09396575

m G, G, G,
G, G, G, />\ G,
D

R P, =G,G,G,G,G,

P, =G,G,G,G,G,

G, G, G, G,
P, =G,G,GG,
2. Individual loops and gains
G, G, G, G, G Gy G; G
H, H,

Py= GzGGG7H2 P21 = GZG3G6G7G8H1



G,
G,
G G; Gy
H,
P, = G,G.H "
31 = 3 9s50 1
P =G,G:G,GgH,
Gs
G, G,
Gy
H,

P = G,G;GgH,

Non touching loops —Nil
A and Ak

A=1-[Py; + Py + Py + P,y + Py +Pyy]
=1-G,G,G,H, +G,G,G,G,;H, -G,G.H, -G,G,G,G;H, -G,G,G.G,H, -G,G.G,;H,

A =1
A, =1
A, =1
A, =1

Since there is no part of the graph is not touching with forward paths



P.A
Transfer function by Mason’s gain formula  T(S) = z kA k
k

PA, +P,A, +P,A, +PA,
A
G,G,G,G,G,G, +G,G,GG,G, +G,G,G,G,G, +G,G,G,G,

T(s) =

T(@) =
© 1-G,G,G,H, -G,G,G,G,G,H, -G,G,H, -G ,G,G,G;H, -G,G,G,G,H, -G,G,G,H,

7.Find L/R using Mason'’s gain formula

C
R
y 8
1
Sol :
1. No. of forward path and forward path gains k=4.
G, G, G, G 1 G
. > > > > > P, =G,G,G,G,G,
G, G, G, 1 G,
oﬁ_w- > > > P, =G,G.,G,G,G,
GS
G, G, G, 1 G,
® w - s s P, =G,G,G,G:G,
G, G, G, 1 G,
W o . & P, =G,G,G,G:G,
G3 GS

2.Individual loops and gain

GG




G, G, 1 G,

G, G, 1 G,
i W
H, Gs
Py =G3G,G:G;H, H,

Py = G3G:G,G;H,

3.Non touching loops

GG

P, =G,G;HH,

Hl H2

4. A and Ax

A, =A, =A, =A, =1 [Since there is no part of the graph is not touching the forward paths]



5.Transfer function by Mason’s gain formula
A A +P,A, +PA; +P,A
T(S):sz K:pl 1 272 373 4—4
< A A
_ G,G,G,G,G, +G,G,G,G,G, +G,G,G.G,G, +G,G,G.G,G,
1-G,H,-G,H, -G,G,G,G,H, -G,G,G,G,H, -G,G.G,G,H, -G,G.G,G,H, +G,G,H,H,

8. Find L/R using Mason’s gain formula

R C

Sol

1. No. of forward path and gain K=3

G G, G G G G
. R . . . . P, =G,G,G,G,G,G,
G, <
G, G, G, 1
Ly 5 P, =G,G,G,G,
)
GB
G G, G m 1 P, =G,G,G;G,
+
2. Individual loops and gain
G, -H,
5 6 G, G, G, G,
3
4 5 6
_Hl
3G,4G, 5
_H2

Ry =-G.H, P, =-G,G;H,

P31 = _Gze3G4GsH2



G, G, G, G, G, G,

S a4a 5 6 7

_H3

Py =-G,G,G,G6,6,G.H,

2 8
3. Non touching loops
G,
G4
5 6
3 P12 = G4G2G7H1H2
_Hl
G, P,, =G,6,G,G,G,H,H,
5 6
2 8
_Hl

4. A and Ay



A=1-[P, +P, +P; +P,, + P, + P, + P, ]+[P, +P,}

A=1+G,H, +G,G,H, +G,G,G,G.H, +G,G,6,G,6,G,H, +G,G,H, +G,G,G,G,H, +G,G,G,G,H, +G,G,G,H,H, + G,G,C
A =1

A, =1; since there is no part of the graph is not touching with forward path 1 and 3

A, =1+G,H;; when forward path 2 being removed, remaining part of the graph is as shown

G,

_Hl

5.Transfer function By Mason’s gain formula

T(S) = Z pKAAK _PA+ pzAAz +PsA,
K

_ G,G,G,G,G.G, +G,G,G,G,(1+G,H,) +G,G,G,G,
1+G,H, +G,G,H, +G,G,G,G.H, +G,G,H, + G,G,G,G,G,G,H, + G,G,G,G,H, + G,G,G,H,H, +G,G,G,G,G,H,H,

CONVERSION OF BLOCK DIAGRAM TO SIGNAL FLOW GRAPH

1. Convert the block diagram into signal flow graph and find the transfer function using Masons gain formula
Procedure:
1.Select a node for every branch point and summing point, input and output signal in block diagram
2.for each block have a line segment on which its gain is written with direction

—> 64
R(s) ‘ C(s)

»




Sol:

1. No. of forward path and forward path gains k=2.

. R . R R P, =G,G,G,

1 1G 1
1 ! ! P, =G,G,
> L >

2.Individual loops and gain G,
G 1 G, m
; , SN
5 7
&;/ ’ ‘
—H,
-H,
Py =-G,G,H,
P21 - _G4H2
G2 63 Gl Gz Ga
8 8
2
5 7
10 10
—H, -H,
Ps = _62G3H2 P41 - _GlGZGS

G, G,
8
2 7
3 4 5 7
10

10



3.Non touching loops - NIL

A and Ak
4. A=1-[P, + P, + P, +P,, +P,]
=1+G,G,H, +G,H, +G,G,H, + G,G,G, +G,G,

A, = A, =1 [Since there is no part of the graph is not touching with the forward paths]

5. Transfer function by Mason’s gain formula
PA, PA +PA
T S) = k—k — 171 272
(s) :g: X n
B G,G,G,+G,G,
1+G,G,H, +G,G,H, +G,G, +G,G,G, +G,H,

2.Convert block diagram to signal flow graph and find the transfer function using Mason’s gain formula

>» G,
¥ <
R(s)
-———-—a»(j%%i) > Gy > ©. » G,
1 2 3 4 5 6 7
H <
H, (e
R C
1 2 9 10

C(s)



SOL:

1. No. of forward path and forward path gains k=2.

s — ® ° * * P =G,G,G;

1 G, 1

H2
3
2 5 6 / 9 ﬂiEz\l\
7 8
w/ ’
Hl

4 5 6 7

P, =G,H
Pll =G1H3 P71 :G3H1 3L 2772

3.Non touching loops



1 G 1 1 G, 1

3
2 5 6 9 P, =G,G;HH;
3 4 7 8
H,

4, A and Axi

A=1-[P,+Py +Py +P,]+[P,]
=1-G,H,-G,H, -G,H, -G ,H,H,H,G,G,H,H,

A, =1 [Since there is no part of the graph is not touching with the forward paths 1]
A, =1-G,H,; When forward path 2 being removed, remaining part of the graph is as shown u
Diagram
5. Transfer function By Masons gain formula
PA, PA +PA,
T(@S) = Zk: o A
B G,G,G,+G,(1-G,H,)
" 1+G,H, +G,H, —-G,H,H,H, +G,G,H,H,

3.Construct an equivalent signal flow graph for the block diagram shown in fig and evaluate the transfer function

G4
R(S) l Cs)

v

\ 4
®
o
\ 4
o

I
A

»

%

10




Sol

1. No. of forward path and forward path gains k=2.

R . . REENR P, =G,G,G,

1 2 3 4 5 6 7 8 9 10

G4
111
1 1
%ﬁﬁhﬁﬁ— P2 =G,
12 3 4 7 89

2. .Individual loops and gain

G G
G, 1 G, 2
8
3 6 5
4 5 6 7
10
—H,
-H,
P.=-G,H,
P, =-G,G;H,
G,
1 1 G G, G 1
1 1
8
2
3 4 5 6 7
10
-1 -1

P, =-G,G,G, P,=-G,



10

P, =G,G,H,H,

3. Non touching loops - Nil

A and Ak
4. A=1-[P + Py + Py + Py + Py ]
=1+G,H, +G,G,;H, +G,G,G, +G, -G,G,H,H,
A, = A, =1 [All the loops are touching the two forward paths ]

5.Transfer function By Masons gain formula
1 PA, +P,A
TE)==) PA =+1—22
©=32 PA =25
3 G,G,G;+G,
1+G,G,H, +G,G,H, -G,G,G, +G, -G,G,H,H,

4.Draw the signal flow graph and evaluate the closed loop transfer of a system whose block diagram is shown in fig

4
oD

R(s) Cs)

—x G, » G, > ®

v




R(S) G, m 0
3

-Gy

1. No. of forward path and forward path gains k=4.

P, =G,G,G,H,

P, =—-G,G,G,H,

—H,
-G,
2.Individual loops and gain
-G,
G, G, 1 G 1
3 e e 6
~_ —H,; -H,
—H, g
8



3. Non touching loops - Nil

A A and Ak
"A=1-[P, +P, 1=1+G,G,H,H, —-G,G,H,H,

A=A, =A, =A, =1 [All the loops are touching the two forward paths ]

5.Transfer function By Masons gain formula
T(s) = iz PA, = PA, +P,A, +PA, +P,A,
k

A
_ 6,6, +G,G,G,H, -G,G,~G,G,G,H,
1+ G,G,H,H, - G,G,H,H,

5.Convert the block diagram shown in fig, to signal flow graph and find the transfer function, using Mason’s gain formula. Verify

with block diagram approach MAY/JUNE 2016
> G,
R(s) l C(s)
» G, » G, > ® >
12 3 4 > 6
H, e
SOL

R(S) 1 1

Sol

1. No of forward paths and gain



2. Individual loops and loop gain

1 3 G
N
2 \J 4
P, =-G,H,
-H
3. Non touching loops — Nil
A and Ak
4. A=1-P,=1+GH
A =A,=1

As all the loops are touching the forward paths

5.Transfer function By Masons gain formula

1 PA, +PA
T(s)=Zz PA, =122

k
_ 6,G,-G,
1+ G,H,

Verification by block diagram reduction technique

A 4

R(s)

A 4
@
\ 4

v

C(s)

A

v



Step :1 Moving a branch point ahead of block G,

»| G;/G,
R(s) l C(s)
G, » G, > ® >
4 5 6
H <
Step:2 Eliminating —ve feedback and combining the parallel path
R(S) C(S)
> G, > G,
— -1 G,-—2
1+G,H G,
R(S) C(S)
> Gl > GIGZ - G3
1+G,H G,
Step:3 Combining the cascade blocks
C(S)

R(S)
G,G, -G,
1+G,H




. C(S) _ Gle _G3
"R(s) 1+GH

2

Egn (1) and (2) are equal. Hence Verified.

6.Find the transfer function of the system shown un fig. by block diagram reduction technique and signal flow graph technique

April/ May 2015

R(s) C(s)
_>®—>®—> G, > G, » G, >
A A
i Hi e
HZ
Sol:

By block diagram reduction technique

Step:1 Removing Unity feedback

R(S) C(s)
G, G, » G, >
- 1-G,
J._\Jl
2 Hi e




Step:2 Moving the branch point before Hy

C(s)

R(s)
G, G, » G,
A 1-G,
Hl
ZH,
H2
Eliminating of feedback H;
R(s) C(s)
G, > G, » G, >
Y 1-G, 1-G,H,
2H,
H2

Combining the cascade blocks combining the cascade blocks



R(s)

G,G,G,

C(s)

iu (1_G1)(1_62H1)+26162H1

Eliminating the feedback path H,

G- SACHE H—->H,
(1-G,))1+G,H,)+2G,G,H,
G,G,G,
G 5 (1-G)A+G,H,)+2G,G,H,
1+GH . G,G,G,H,

(1-G)A+G,H,)+2G,G,H,

_ GIGZGS
(1-G,)(1+G,H,) + 2G,G,H, +G,G,G,H,

_ GIGZG3
1-G,-G,H, +3G,G,H, +G,G,G,H,

GlGZG3

R(s
RE) 1-G,-G,H, +3G,G,H, +G,G,G,H,

c(s)

C(s) _ G,G,G,
R(s) 1-G,-G,H,+3G,G,H, +G,G,G;H,

(ii) by signal flow graph technique

R(s)

A 4

C(s)



Step:1No of forward path and forward path gain K=1

1 1 G LG, &

P, =G,H, P, = 2G,G,H,



2
7
_H2
Py =—G,G,G;H,
Step:3 Non touching loops — gain products
GZ
5 6
P, =G,G,H,
4
3
Hl
Gy

9

Step:4 To find

A and Ak

A=1-[P, +P, +Py +P, |+P,

=1-G,-G,H, +2G,G,H, +G,G,G,H, + G,G,H,
=1-G,-G,H, +3G,G,H, +G,G,G,H,

A, =as all the loops are touching the forward paths

Step:5 Transfer function by Mason’s gain formula,



1 A
T(S) =+ P = 22

K A
— GlGZGS
1-G,-G,H, +3G,G,H, +G,G,G,;H,
G,G,G, Hence verified

S T(s) =

1-G,-G,H, +3G,G,H, +G,G,G,H,

CONSTRUCTION OF SIGNAL FLOW GRAPH FROM THE SYSTEM EQUATIONS

STEPS:

1.0btain the system equations by writing differential equations governing the system

2.Represent each variable by a separate node.

3.Use the property that value of the variable represented by a node is an variable represented by a node is an algebraic sum of all the

signals entering at that node, to simulate the equations

4. Coeffcients of the variables in the equations are to be represented as the brancg gain, joining the nodes in signal flow graph.

5.Show the input and output variables separately to completely signal flow graph

1. Construct signal flow graph for the set of linear equations and determine overall transfer for using Mason’s gain formula

X, =X, +85,X5 +3,X, (1)
Xy = 8,5X, (2)
X, =8y, X, + 85, X5 +8y,X, (3
X5 =ay5X; +3,5X, @)
Step:1

X, X, X5 X, X



Egn 1

T
Egqn 2
L] .%—. . .
Xl X2 X3 X4 X5
Eqn 3 a,,
Q a44
PR\ —
Xy X, X3 X, X
a24
Eqn 4 Ay
g WA
X X, X3 X4 Xg

Complete signal flow graph




1. No. of forward paths and forward path gain k=3
P, = 83,885,385 [X, = X, = X3 > X, > Xg]
P, =a,,8,,8, [X; = X, = X, = X ]

Py = ay,8, [ X, = X, = X;]

2. Individual loops and gain
P11 =aydy [Xz — X3 > Xz]

P,y =8,585,8, [Xz > X3 > X, > Xz]
Py = ayay, [Xz 2> X Xz]

Pu =24 [X4]

3. Non touching loops
P, = Pu, Py =a5858,,

A and Ak
A=1-[P, +Py +Py +P, ]+P,

=1- [a32a23 + a23a34a42 + a24a42 + a44 + a23a32a44]

1
=1 Q a,,
3 =1—a44

X,

iy

o~
> > B
I

5. Transfer function by Mason’s gain formula
T(s) = Z PA, _ PA, +P,A, +PA,
PREAY A
T(S) — 8185383485 +81,8,,845 + 81,85 (1_ a44)
l_ [a23a32 + 3.233.348.42 + a24a42 + a44] + a23a32a44

2.Construct the signal flow graph for the following set of simultaneous equations
>(2 = A21X1 + A23X3; XS - A31X1 + A32X2 +A33X3;
Xy =ApX, +AgX,

And obtain the overall transfer function using Mason’s gain formula




1.

No of forward paths and gain

A23

Non touching loops = Nil

A and
ZH].(l = AzsAsz
A:l_[Pll + P21]

=1- [A32A23 + Ass]

A =1
A, =1-A,
A, =1

P =AAA,



5. Transfer function By Mason’s gain formula

PA, PA +PA,+PA
T(S)ZZ kAk: 171 ZAZ 373
k

A21A32A43 + A21A42 (1+ A33) + A31A43

1-[ApAy +Axl

V, 1V,

3.For the network shown below, draw the signal flow graph and find transfer function Mason;s gain formula.

Rl RZ
EERVAVAVA /N\/\N\ T
v () o - e 1
Sol
Il Rl RZ VZ
S VAVAVAN N\/\N\
|
il P P P
v <> . & T Vi

Consider current through series element and voltage across the shunt element.
\/i’il'Vl’iZ’VZ’Vo

i,,v,,i,,V, = mixed nodes
Nodes/Variables are
V, — input node
V, — output node

Current through Ry

i_\/i_vl
Rl
VM
Rl Rl
1 1
1,(s)=—V.(s)——V, (s 1
1(5) R, (5) R, 1(5) oy



Voltage across C
1, .
V, = C—lj(ul —i,)dt

V,(©) = 2 [0 -1 O)

Vi) = b - L) )

current through R,
i = V1 _Vz
2 R2
Vi (s) -V, (s)
RZ
1 1

1 (8) = - Vi) = = Vo (9) @)

Iz(S):

Voltage across C,

1 ¢.
v2=C—2j|2dt
V,= 21,09 4)
2 CZS 2

Construction of signal flow graph is as follows

|
|/Q| éc'l _R,:Z [/Sci/ % ’ 3

Vi : ;
: T - ! Is o Y VP'
N, N ¢ 1
R, sC, R,
1 1 1

1. No. of forward path and gains

V-V, -1, -2V, 5V,
1 1 1 1 1

R, sC, R, sC, R,R,C,C,s



2. Individual loops and gain

L, >V, >, P,= Rl_éls
V, >, >V, P, = -1
R,C,s
l, >V, > P =
2 3 2 31 RZCZS

3. Non touching loops

P, and P,, are non touching loop pair

1
P,=PP =— "
11 11" 31 R1R2C1C232
A and Ak
A=1-[P,+Py +P;]+P,

1 1 1 1
+ + + +
RCs R,Cs R,C,s R,R,CCs

[RiR,C,C,s* +(R,C, +R,C, +R,C,)s+1]
R,R,C,C,s°

A, =1

5. Transfer function by Mason’s gain formula,

1
T(s):—z PA,
AT

1
T(s) = Vo(s) _ R.R,C,C,s?
Vi) [RR,CC,s* +(R,C, +R,C, +R,C, )s+1]
R,R,C,C,s°
Vo (S) _ 1

V,(s) R,R,C,C,8*+(R,C, +R,C, +R,C,)s +1

* INCLUDE THIS



1. Explain about DC Servo Motor
A DC servo motor is used as an actuator to drive a load. It is usually a DC motor of low power rating. DC
servo motors have a high ratio of starting torque to inertia and therefore they have a faster dynamic response.
e DC motors are constructed using rare earth permanent magnets which have high residual flux density and
high coercively.

e Asno field winding is used, the field copper losses is zero and hence, the overall efficiency of the motor is
high.

e The speed torque characteristic of this motor is flat over a wide range, as the armature reaction is negligible.

e Moreover speed in directly proportional to the armature voltage for a given torque. Armature of a DC servo
motor is specially designed to have low inertia.

e Insome application DC servo motors are used with magnetic flux produced by field windings.

e The speed of PMDC motors can be controlled by applying variable armature voltage. These are called
armature voltage controlled DC servo motors.

Wound field DC motors can be controlled by either controlling the armature voltage or controlling rho field
current. Let us now consider modelling of these two types or DC servo motors.

(a) Armature controlled DC servo motor
The physical model of an armature controlled DC servo motor is given in

R, L,
R A A 6/'“ o Ig= Const
. & AN é field
i \ ) 8,1, B, Ly o

The armature winding has a resistance R aand inductance La.

The field is produced either by a permanent magnet or the field winding is separately excited and supplied with
constant voltage so that the field current I is a constant. When the armature is supplied with a DC voltage of ea
volts, the armature rotates and produces a back e.m.f eb

The armature current ia depends on the difference of e,and e,. The armature has a moment of inertiaJ, frictional
coefficient B,

The angular displacement of the motor is 6. The torque produced by the motor is given by

T=K"Ti'a



Where K is the motor torque constant.

The back emf is proportional to the speed of the motor and hence
&, =K, 8

The differential equation representing the electrical system is given by
R i+L cl—“ e me

Taking Laplace transform of equation from above equation

T(s) = K L,(s)

Ey(s) = Ky s B(s)

(R, +s L) L(s) + Ey(s) =E(s)
_ E,(9)-K,s0(s)

1(s) R, +sL,

The mathematical model of the mechanical system is given by

d’e de
s o B donins
dt?  dt

Taking Laplace transform

(Is* + B_s) 8(s) = T(s)

E,(s)-K,s8(s)
(R, +sL,)(Js* + Bys)

8(s) = Ky

Solving for 6(s) ,we get
= K1 E.(8)
%)= IR, wsbnUs+ Bt K K,
The block diagram representation of the armature controlled DC servo motor is developed in steps

T(s)

E(5) L(s) e A
O 3R — - = iy —ef K >
Ey(s)

% T(s) ) a(s) . 0(s) Ey(s)
(“i) o Jsi*;c; —> (W) +




Combining these blocks we have

E(s) + 1 I T 1 0s,
_.-@_; — K —>
% R, +L;s 251 | Js® + Bys

Ey(s) '

Usually the inductance of the armature winding is small and hence neglected
B(s) Kr/R,

T(s) = = - -
E |
() S[Js +By + KKy }
Rt
_ K¢ /R,
s(Js+ B)
Where
E . Hﬂ - _'Kb'_'_KT

Field Controlled Dc Servo Motor
The field servo motor

O-—>—AM—TTTT I, = Const
A

& Field

- 9

B
“ sma . B
The electrical circuit is modeled as

_ B8]

's) B+ Lqs

T(s) = K; L:(8)

(Js* + By) B(s) = T(s)

A(s) i !{T
- K;/R¢By

S
5 --'-I--s+l} [Ef S+IJ
\Bao R

K

- m
S(Tus+1(tes+1)
Where Motor gain constant

K= KRB,

Motor time constant




t, = B,
Field time constant

% =L R,

The block diagram is as shown as

Eds) I Ids) Tis) 1 B(s)
— +K
By +Ls Jsl+Bs

2. Write a short note on AC Servo Motors
An AC servo motor is essentially a two phase induction motor with modified constructional features to suit servo

applications.

The schematic of a two phase or servo motor is shown
Control Ve Reference
winding A winding
Actuation Servo
signal amplifier
o—| —o——]

8,J,B,

It has two windings displaced by 90 degree on the stator One winding, called as reference winding, is supplied with a
constant sinusoidal voltage.

The second winding, called control winding, is supplied with a variable control voltage which is displaced by 90 °

out of phase from the reference voltage.
The major differences between the normal induction motor and an AC servo motor are
The rotor winding of an ac servo motor has high resistance (R) compared to its inductive reactance (X) so that its

. X .
ratio — is very low.

For a normal induction motor, % ratio is high so that the maximum torque is obtained in normal operating region
which is around 5% of slip.

The torque speed characteristics of a normal induction motor

: s and an ac servo motor are shown in fig
4— nonnal induction motor

Torque

Synchronous

speed Speed

The Torque speed characteristic of a normal induction motor is highly nonlinear and has a positive slope for some
portion of the curve.



This is not desirable for control applications as the positive slope makes the systems unstable. The torque speed
characteristic of an ac servo motor is fairly linear and has 45 negative slope throughout.

The rotor construction is usually squirrel cage or drag cup type for an ac servo motor. The diameter is small
compared to the length of the rotor which reduces inertia of the moving parts.

Thus it has good accelerating characteristic and good dynamic response.

The supplies to the two windings of ac servo motor are not balanced as in the case of a normal induction motor.

The control voltage varies both in magnitude and phase with respect to the constant reference vulture applied to the
reference winding.

The direction of rotation of the motor depends on the phase (+ 90°) of the control voltage with respect to the
reference voltage. For different rms values of control voltage the torque speed characteristics are shown in Fig.

The torque varies approximately linearly with respect to speed and also controls voltage.

The torque speed characteristics can be linearised at the operating point and the transfer function of the motor can be
obtained.

Torque Ty, ™~

NN
k\ N\ Speed 0

3. Write a short note on Synchros

A commonly used error detector of mechanical positions of rotating shafts in AC control systems is the Synchro.
It consists of two electro mechanical devices.

Synchro transmitter

Synchro receiver or control transformer.

The principle of operation of these two devices is same but they differ slightly in their construction.
The construction of a Synchro transmitter is similar to a phase alternator.

The stator consists of a balanced three phase winding and is star connected.
The rotor is of dumbbell type construction and is wound with a coil to produce a magnetic field.
When a no voltage is applied to the winding of the rotor, a magnetic field is produced.

The coils in the stator link with this sinusoidal distributed magnetic flux and voltages are induced in the three coils
due to transformer action.



Than the three voltages are in time phase with each other and the rotor voltage.

The magnitudes of the voltages are proportional to the cosine of the angle between the rotor position and the
respective coil axis.

The position of the rotor and the coils are shown in Fig.

AC supply
vit) &
%

vp(t) = v Sinawt
Vain KV, Sin ot cos (8 + 120)

Vsp, ~ KV Sinwtcos®

v,, =KV, Sin ot cos (8 + 240)
~V,.n= V3 KV, Sin (8 +240) Sin ot
Vos; = Ve~ Vesa = V3 KV, 8in (8 +120) Sin ot

5233 Szn

A V3 KV_Sin 6 Sin o t

Ssl‘l.

v, —Vs

51%2 n

When 0=90 the axis of the magnetic field coincides with the axis of coil S, and maximum voltage is induced in it as
seen.

For this position of the rotor, the voltage ¢, is zero, this position of the rotor is known as the 'Electrical Zero' of die
transmitter and is taken as reference for specifying the rotor position.

In summary, it can be seen that the input to the transmitter is the angular position of the rotor and the set of three
single phase voltages is the output.

The magnitudes of these voltages depend on the angular position of the rotor as given



Hence
eft) =K, V,Cos ¢ sin ot

Now consider these three voltages to he applied to the stator of a similar device called control transformer or synchro
receiver. The construction of a control transformer is similar to that of the transmitter except that the rotor is made
cylindrical in shape whereas the rotor of transmitter is dumbell in shape. Since the rotor is cylindrical, the air gap is
uniform and the reluctance of the magnetic path is constant. This makes the output impedance of rotor to be a
constant.

Usually the rotor winding of control transformer is connected teas amplifier which requires signal with constant
impedance for better performance. A synchro transmitter is usually required to supply several control transformers
and hence the stator winding of control transformer is wound with higher impedance per phase. Since the some
currents flow through the stators of the synchro transmitter and receiver, the same pattern of flux distribution will be
produced in the air gap of the control transformer.

The control transformer flux axis is in the same position as that of the synchro transmitter. Thus the voltage induced
in the rotor coil of control transformer is proportional to the cosine of the angle between the two rotors.
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11.

Unit 2
TIME RESPONSE ANALYSIS
PART-A

What is an order of a system? APRIL/MAY 2011, Nov/Dec 2017

The order of a system is the order of the differential equation governing the system. The order of the
system can be obtained from the transfer function of the given system.

Define type number of the system Nov/Dec 2017

The type number of the system is defined as number of poles which lies on the origin of the complex plane.
What is step signal?

The step signal is a signal whose value changes from zero A at t=0 and remains constant at A for t>0.

What is ramp signal?
The ramp signal is a signal whose value increases linearly with time from an initial value of zero at t=0.
The ramp signal resembles a constant velocity.

State some standard signals used in time domain analysis ~ Nov’15, APRIL /MAY’11&16, Nov/Dec 2018
Step signal, Ramp signal, Parabolic signal and sinusoidal signal

What is transient response?
The transient response is the response of the system when the system changes from one state to another.

What is steady state response?
The steady state response is the response of the system when it approached infinity.

Define damping ratio. April/May 2019
Damping ratio is defined as the ratio of actual damping to critical damping.

List the time domain specifications May/June 2016, NOV/DEC 2016
The time domain specifications are

1) Delay time

ii) Rise time

1ii) Peak time

iv) Peak overshoot

V) Setting time

. What is damped frequency of oscillation?

In under damped system the response is damped oscillatory. The frequency of damped oscillation is given
by @, = o +/1-
What will be the nature of response of second order system with different types of damping?

e  For undamped system the response is oscillatory.

e  For under damped system the response is damped oscillatory.

e  For critically damped system the response is exponentially rising.

e For over damped system the response is exponentially rising but the rise time will be very large

. Define delay time.

The time taken from for response to reach 50% of final value for the very first time is delay time.

. Define rise time April / May 2010

The time taken for response to raise from 0% to 100% for the very first time is rise time.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Define peak time.
The time taken for the response to reach the peak value for the first time is peak time.

Define peak overshoot. =~ Nov/ Dec 2010, April/May 2017
Peak overshoot is defined as the ratio of maximum peak value measured from the Maximum value to final
value.

Define setting time. Nov/Dec 2018
Setting time is defined as the time taken by the response to reach and stay within specified error.

What is the need for a controller?
The controller is provided to modify the error signal for better control action.

What are the different types of controllers?
The different types of the controller are
e  Proportional controller
e PI controller
e PD controller
e PID controller
What is proportional controller?
It is device that produce a control signal which is proportional to the input error signal.

What is PI Controller?
It is device that produce a control signal consisting of two terms-one proportional to error signal and the
other proportional to the integral of error signal.

What is PD Controller?
PD controller is a proportional plus derivative controller which produces an output signal consisting of two
terms — one proportional to error signal and other proportional to the derivative of the signal.

What is the significance of integral controller and derivative controller in a PID controller?
The proportional controller stabilizes the gain but produces a steady state error. The integral control
reduces or eliminated the steady state error.

Define Steady state error.
The steady state error is the value of error signal e(t) when t tends to infinity.

What is the drawback of static coefficients?
The main drawback of static coefficient is that it does not show the variation of error with time and input
should be standard input.

What are the three constants associated with a steady state error?
The three steady state errors constant are

e  Positional error constant K,

e  Velocity error constant K,

e  Acceleration error constant K,
What are the main advantages of generalized error co-efficients?
1) Steady state is function of time
i) Steady state can be determined from any type of input

What are the effects of adding a zero to a system?
Adding a zero to a system results in pronounced early peak to system response thereby the peak overshoot
increases appreciable.



28. Why derivative controller is not used in control system?
The derivative controller produces a control action based on rate of change of error signal and it does not
produce corrective measures for any constant error. Hence derivative controller is not used in control
system.

29. What is the effect of PI controller on the system performance? Nov/Dec 2019, April/May 2017, May/June
2016
The PI Controller increases the order of the system by one, which results in reducing the steady state error.
But the system because less stable than the original system.

30. What is the effect of PD Controller of system performance? April/May 2017
The effect of PD controller is to increase the damping ratio of the system and so the peak overshoot is
reduced.

31. What are the root loci?

The path taken by the root of the open loop transfer function when the loop gain is varied from O to infinity
are called root loci.

32. What is the dominant pole? (NOV/DEC 2015, 2016)

The dominant pole is a pair of conjugate pole which decides the transient response of the system. In higher
order system the dominant poles are very close to origin and all other poles of the system are widely separated and
so they have less effect on transient response of the system.

33. What are the main significance of root locus?

1. The root locus technique is used for stability analysis.
ii. Using root locus techniques the range of value of K, for as stable system can be determined.

34. What are the breakaway point are break in points?

At break away point the root locus break from the real axis to enter into the complex plane. At break in
point the root locus enters the real axis from then complex plane. To find the breakaway or break in points, from
a equation for K from the characteristic equation and differentiate the equation of K with respect to s. Then find the
roots of the equations dK/dS = 0. The root of dK/dS = 0 are breakaway or break in points provided for this value of
root the gain K should be positive and real.

35. What are asymptotes? How will you find angle of asymptotes?

Asymptotes are the straight line which are parallel to root locus going to infinity and meet the root locus at
infinity.

180°(2q+1)

n—m

Angle of asymptotes = + q=0,1,2,3,...n—m

N= number of poles

M = number of zeroes.



36. What is the centriod?

The meeting point of the asymptotes with the real axis is called centroid. The centroid is given by Centroid
= (sum of the poles-sum of the zeros)/n-m

N= number of poles
M = number of zeroes.
37. What is magnitude criterion?

The magnitude criterion states that s = s, will be a point on root locus if for that value of s, magnitude of
G(s)H(s) is equal to 1.

|G (s) H (s)| K (product length of vector fromopen loop zeros tothe points =s,) 1
(product length of vector fromopen loop poles to the points =s, )

38. What is angle criterion?

The angle criterion states that s = s, will be a point on root locus if for that value of s, the argument or
phase of G(s)H(s) is equal to an odd multiple 180 ° .

(sumof theangle of vectors fromzeros to thepoints = s, )—(sumof theangleof vectors frompoles to thepoints =s, ) = +180°(2q +1)

39. How will you find the root locus on real axis? (MAY/JUNE 2016)

To find the root locus on real axis choose the test point on real axis to the right of this test point is odd
number then the test point lie on the root locus. If it is even the test point does not lie on the root locus.

Part — B & C QUESTIONS AND ANSWERS

1. Derive the time response analysis of a first order system for (i) Unit step input (ii) Unit ramp (iii) impulse input

@) For Unit step input
. . C(s) 1
The closed loop transfer function of first order system =
R(s) sT+1
1
If the input unit step, then r(t)=1, and R(s)=—
S
1
. : 11 T
The response in s-domain, C(s)=R(s) =-. =
(1+Ts) s (1+Ts) (s +l)
T

By partial fraction expansion



A(s+l)+B.s =l
T T

-1
ut s=—,B =-1
P T

put s=0, A=1
C(s)=1+ -1
S

(S+¥)

Response in time domain c(t)=L" [C(s)]

-t
S = l1-e
s
S+—
( T)
(i1) For Ramp input
The closed loop transfer function of first order system,

1
If the input is unit ramp then, r(t)=t and R(s)= —
S

The response in s- domain
1
1 1 1 T

CO=RO) g T s

)

1
sP(s+—
( T

by partial fraction expansion

As s+l +B s+l +Cs’ :l
T T T
Put s=0, B=1
Put s= _—1 ,C=T
T
Comparing the coefficients of s* terms, A+C=1 => A=-T

.'.C(s):iz+i+ T
S

1
(S+¥)

Response in time domain c(t)= L' [C(s)]

(i) For impulse input
The closed loop transfer function of first order system,
If the input impuse, then r(t)=5(t) and R(s)=1



1
1 1 T

The response in s-domain, C(s) = R(s) = =
(1+Ts) (A+Ts)

(s+

1
¥)
Response in time domain c(t) = L' [C(s)]

2. Discuss briefly about step response analysis second order system

The closed loop second order system is shown in fig.

R(S) w2 c®)
R(S) oon2 oS

—_ $+2o st —m0

The standard form of closed loop transfer function of second order system is given by
C(s) o’

n

R(s) s +2(w s+on’

where ®, = undamped natural frequency rad/sec

€ = Damping ratio

Depending on the value of C , the second order system is classified into 4 types.
1. Undamped system : § =0

2. Underdamped system: 0< § <1

3. Critically damped system: (=1

4. Overdamped system: >1



3. Response of undamped second order system for unit step input Nov/Dec 2019, April/May
2017
The standard form of closed loop transfer function of second order system is,
C(s) o’
R(s) s’+ 2,5+,
for un damped system, {=0

€O _ o)

n

TRG) ST+,

When the input is unit step, r(t) = 1 and R(s)= l
S

2
(’On

s+’

n

.. The response is s-domain, C(s)=R(s)

1 o’

n

s s’ +w

By partial fraction expansion

2
® A B
C(s) = . =—
® s(sP+wl) s s+l

A’ +o)+Bs=0,’
put s=0, ®’A = ®, =
put s=jo,, jo,B =]

B=-jo, =-s

SO =t

2 2
s s +o,

Time response c(t) = L [C(s)]

1 S
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»

o) C(1)4

v
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The response of undamped second order system for unit step input is completely oscillatory.
4. Response of under damped second order system for unit step input. (Nov/Dec 2018)

The standard form of closed loop transfer function of second order system is

C(s) o’

n

R(s) s’+ 20w, s+,

For under damped system, 0< { <1, and the roots of the characteristic equation are complex conjugate

2

The response is s-domain, C(s) = R(s) ——"—
s +20m s+ o

1
For unit step input, r(t) =1, R(s)=—
s

2 2

() 1 ()
C(s)=R(s) . T==. . >
s"+20o s+, s s +20m,s+o;

By partial fraction expansion

o, A Bs+C
Cls) = 2 -t 2
s(s"+2Cw,s+m,) s s +2Lo,s+o,

A5 +2lw s+®))+Bs’ +Cs =

Comparing constant terms,
Ao,=0, =
Comparing the coefficient of s,

A+B=0=

Comparing the coefficient of s



A(ZCwn)+C:O:>

1 s+2Cw
.'.C(s):——z—(':'“2
s s"+2Cm, s+ o,
1 s+2Lm,
C(s)=-- > 2 2 2 2 2
s s +20os+0, +l o, -Co;
1 s+2Cm,

5 (5 4200, + ) +(] —Co?)
1 s+2Cm,

s (s+Go) +o’(1-0)
1
s

+2
__ S+, where o, :(on\fl—égz

2 2
(s+Cw,)" + o,

_1 s+Co, B Co,
S (s+§wn)2+(0§ (s+(;(nn)2 +(0§
1 s+Co, Co, o}

s (s+Co)’+0) o, (s+lo,) +o}

The response in time domain, c(t)=L'1 [C(s)]

. C(t):Lfl l_ S+C.!(’0n _C.’O‘)n @y
- s s+l )+, o, +lm ) +wo;
n d d n d
_ [C N .
=l-e C“’"‘.cosmdt—g—".e ot sin o, t
(Dd

Co,

o, 1-¢

o — [cos odt + sin wdt]

e—C(unt

J1-¢

On constructing right angle triangle withC and «/1— ¢, we get

=1- [J1-&*.cos ot +Esin m,t]

1-¢ 1
sin@=y/1-{";c0860 = ¢ ;tanf= g
0

—Co,t
=1- [sin®. cos®,t+cos 6. sinw,t]

1-¢

e o
c(t) =1 ———=sin(w,t +0)
J1-¢




Where 0 = tan™' [_ﬂgczi

The response of under damped second order system for unit step input oscillator before setting to a final value.
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3. Response of critically damped second order system for unit step input

The standard form of closed loop transfer function of second order system is

Ce)_ o
R(s) s*+2Co,s+®]
for critical damping, (=1

C(s) o’ o’

n n

R(s) s +20oste (st )

. . . 1
when the input is unit step r(t)=1, R(s)=—
S

.. The response is s- domain,

®’ 1 o
C(s)=R(s). n =-, o
(©)=R() (s+m,) s (s+w,)

by partial fraction expansion,
o, A B C

n

Ce)= s(s+w,)’ ::Jr (s+w,) " (s+w,)

A(s+®,)’ +Bs+Cs(s+0,) = o,’
puts=0, 0’ A=’ =
put s=-0,, -0,B=0’=

Comparing the coefficient of s,

A+C=0=[C=—1

_'_C(S):1+L“2+__1
s (s+w,) s+o,



The response in time domain c¢(t) =L [C(s)]=L" l+ L"z __
s (s+w,) s+o,

ct)y=1-m,te " —e ™"

e =1-e' (1 +o,0)|

OV

The response of critically damped closed loop second order system for unit step input, has no oscillations.
4.Response of overdamped second order system for unit step input.

The standard form of closed loop transfer function of second order system is

C(s) o

n

R(s) s +2(0.s+0

For over damped system C>1, the roots of the denominator of transfer function are real and distinct. Let the roots

of the denominator be s,,s,

s, 8, =—C0, ioon\/(;z_—: —[Cmn tw, ¢ —IJ
Lets, =—s,, and s, = —s,
s, =Co, —mn\/ﬁ

s, =Co, + o, \/Qz_—l

The closed loop transfer function can be written in terms of s; and s, as

CGs) o’ o’

n n

R(s) S +2§mns+wi B (s+s,)(s+s,)

For unit step input r(t)=1 and R(s)=1/s
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. = O)n = v
- C(s) =R(s) (5+8)(s+5,)  S(s+8)(5+S,)

by partial fraction expansion
o,’ A B C
+

n —

s(s+s,)(s+s,) s s+s, S+s,

A(s+s,)(s+s,)+Bs(s+s,) +Cs(s+s,) =0)n2

put s=0, s,5,A =’

2 2
A:(D—n: (Dn
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Put s=-s;

B. S](_Sl+52)= (Di

put s=-s,

C=(-s,)(=s, +s)=0,"

2
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n

_SZ(SI - Sz)
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1 ® 1 1 Q) 1 1
S C(s)=—— L + L

S 2JC2—1 8 (8+s) 271 8, (s+3;)
The response in time domain, c(t)

=L |io—2 L 1 o 1 1
S 2JE2—1 8 (8+s) 21 8, (s+3,)

0} 1 0] |
c)=1-—F—"L—=—"—e . —e ™

N NG

—s;t —$,t
c(t):l—L(e——e—J
wfe—ils, s,

The response of over damped closed loop system or unit step input has no oscillations, but it takes longer time for
the response to reach the final steady value.

5. What are the time domain specifications? Define them
Time domain specifications

The transient response characteristics of a control system to a unit step input is specified in terms of the following
time domain specifications

Delay time(ty)

Rise time (t,)

Peak time (t,)

Maximum overshoot (M)

Settling time (t)

. Steady state error ()

e Delay time(ty) is the time required to reach at 50% of its final value by a time response signal during its
first cycle of oscillation.

R



e Rise time (t,) is the time required to reach at final value by a under damped time response signal during its
first cycle of oscillation. If the signal is over damped then rise time is counted as the time required by the
response to rise form 10% to 90% of its final value.

e Peak time (t,) is simply the time required by response to reach its first peak i.e the peak of first cycle of
oscillation, or first overshoot.

e Maximum overshoot (M,) is straight way difference between the magnitude of the highest peak of time
response and magnitude of its steady state. Maximum overshoot is expressed in terms of percentage of
steady-state value of the response. As the first peak of response is normally maximum in magnitude,
maximum overshoot is simply normalized difference between first peak and steady- state value of a
response.

e  Settling time (t;): Time required for a response to become steady. It is defined as the time required by the
response to reach and steady within specified range of 2% to 5% of its final value.

e  Steady state error (e) is the difference between actual output and desired output at the infinite range of
time

i i/_:’ﬂ.l]:'x

0or
0.0

6. Derive the expressions for time domain specifications of a second order system subjected to a step input

(April/May 2019)

Expression for Rise time t;

Transient response of second order system is given by



sin(w,t +0)
1-¢

At rise time c(t)=1

—Cw,t,
=1=1-—F—.sin(w,t, +0)
w/l 7
o Sents

———=.sin(w,t, +0) =0

«/1 -
equation will get satisfied if
sin(w,t, +0) =0;
= (w,t, +0)=nr where n=1,2...
Let n=1
ot +0=1m

-0

*r

@,
Expression for Peak time t,:

Transient response of second order system is given by

—o,t

_(;2

1_ 2
Where 0 =tan™ = CC

(¢}

c(t)y=1-

sin(o,t +0)

—_

As at t=t,,, c(t) will achieve its maxima, according to Maxima theorem.

dc(t) |7 —o
d

So differentiating c(t) w.r.t t, we can write

ot ot

——.(—Cw,)sin(@,t +0) +| ——
Ji-¢2 ‘ Ji-¢2

%c(t) =0= cos(w,t +0)w, =0



substituting ®, = o, \/1-¢
C(D e—Qomt ) e—gmnt
=2 sin(w,t+0)—

Ji-¢ ’ Ji-¢
Esin(o,t +0) —1-&* cos(w,t +0) =0

Ji-¢
4

1 I_CZ
o

o, [1-C* cos(,t+0) =0

Stan(o,t+0) =

Now, 0 =tan~

=tan0

1-¢
¢
tan(o,t +06) = tan 6
from trignometric formula,
tan (nt +60 ) =tan O
o,t =nm wheren=1,2,3
But t, and required for first peak overshoot n=1

o,t, =7

T T

{t =—=

BTN

Expression for maximum peak overshoot(%Mp)

[ PPV



M, = 1-——sin(w,t, +6)~1
> P
1-¢
eCwnTp
M, =- E sin(o,t, +0)
1-¢
T L.
but t,=—, substituting
O‘)d
_ Qm“T',
M = sin(w+ 0)

p [_I_QQ

Now, sin(rt+0)=-sin (0)

efgo)ntp
M, = - sin O
1—
S 1
1_ 2
O=tan'X, X= 5 1- Cz
¢
X
— =tan0 0
1
. X .
sin 0 = and substitute value of X
JI+X?
—Coytp
M, ==
1-¢
substitute t, = I
Cod
__&n
Y T

p
Expression for setting time t;

The setting time t; is the required by the output to settle down within 2% of tolerance band. So, tsis the time
when output becomes 98% of its final value and remains within the range of 2 %

c(t) at (t=t ) =0.98

Now at t= t;, the transient oscillatory term completely vanishes. The only term which controls the amplitude
of the output within +2% . Hence value of t;is obtained considering only exponentially decaying envelope,

neglecting all other terms.
c(t) at (t=t)=1- "

0.98=1-¢%"



e~ =0.02

In practice the settling time is assumed to be

t,= 4 =4T for 2% tolerance
- Go,
1
where T=—— is called constant of system

0]

n

similarly for +5% of tolerance band.

c(t) at (t=t,) =0.95
0.95=1-¢ "
L2995 3

: ~ - =3T
l CO)H Cwﬂ

7. Discuss the effects of P, PI, PD and PID Controllers Nov/Dec 2015, May/June 2016, Nov/Dec 2016,
Nov/Dec 2019

Controllers: A Controller is a device introduced in the system to modify the error signal and to produce a control
signal.

The controller modifies/improves the transient response of the system
The different types of controllers are

Proportional controller(P controller)
Integral controller (I controller)

PI controller

PD controller

PID Controller

Proportional controller (P controller)

e The proportional controller is a device that produces a control signal, u(t) proportional to the input error
signal e(t).
In P-controller , u(t) o e(t)
U =Kyet).....oooon )
Where K,, is the proportional gain or proportional constant On taking Laplace transform to (i)
U(s)=K,E(s)
U(s) _
Es) 7
Equation (2) is the transfer function of P controller
- The proportional controller amplifies the error signal by amount K,
- The introduction of controller on the system increases the loop gain by an amount K,



- The increase in loop gain improves steady state tracking accuracy, disturbance signal rejection and
relative stability and also makes system less sensitive to parameter variation.

sed 2
el 5y Gy

KP = 55+ 28wy}

2

®
H — n
GEH() s(s+2Cm,)
Cs) _ ®,

R(s) s> +200 S+
Where € is damping ratio and @, is undamped natural frequency.

For steady state response,

K, =lim_,, G(s)H(s) =o0; e =0
K, =lim_,;sG(s)H(s) = &;e“ = Z—C =constant
‘ 20 7 o

If transient response is to be improved, damping ratio must be changed.
In general good time response demands,
= Less settling time
= Less overshoot
=  Less rise time
= Smallest steady state error
- Increasing the gain K, to very large values, steady state error may be reduced but due to high gain, settling

time and peak overshoot increases and this may lead to instability of the system
- Drawback : it leads to constant steady state error

Integral controller (I controller)

The integral controller is a device that produces a control signal u(t) which is proportional to integral of the
input error signal [e(t)]

In I controller, u (t) « Ie(t)dt

u(t) =K,e(t)dtmnrrreeennn... )

Where K; is the integral constant



. . E
On taking Laplace transform to (i) U(s) = K, EG)
S

Ues) _K;
B~ 2)

Eqn(2) is the transfer function of I controller

The integral controller removes or reduces the steady state error without need for manual reset. Hence 1
controller is called automatic reset.

Drawback: it may lead to oscillatory response of increasing or decreasing amplitude, which is
undesirable and the system may become unstable.

2
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n |
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PI Controller

The proportional plus integral controller produces an output signal consisting of two terms, one proportional to error
signal and the other proportional to the integral of the error signal

In PI Controller, u(t) o [e(t) + je(t)dt]

u(t =K, e() +K, j e(t)dt

KP
u(t) =K e(t) + E j e()dtiiiin. )

K
e T . . . . .
where K, = . K, is the proportional gain and T; is the integral time.

On taking Laplace Transform to (1),

Uls) = K E(s) + o EG)
P T s

i

KP
=E()| K, + L

i

S

i

& =K |:l + L:| ........................... 2)
Us) °| Ts

1
=E(s)K, {1 + T—}



Equation (2) is the transfer function of PI Controller

The advantages of both P controller and I Controller are combined in PI controller. The proportional control action
increases the loop gain and makes the system less sensitive to variations of system parameters.

The integral control action is adjusted by varying the integral time. The change in value of K, affects both the

proporational and integral parts of control action. The inverse of the integral time Tj is called the reset rate.

w5

5(s+2{w, )

Effects of PI Controller:

K.
(K, +—Ho,
S

G(s)=—————
®) s(s+28w,)

Assuming K =1,

K.\ »
I+ @n (K. +5)o?
G(s)=n——t— = T2
s(s+2Lw,) s (s+2lm,)
i.e system becomes TYPE2 in nature
Cs) (K, +S)(,02n
R(s) s'+2lm,;s’ +o’ s+K o’

i.e it becomes third order.

As order increases by one, system relatively becomes less stable as K; must be designed in such a way that system

will remain in stable condition. Second order system is always stable.

Hence transient response gets affected if controller is not designed properly. While,

For steady state response,



K, =lim_,, G(s)H(s) =0; e, =0
Kp =lim_,,sG(s)H(s) = ;e =0

Hence as type is increased by one, error becomes zero for ramp type of inputs, i.e., steady state of system
gets improved and becomes more accurate in nature.

Hence PI controller ha following effects:

It increases order of the system

It increases the TYPE of the system

Design of K; must be proper to maintain stability of system. So it makes system relatively less stable.
Steady state error reduces tremendously for same type of inputs.

B2 2\ Z

In general PI controller improves steady state part affecting the transient part.
PD Controller

The proportional plus derivative controller produces an output signal consisting of two terms: one
proportional to error signal and the other proportional to the derivative of error signal.

In PD Controller, u(t)o [e(t) + di e(t)}
t

u(t) =K e(t) + K Tie(t)eiiiinnn. )

Where K is the proportional gain and T, is the derivative time

On taking Laplace transform to (i),

U(s) = K, E(s)+ K, T,sE(s)

Equation (2) is the transfer function of PD Controller.

The derivative control acts on rate of change of error and not on the actual error signal. The derivative control is
effective only during transient periods and so it does not produce corrective measures for any constant error. Hence
the derivative controller is never used alone, but it is employed in association with proportional and integral
controllers.

The derivative controller does not affect the steady state error directly but anticipates the error, initiates an
early corrective action and tends to increase the stability of the system.

It amplifies noise signal and may cause a saturation effect in the actuator.

The derivative control action is adjusted by varying the derivative time. The change in the value of K,
affects both P and D parts of control action. The derivative control action is called as rate control.
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Effects of PD Controller:

K (1+sT,))®’
G(s) = M
s(s+2Cw,)
Assu min ng =1,
2
G(s) = (1+sT)o;
s(s+2Cw,)
C(s) (1+sTd)(oi

R(s) s +s[20o, + 0 T, ]+

Comparing the denominator with standard form, «, is same as P type controller.
20'o, =200, +o.T,
e

. . - o, T
Because of this controller, damping ratio increases by factor ——%

For steady state response,

Kp = llm G(S)H(S) =05 ess = 0

s—0
2

n

4 o,
Kp =lim_,,sG(s)H(s) = 2—2;6ss =

As there is no change in coefficients, error also will remain same. Hence PI controller has following effecs:

It increases the damping ratio
o, for system remains unchanged.

TYPE number of the system remains unchanged.
It reduces peak overshoot

It reduces settling time

Steady state error remains unchanges

2 20 2 28 2\Z



In general PD controller improves transient part without affecting steady state
PID controller

The PID controller produces an output signal consisting of three terms: one proportional to error signal, another one
proportional to integral of error signal and that one proportional to derivative of error signal

In PID controller, u(t)cfe(t)+ Ie(t)dt + %e(t)]
U)=K e(t) + 5je(t)dt +K.T ie(t) M
=K, T Ta g€

Where K, is the proportional gain, T; integral time and Ty is the derivative time.

On taking Laplace transform to (1),

K
UGs) = K E(s) + T"@ +K,T,E(s)
; S

i

UGs) =E(S)K, {1 +TL +Tds}

U(s) 1
— L = K[+ TSl 2
By b g @

i

Equation (2) is the transfer function of PID controller.

The combination of proportional control action. Integral action and derivative control action is called PID
control.

The proportional controller stabilizes the gain but produces a steady state error
The integral controller reduces (or) eliminates the steady error.

The derivative controller reduces the rate of change of error.
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Problems

1. A system has the following transfer function
C(s) 20
R(s) s+10

Determine its unit impulse and unit step response with zero initial conditions.

Sol:
a) Unit impulse input
For unit impulse input R(s)=1

CGs) 20
R(s) s+10
20
C(s) =R(s
®) ()s+10
_, 20
" s+10

Time Response c(t)=L"[C(s)]

[ 20
CG)_L‘[S+10}

c(t) =20e™™

b) Unit step input
For unit step input, R(s) =1/S
C(s) 20
R(s) s+10

20
s+10

Response in ‘s’ domain C(s)=R(s)



(a)

1 20

§)=—
s (s+10)

A
=—+
s s+10

A(s+10)+Bs =20
comparing coefficients of s,
A+B=0 — (1)

comparing constant terms
10A=20 =

substituting A and B

2 2
C(s)=—-
®) s s+10

Response in time domain c(t) = L'[C(s)]

A[2] a2
e =L L} L L+10}

c(t)y=2-2e""

Obtain the unit step response and unit impulse response of the unity feedback system having open loop
transfer function

[by partial fraction expansion

o) = 10
s(s+2)

Sol Given G(s) = H(s) =1

s(s+2)

Cis)  Gf(s)
R(s) 1+G(s)

The closed loop transfer function

10
C(s)  s(s+2) 10
R(s)_1+ 10§ +2s5+10
s(s+2)
CGs) 10

R(s) s”+2s+10
Unit step input
For unit step input, r(t) =1, R(s)=1/s

10
Response in s domain C(s) = R(s) ——
P ®) ®) s +2s+10

1 10
Cs)=— —
®) s s7+2s+10



c(s):é+2135—+c
s s +2s+10
A(s* +2s+10)+Bs*+Cs =10

comparing constant terms

10A=10=[A =1]

comparing the coefficients of s terms

2A+C=0 =

Comparing the coefficients of s7,

A+B=0-

[by partial fraction expansion]

1 s+2
SO =
® s s*+2s+10
1 s+2
s s +2s+1-1+10 R ® — e sin ot
1 s+2 (s+a)’ +o’
S (S + 1)2 +9 L’l s_{_—a _ e—at N
_1 s+l 1 (s+a)’ + o’
s (s+1D*+9 (+D*+9
1 s+l 3
s (s+D*+9 3((s+1*+9)
Response in time domain c(t) = L™ [C(s)]
c(t)=1-e"cos3t —%e" sin 3t
c(t) =1-e'[cos3t+0.33sin 3t]
b)Impulse response
for impulse input, R(s)=1
10
L CG)=R(6)——
©) ( )52 +2s+10
10
Cs)=——n—
(©) s> +2s+10
10
Co)=—5—5
(s+1)"+3
c(t) =L'[C(s)] L' —2 |=e*sinot
(s+a) +o
NUNE
3 (s+1)* +3?
=3.33 ¢'sin 3t

lc(t) =3.33 ¢ ' sin 3|

3. A positional control system with velocity feedback is shown in fig. What is the response of the system for unit
step input?



Ree) Ces>
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Sol:

The closed loop transfer function is

Cs)  G(s)
R(s) 1+G(s).H(s)
given G(s) = 512) H(s)=0.1s+1
100
CCs) s(s+2)
RGS) 14100 6 1541)
s(s+2)
100
s(s+2)
Ts(s+2)+100(0.1s +1)
s(s+2)
100 100

TS +25+10s+100 s’ +125+100
The characteristic polynomial is s> +12s+100

—12+/144—4x100

2

roots are s;s, =

_—12+jl6
2
=6+ 8

The roots are complex conjugate. The system is under damped. So the response of the system will have damped
oscillations.

100
The response in s-domain C(s) = R(s) —
p ®) ®) s +12s+100

Since input is unit step, R(s)=1/s



1 100
O e ——
® s s +12s+100
A Bs+C . . .
S oh [By partial fraction expansion |

s s”+12s+100
A(s* +125+100) + Bs* + Cs =100
comparing the constant terms,
100A=100 =
comparing the coefficients of s,

12A+C =

comparing the coefficients of s°,

A+B=0=[B=-1

.'.C(s)=1+zs+—12
s s +12s+100
1 s+12
Ts sP+125+36+64
1 S+6+6
TS (s +6)2+8
1 S+6 6

s (5+6)2+8 (s+6)+8
1 s+6 6 8

s (5+6)°+8 8(s+6)>+8

The time domain response is obtained by taking inverse Laplace transform of C(s)

. Time response, c(t)=L" {C(s)}

o(t) =L 1 s+6 6 S
s (s+6)*+8 8(s+6)"+8

6 h
=1-e® cos8t— = e * sin 8t

c(t)=1-e™ [gsin 8t +cos 8t}

4. Find all the time domain specifications for a unity feedback control system whose open loop transfer function is

given as G(s)= £
s(s+6)
. 25
The open loop transfer function G(s)= H(s)=1
s(s+6)
Cs) _ G(s)

The closed loop transfer function =
R(s) 1+G(s).H(s)



25

CC(s) s(s+6) 25 25

"R(s) 1o 2 | s(s+6)+25 s? +6s+25
s(s+6)

C(s) 25

R(s) s>+65+25
The characteristic equation is s> +6s+25=0
By comparing the equation with standard form s> +2{m s+’ =0, we get

20w =6
0 =25 S
6 6

= = =——=06
@ =3 ¢ 2xm, 2x5

0, =0, \1-C* =5v1-0.36 = 4rad / sec

J-c Ji-o.
0=tan" (TQJ =tan”' (%} =53.12° =0.92rad.

. t,
1. Rise time W,

2. Peak time t, = T _Ir_ 0.785s

o, 4
3. Delay time t, = 076 _1+0TX06 _ 104
0‘)n
4 4
4. Setting time t, = —— = =1.33s
" Lo, 0.6x5

5. % Peak overshoot %M, :e'w‘/l'?xlOO%
=e—().6xn/x}l—().6z x100%

%M, =9.5%

Results

t, =0.55sec
t, =0.785sec
t, =0.284sec
t, =1.33sec
%M, =9.5%



d’y

5. The differential equation of the system is given by F+5§—y+l6y =16x . Find the time domain specifications
t X

and output response expression.

Sol:

2

The given differential equation % +5 g—y +16y =16x
t X

Taking Laplace transform, we get

$7Y(s) +55Y(s) +16Y(s) =16X(s)
Y(s) 16
X(s) s’+55+16

Comparing with standard form of second order system,

Co)_ o
R(s) s’ +2Lo,s+m, 26w, =5
o =16

€= S 0.625
o, =4rad/sec 2x4

Damping ratio £ =0.625

Natural frequency of oscillation = , = 4rad/sec
Damping frequency o, = o, y/1-’

=4./1-(0.625)

=3.1225 rad/sec

[ [1-0.625
0=tan" TQ —tan 2062 5 5 .8949rad / sec

0.625
Delay time t, = 1%0.76 _ 1+'O720'625) =0.3593sec
Rise time t, = n—0_314-08949 0.719sec
o, 3.1225
Peak time t, = o3 1.006sec

o, 3.1225



%Peak overshoot (M) = e 1€ 5100
— e—(3.14x0.625)/xi§1—0.6252 x100

=8.09%
setting time t, =
4 4
for 2% tolerance, t, = / =———=1.6sec
©/GO, 0.625x4
for 5% tolerance, t, = y = 3 =1.2sec
Co,  0.625x4

Output response of the system

Since { =0.625, it is under damped system. The response of the second order under damped system is given by

efgmnl
c(t) =1——=sin(o,t +0)
Ji-¢
—0.625x 4 xt
=1-—=15in(3.1225t + 0.8949)

\1-0.625"

o(t) =1-1.2810e >*" sin(3.1225t +0.8949)

6. The unity feedback system is characterized as shown in fig. What is the response c(t) to the unit step input. Given
that £=0.5. Also calculate rise time, peak time, maximum overshoot and settling time.

Res

Sol

C(s) G(s)
R(s) 1+G(s).H(s)

The closed loop transfer function

G(s)=L;H(s)=Ks+l
s(s+0.8)
16
CC(s) s(s+0.8) B 16
"R(s)_lJr 16 (Ks + 1)  §7+0.8s+16Ks +16
s(s+0.8)
16

"9 +(08+16K)s+16

By comparing with standard form of second order transfer function



C(s) ©; 16

n

R(s) s +20ms+@ s +(0.8+16K)s+16

24w, =0.8+16K

2Lw, 0.8
o> =16 16
o =4 _ 2x0.5x4-0.8
N 16
CCGs) 16 16

"RGe) 5 +(08+16x02)s+16 s> +4s+16

Output response

The response in S domain, C(s)=R(s). 5————
s"+4s+16

For unit step input, R(s)=1/s

1 16
C(s) =2
© s s?+4s+16

_A Bs+C
s 2 +4s+16
A(s* +4s+16)+Bs* +Cs =16

comparing the constant term,

16A=16 = [A =1]

[by partial fraction expansion |

Comparing the coefficients of s> term

A+B=0=[B=—1|

Comparing the coefficients of s term

4A+C=0=C=-4A——4

1 s+4
C(s)=§—sz +4s+16
_1 s+4
TS sP+ds+4+12
1 s+4
TS (s+2)7 412
1 542 2

s (5427412 (s+2)*+12

1 s+2 2 J12

s (s+2)7+12 J12 (s+2)*+12



Time domain response is obtained by taking inverse Laplace transform, of C(s)

peveq_qalls+2 2 2
e =LICEI=L" 2 (s+22+12 12 (s+2)* +12

=1-e 2 cos/12t — %e’z‘ sin /12t

s
=1-e 2 cos/12t — 2 e sin /12t
23
o(t) =1-e ™ [cos 12t + %e’z‘ sin /12t

Damped frequency of oscillation

0, = 0, [1-C* =41-0.5% =3.464 rad / sec

Rise time t, = -0 = n-1047 =0.6046sec
®, 3.464
/] 2 Iy
where 0=tan _C =tan"’ & =60° =1.047radian
g 0.5
Peak time t, = Tr__T* _ 0.907 sec
o, 3.464

. - e A
% Maximum overshoot, % M, = e ="Vi= %%

— e—o.5xn/«]1-.052x100%
=16.3%
Setting time t;=
3
for 5% error, t, =3T = —— = =1.5sec
' Co, 0.5x4
4
for 2% error, t, =4T = b, W =2sec
’ Co, 0.5x4

7. The unity feedback control system is characteristic by an open loop transfer function G(s)=K/[s(s+10)].
Determine the gain K, so that the system will have damping ratio of 0.5 for this value of K, determine peak
overshoot and peak time for a unit step input.

Sol

The closed loop transfer function is given by



Cis)  G(s)
R(s) 1+G(s).H(s)

G(s) = L,H(s) =1

s(s+10)
K
CCGs)  ss+10) K
TR(G) K  §+10s+K
s(s+10)

The standard form of second order equation of a closed loop system is

C(s) ©’

R(s) - s+ 28w, s+ (x)i
comparing these two equations,
o’ =K=wn, =JK

5
20w, =10 =—
g n C \/l?
for =05, K=22 = 2__100
2> 025
K =100

w0, =JK=4100=10

(b) Peak time( t »)

T Y T

t, = m—d = o \/1_(;2 = 10\/1_(0'5)2 =0.363sec
%M, =16.3%
t, =0.363sec
8. The open loop transfer function of a unity feedback control system is given by G(s)= _K where K and T are

s(sT +1)

positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step
response of the system is reduced form 75% to 25% APRIL/MAY 2017

Sol
The closed loop transfer function is given by
Cis) _ G
R(s) 1+G(s)
s) =
s(sT+1)
K
CC(s)  s(sT+D) K _ K/T
o = =— =
Res) , K Ts* +s+K s2+is+E
s(sT+1) T T

Comparing this with standard second order system equation, the



C(s) o,

n

R(s) s> +200,s+0

C —
20) T 2\/KT
Let the peak overshoot M, correspond to € =G, and M, be the peak overshoot for £=C, and
corresponding gains be K, and K, respectively
M, =e o™V = 0,75
taking natural logarthims on both sides,

ST 10075 = -0.2877
JI-¢

from which £, =0.091
Iy,

M,, =e ="V 20,25
taking In on both sides,

5T 1h025= 13863
JI-¢

J1-¢2 =2.266¢,

g,=04
\/_ and 00— \/_ since T is same in both the cases

G K, (009 1
¢ K, (04 194
1
19.4

(on)|K, =

1

Hence the original gain has to be reduced by factor 19.4 to reduce the overshoot from 75% to 25%

9. For a unity feedback control system, the open loop transfer function G(s)=[10(s+2)]/ s*(s+1) find
1. The position, velocity , acceleration error constants

2 1
2. The steady state error, when R(s)= E -+ 3—3
S s S

Sol

10(s +2)

GE)= s?(s+1)

. Hs)=1

1. Position, velocity and acceleration error constant



Position error constant,K = Lt0 G(s)
10(s+2)
== =%
=20 57 (s+1)
Velocity error constant, K, = LtosG(s)
10(s+2)
=. 2%
20 §7(s+1)
Acceleration error constant, K, = Lt0 s°G(s)
2106 +2)
=20 g (s+1)
Lt 10(s +2) _ 10x2 _
>0 (s+1) 1

20

(2) To find steady state error

The error signal in s domain E(s) = _R®
1+ G(s).H(s)
3 2 1 10(s +2)
RS)==—-=+—, s)=——;H(s) =1
(®) s s 387 ) s*(s+1) (®)
3.z, 03 2,1
2 3 2 3
E(s)=S_ 8 3 _ s s 38
® 10s+2)  s*(s+1)+10(s+2)
s*(s+1) s’ (s+1)

3 s*(s+1) 2 s*(s+1) e s’ (s+1)

s s+ D+10(s+2) | s*|s*G+D+10(s+2) | 38| s*(s+1D)+10(s+2)
L 3s%(s+1) ~ 2(s+1) B (s+1)

50 | s2(s+ D) +10(s+2) s*(s+D)+10(s+2) 3s(s>(s+1)+10(s +2))

=0-0+ .1
60 60
1
Steady state error |e =—
- 60
C Ks+b
10. Consider a unity feedback system with closed loop transfer function ©) = ZS— Determine the transfer
R(s) s“+as+b
. o o (a-K)
function G(s). show that the steady state error with unit ramp is given by 5

Sol

For unity feedback system, H(s)=1



The closed loop transfer function, M(s)= &
R(s)
_Cs) . GG6s) _ Gs)

M(s)= = =
R(s) 1+G(s).H(s) 1+G(s)

M(s) = —S®)
1+G(s)

G(s) =M(s)(1+G(s))
G(s) =M(s) + M(s).G(s)
G(s) —M(s)G(s) = M(s)
G(s)(1-M(s)) = M(s)
M(s) M Ks+

b .
1-M(s) )= s’ +as+b (given)

G(s) =

.. open loop transfer function
Ks+b
G(s)= M(s) _ s*+as+b _ Ks+b
I-M@s) _ Ks+b (s*+as+b)—Ks+b
s’+as+b
_ Ks+b  Ks+b
P +(@-K)s  s(s+(a-K)

Velocity error constant, K, = Lt0 sG(s)H(s)
= Lt0 sG(s)
g Ks+b b
>0 s(s+(a—K)) a-K

With velocity input, steady state error,

e§<
T K b

Hence proved

K(s+2)

11. For a unity feedback control system having open loop transfer function ———
s(s+5)(4s+1)

The input applied is r(t)=1-3t. Find the minimum value of K. so that the steady state error is less than 1.

Sol



K(s+2)

G(s)=—————= : H(s)=1
= 106D ®
Error constants
K =Lt G(s)H(s) = Lt M =
LN s205(s+5)(4s +1)
K(s+2)

K, = Lt sG(s)H(s) = Lt s ————
s=>0 s=0 s(s+5)(4s+1)
K(s+2) 2K

T (+5@s+D) 5

Total steady state error due to r(t)=1+3t

1 3

€y = +—
" U1+K, K,

1 3 3 3
=—+—:O+_:_
1+ Ek 04K 04K

5

e, <l(given) = Oi <1

= For steady state error to be less than 1

12. Determine the type and order of the system with the following transfer function

s+4
(s=2)(s+3)
Sol: order is 2
Type number 0

ey

10
$'(s” +2s+1)
Sol: order is 5
Type number 3

@)

*INCLUDE THIS * ROOT LOCUS

1. Sketch the root locus of the system whose open loop transfer function is G(S) = .. Find the

s(s+2)(s+4)
value of K, So that the damping ratio of the closed loop system is 0.5

Solution:

Step 1: To locate poles and zeros

The poles of open loop transfer function are the roots of the equation s(s+2)(s+4)=0



Poles are lying at s =0, -2, -4.
Let us denoted poles p, =0,p, =-2,p, =4
Step 2: To find the root locus on the real axis

The root locus starts from pole p; = 0& terminal at p, = -2 and it form the part of root locus and
the root locus starts from p; & the terminates at open loop zero at infinity.

Step 3: to find asymptotes and centroid

+180°(2q +1)
angle of asymptotes =— = q=0,1,2,3...n—m
n—m
Heren=3,m=0. -.q=0,1,2,3.
+ o
when q =0, o, = _1380 =+60°
+ o
when q =1, o, = 1803 _ g0
+180°
when q=2, ¢, = 200X5 _ 3000 - 10

. sum of poles—sum of zeros
Centroid = P

n—m
L 0-2-4-0
3

2

Oa

Step 4: To find the break away and break in points

‘ G(s)
The closed loop transfer function = =

R(s) 1+ K s(s+2)(s+4)+K
s(s+2)(s+4)

The characteristic equation is given by



s(s+2)(s+4)+K:0
s(sz+6s+8)+K:0
$*+6s>+8s+K=0

K :—[s3 +6s° +8s}
i—fz[sz+125+8]

K
put i—zO:Ssz+125+8:0
s

—12+£4/12> —4x3x8

s = =-0.845 or —3.154
2x3

Check for K;

When s=-0.845, the K is given by K = —[(—0.845)3 +6(-0.845)" +8(—O.845)} =3.08 Since K

is +ve and real for s = -0.845, this point is actual break away point.
When s = -3.154, the value is given by K = —[(—3.154)3 +6(-3.154)" +8(—3.154)] =-3.08

Since K, is negative for s =-3.154, this is not a actual breakaway point.
Step 5: To find angle of departure
since there are no complex pole (or) zero, there is no need to find angle of departure
Step 6: To find the crossing point imaginary axis.
The characteristics equation is given by:
s> +6s* +8+K=0
Put s =jo

(jo) +6(jo) +8(jo)+K=0
—jo’ =60 +8jn+K =0

Equating imaginary part to zero,

—jo’ + 8w =0

—jo’ =—j8w

© =8=m=+8
o=12.8

Equating real parts to zero



60’ +K=0
K=60>=6x8=48

The crossing point of root locus is +j2.8

The value of K corresponding to this point is K = 48. Thus is the limiting value of K for stability.

The complete root locus sketch is shown in fig. The root locus has three branches. One branch starts at the
pole at s = -4, travel the ‘-ve’ real axis to meet the zero at infinity, the other two root locus branches starts
at s = 0 and s = -2 & travel the —ve real axis breakaway from real axis at s= -0.845, then cross imaginary
axis s =1j2.8 & travel parallel to asymptotes to meet zero at infinity.

To find the value of K corresponding to G = 0.5
Given that G = 0.5
cos®=0.5=0=cos™ 0.5=60°

Draw a line OP, such that the angle between line OP & -ve real axis is 60° (6 = 60°)

The meeting point of OP and root locus is s4
k ats=sy4

Product of length of vector from all pole

_ tothe points =,

~ Product of length of vector from all zeros
to the point s = s,
_xlyxly 1.3x1.75%3.5
1 1

=796L 8
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K
2. The open loop transfer of a unity feedback control system is given by, G(s) = —75 - Sketch the
S (s +4s+13)
root locus.
Solution:-

Step 1: To locate poles and zeros

Poles

_A++/4% —
=0, 4++4"—4x13
2
=0,-2+j3,-2-j3

Let P =0,P,=—2+j3,P,=-2-j3
Zeros: Nil

Step 2: To find root locus on the real axis there is only one pole at origin. Hence the entire —ve real axis will be a
part of root locus.

Step 3: To find angles of asymptotes and centroid

+180°(2q +1)

n—m

Angle of asymptote ¢, =

Heren=3,q=0, 1,2, 3.

+ O
When q =0, ¢, = _150 =+60°

+180°
When g =1, ¢, === x3=£180°

+ (]
£180 x5 ==£300° = F60°

Whenq=2, ¢, =

+ (e}
Whenq=3, ¢, = _1§0 x 7 = +420° = +60°

Sum of poles - Sum of zeros

Centroid 6, =
n—-m

0-2+j3-2-/3-0 -4
3

-1.33




Step 4: To find the breakaway and break in points

The closed loop transfer function

C(s) _ G()
R(s) 1+G(s)
Kk
C(s) 5(52 +4s+13) K
R(s) K _s(sz+4s+13)+K

s (s2 +ds+ 13)
The characteristics equation is s (s2 +4s+ 13) +K=0

s(s* +4s+13)+K =0
K:—(s2+4s+13)
dK

— =—|3s" +8s+13
| ]

d—K:O:> 3s? +8s+13=0
ds
S_—Si\/82—4><13><3
2x3
s=-1.33£j1.6
Check for K:

When s=-1.33 +j1.6 the value of K is given by

K= —(s2 +4s? +13s)

- _[(—1.33+j1.6)3 +4(-1.33+j1.6)’ +13(—1.33+j1.6)]

# real + ve

Similarly when s = -1.33 — j 1.6, the value of K is not positive & real. Therefore, the root locus has reither
breakaway nor breakin points,
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Draw velocities from all other poles to the pole P,.

90°

123.7°, 6,

To find the angle of departure consider complex pole P,.

Angle of departure from the complex pole P,

Let the angles of these vectors be 0, &6,
Here 0, =180°—tan™' %

Step 5




=180°—(6,+6,)
=180° —(123.7°+90°)
=-33.7°

The angle of departure at complex pole P; is negative of the angle of departure at complex pole A.
Angle of departure at pole Py = +33.7°
Step 6: To find the crossing point an imaginary axis
The characteristics equation is given by
s +4s* +13s+K =0

Puts =jo

(jo) +4(jo) +13(jo)+K =0

=-jo’ —40’ +jl30+K=0
Equating imaginary parts to zeros,

—o*+130=0
-0’ =-130

o’ =13=0=+J13=436
Equating real part to zero

40’ +K=0=K=4w"=4x3=52
The crossing point of root locus is 3.6
The value of K at this crossing point is 52.
The complete root sketch is shown in fig.

K(s+9)

— - Sketch the
s(s +4s+11)

3. The open loop transfer function of 0 unity feedback system is given by, G(S) =
root locus of the system.
Solution:-

Step 1: To locate poles & zeros

Poles



s(sz+4s+11):0
s=0,-2+j2.64,—2— 2.64

Let P1=0, P, = -2+j2.64, P; = -2-j2.64
Zeros:s+9=0&s=-9
LetZ=-9

Step 2: To find root locus on real axis the position of real axis from s = 0 to s= -9 will be a part of root locus & from
s =-9 to s = oo will not be part of root locus.

Step 3: To find angle of asymptotes & centroid angle of asymptotes

180°(2q +1)

n—-m

=

Whereq=0,1,...n-m
Heren=3,m=1,q=0,1,2

180°

Whenq=0, ¢, =+ =190°

180°

Whenq=1, ¢, =+ x 3= 4270 = F90°

180°

Whenq=2, ¢, =+ x5 = +450° = F90°

_ 2 Poles—2 zeors
A n-m
0-2+j2.64-2-j2.64—(-9)
2

Centroid

=25

Step 4: To find break away and break is points

The characteristics equation of the system is



- K(s+9) 0
s(s2+4s+11) -
(s +4s+11)

s+9

d—K=O:>2s3+31s2+6ls:0
dsS

:>s(s2+15.55+30.5)=0
=s5=0,s=-13.157, s =-2.313

There are no valid breakaway (or) break in points.
Step 5: To find the angle of departure
Consider complex pole P,. Draw vectors from all poles and zeros to pole P,.

0, =180°—tan™' 2—264 =127.1°

0, =90°

0, = tan™' 264 =20.7°

’ 7

The Angle of departure from complex pole P, = 180°-(127.1°490°)+20.7° = -16.4°
The angle of departure from complex pole P; is negative of the angle of departure of from complex pole P..
Angle of departure from complex pole P; = 16.4°

Step 6: To find the crossing point of imaginary axis.

) _ 6o

The closed loop transfer function =
R(s) 1+G(s)

The characteristics equation is 1+G(s)

:1+M—
s(s +4s+11)
:>s(sz+4s+11)

=8 +4s +11s+Ks+9K =0
=5’ +4s’ +(11+K)s+9K =0

Puts=jo

(jo) +4(jo) +11(jo)+Kjo+9K =0
—jo’ —4o” + jllo+ jKo+9K =0



Equating imaginary part to zero

—o +llo+Ko=0
o' =(11+K)o
o =11+K )
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Equating real part to zero,

—4w* +9K =0 = 9K =4’
But, @ =11+K

S 9K =4(1+K)=44+4K
9K —-4K =44
5K =44

K=ﬂ=8.8
5

Put K=8.8ineqn (1)

o =11+8.8=19.8
0=1198 =144

The crossing point of root locus = + j 4.4. the value of K corresponding to this point is 8.8.
The complete root locus sketch is shown in fig.

4. Sketch the root locus plot of the system whose OLTF is given as APRIL/MAY 2017

G(s).H(s) =

s(s+4)(s2 +4s+13)

Solution:-
Step 1: To locate poles and zeros

Poles:

s(s+4)(s> +4s+13)=0
s=0,-4,-2+j3,-2—-j3

LetP, =0, P, =-4, P; =-24j3, P,=-2-j3
Step 2: To locate root locus on real axis
The portion between s =0 & s = -4 is a part of the root locus.

Step 3: To find angle of asymptotes & centroid



_ +180(2q +1)

Angle of asymptotes '* p—m

Heren=4,m=0,q=0,1,2,4,

Whenq=0, ¢, :i%x] =445°

180°

Whenq=1, ¢, ==+ x3=+135°

180 x5 =1225°

Whenq=2, ¢, ==

180 x7 =%315°

Whenq=3, ¢, ==

Centroid

2. poles — 2 zeros

A

n—m
(0-4-2+3-2-3)-(0)
4-0

G, =—2
Step 4: To find breakaway and break in points

The characteristics equation is

1+ G(s)H(s) =0

1+ K =0

s(s+4)(s2 +4s+13)

K :—s(s+4)(52 +4s+13)
K =—(s4 +18s> +29s> +52s)
dK

— =0=>4s"+24s" +585+52=0

dsS
=>s=-2,s=-2+j1.58,s=-2-j1.58

The valid break away point are

B] = —2, B2 = —2+j ]58, B3 = —2—j ]58

Step 5: To find angle of departure

Consider complex pole P;. Draw vectors from all other poles to pole Ps.



Now

0, =125°
0, =90°
0, =55°

Angle of departure from

P, =180°—(6,+6, +6;)
= 1800—(125°+90°+55°)
=-90°

Angle of departure from p, = —(—900) =+90°

Step 6: To find crossing point of imaginary axis
The characteristics equation is
s* +8s’ +295* +52s+K =0

Using Routh Hurwitz criterion

st : 29 K ROW 1

s3: 1 8 ' 52 ROW 2

s 125 ! K ROW 3

s ! 52-03K! ROW 4
E : Column 1

i tK----- - ROW 5

For stability K > 0, (from S° row)
And 52— 0.35 K > 0 (from S' row)
K>0,K<148.6
For system to be stable, the maximum value of K is 148.6
The auxiliary equation is 22.5 s> + K =0

22.5s* +148.6=0
s =%j2.56



The crossing point of imaginary axis is 2.56 & corresponding value of K is 148.6

The complex root locus sketch is shown in fig.
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Time response analysis

5. With neat steps, write down the procedure for the construction of root locus.

Procedure for constructing the root locus of the loop transfer function when k is varied from 0 to co.

1. Symmetry: The root locus plot is always symmetrical with respect to the real axis is s — plane

2. Starting and Ending points: the root locus originates from an open loop pole ie, K = 0 and terminates at open loop
zero is K= oo

3. Number of Loci: The number of separate root locus (N) depends upon the number of pole (n) and number of zeros
(m) of the loop transfer function.

N=n forn>m
N=m form>n
Where n is the number of finite poles of G(s) H(s)
M is the number of finite zeros of G(s) H(s)
Thus, the number of separate root locus is equal to the number of poles (or) zeros which ever is greater.

4. Existence on real axis: Some of the loci will lie on the real axis. A point on the real axis if the sum of open loop
transfer function poles and zeros to the point is odd.

5. The number of asymptotic lines: Asymptotes is defined as a line on which the root locus touches at infinity.
For the function, G(s) H(s) having n finite poles and m finite zeros , the no. of asymptotes q = n-m

6. Angle of asymptotes: If the number of poles is greater than the number of zeros n > m; then n — m branches will
move to infinity and these cbranches move along the asymptotes. For root locus, the angle of asymptotes,
L 180°(2q +1)

n—m

=0

A

Where q is a positive integer having values 0, 1, 2.... (n — m)

7. Centre of Asymptote or centroid : The point at which asymptotes intersect on real axis in s — plane is called
centroid & is given by

_ 2. polesof G(s) H(s) — 2 zeros of G(s)H(s)

n—m

Ga



8. Breakaway (or) break in points: Breakaway point is defined as the point at which root locus comes out of the real
axis and breakin point is defined as the point at which root locus enters the real axis.

The breakaway (or) break in points are the points on the root locus at which multiple roots of the characteristic
equation occur.

The following are the steps to determine the breakaway (or) break in points
(a) Find the characteristics equation, 1+ G(s) H(s) =0
(b) Write K in terms of s

. K K
(c) Derive d— & putd— =0
ds ds

K
(d) The roots of equation i— =0 may be breakaway (or) break in points
S

K
If the value of K is positive & real for any root of ((ij—s =0, then the corresponding root is avalid break away (or)

break in points
9. Intersection of root locus with imaginary axis

The point of intersection of root locus with the imaginary axis in the s — plane can be determined by use of the Routh
criterion. Alternatively by letting s = jo in the characteristic equation and separate real part and imaginary part. Two
equations are obtained: one by equating real parts to zero and the other by equating imaginary part to zero. Solve the
two equations for » and K.

The value of ® gives the point where the root locus crosses the imaginary axis & the value of K gives value of gain
K at crossing point. Also this value of K is the limiting value of K for stability of the system.

10. Angle of departure (or) arrival: The root locus leaves from a complex pole & arrives at a complex zero. These
two angles are known as angle of departure and angle of arrival, respectively.

Angle of departure
(from a complex =180° —(

sum of angles to the complexj
pole A)

pole A from other poles

. Sum of angles of vectors
to the complex pole A from zeros.
Sum of angles of vectors

Angle of arrival at
=180°—| to the complex zero A from

a complex zero A
all other zeros

Sum of angles of vectors to
+| the complex zero A from

poles



11. Value of K at a point on the root locus

The value of K at a point S1 on the root locus is determine by measuring the vectors from the poles and zeros of
loop transfer function to point S1 on the root of is given as

n+m

11 |s,+Pj|

j-1

K= ! =L
|G(s)H(s)| H s, +2|

_ Product of all vectors lengths from poles of G(s) H(s) to s,

~ Product of all vectors lengths from zeros of G(s) H(s) to s,



UNIT -3
FREQUENCY RESPONSE AND SYSTEM ANALYSIS
PART-A

1. What is meant by frequency response ? April/May 2017
A frequency response is the steady state response of s system when the input to the system is a sinusoidal signal.

2. List out the different frequency domain specification? (NOV/DEC 2015, MAY/JUNE 2016, Nov/Dec
2017)

The frequency domain specifications are

e Resonant peak

e Resonant frequency
e Bandwidth

e Cut- off rate

e  Gain margin

e  Phase margin

3. Define — Resonant Peak
The maximum value of the magnitude of closed loop transfer function called resonant peak.

4. What is bandwidth?

The bandwidth is the range of frequencies for which the system gain is more than - 3 dB. The bandwidth is a

measure of the ability of a feedback system to reproduce the input signal, noise rejection characteristics and rise

time.

5. Define Cut — off rate ?

The slope of the log — magnitude curve near the cut — off is called cut — off rate. The cut —off rate indicates the

ability to distinguish the signal from noise.

6. Define — Gain margin? (MAY/ JUNE 2013)

The gain margin, K, is defined as the reciprocal of the magnitude of the open loop transfer function at phase
1

G(jo)

a=pc

cross over frequency. Gain margin kg =
7. Define Phase Cross over frequency? April/May 2019

The frequency at which, the phase of open loop transfer function is -180° is called phase cross over frequency
Ope-

8. What is Phase margin? (MAY/JUNE 2013 & NOV/DEC 2011)

It is the amount of phase lag at the gain cross over frequency required to bring system to the verge of instability.
The phase margin, y=180+ ¢y

9. Define Gain cross over frequency? (APRIL/MAY 2011, May 2016, April/May 2019 & Nov/Dec 2019)

The gain cross over frequency ., is the frequency at which the magnitude of the open loop transfer function is
unity.

10. What is Bode plot?



The Bode plot is the frequency response plot of the transfer function of a system. A bode plot consist of two
graphs. One is the plot of magnitude of sinusoidal transfer versus log ®. The other is a plot of the phase angle of
a sinusoidal function versus log ®.
11. What are the main advantages of Bode plot?
The main advantages are:
@) Multiplication of magnitude can be to addition.
(ii) A simple method for sketching an approximate log curve is available
(iii) It is based on asymptotic approximation. Such approximation is sufficient if rough information on the
frequency response characteristics is needed.

@iv) The phase angle curves can be easily draw if a template for the phase angle curve of 1+jw is available.
12. Define Corner frequency? April/May 2018
The frequency at which the two asymptotes meet in a magnitude plot is called corner frequency.
13. Define Phase lag and phase lead?
A negative phase angle is called phase lag. A positive phase angle is called phase lead.

14. What are M circles? (NOV/DEC 2015, MAY/JUNE 2016)

The magnitude M of closed loop transfer function with unity feedback will be in the form of circle on complex
plane for each constant value of M. The family these circles are called M circles.

15. What is Nichols chart?
The chart consisting of M & N loci in the log magnitude versus phase diagram is called Nichol’s chart.
16. What are two contours Nichol’s chart?

Nichols chart of M and N contours superimposed on ordinary graph. The M contours are the magnitude of
closed loop system in decibel and the N contours are the phase angle locus of closed loop s system.

17. What is non — minimum phase transfer function?

A transfer function which has one or more zeros in the right half S — plane is known as non — minimum phase
transfer function.

18. What are the advantages of Nichols chart? (APRIL/MAY 2015)
The advantage are:
1) It is used to find the close loop frequency response from open loop frequency response.

(ii) Frequency domain specification can be determined from Nichols chart.
(iii) The gain of the system can be adjust to satisfy the given specification.



19. What are N circles? (NOV/DEC 2015, MAY/JUNE 2016)

If the phase of closed loop transfer function with unity feedback is o, then N = tan o<. For each constant value
of N, a circle can be drawn in the complex plane. The family of these circles are called N circles.

20. What are the two types of compensation?
The two types of compensation are

@) Cascade or series compensation
(ii) Feedback compensation or parallel compensation

21. What are the three types of compensator? (MAY/JUNE 2013)
The three types of compensators are

1. Lag compensator

2. Lead compensator

3. Lag - lead compensator
22. What are the uses of lead compensator? (NOV/DEC 2011)

The uses of lead compensator are

e  Speeds up the transient response
e Increases the margin of stability of a system
e Increases the system error constant to a limited extent.

23. What is the use of lag compensator? (APRIL/MAY 2011)

The lag compensator improves the steady state behaviour of a system, while nearly preserving its transient
response.

24. When lag — lead compensator is required?

The lag — lead compensator is required when both the transient and steady state response of a system has to be
improved.

25. What is a compensator? (APRIL/MAY 2011)
A device inserted into the system for the purpose of satisfying the specification is called as a compensator.

26. When lag/ lead/ lag — lead compensation is employed? (APRIL/MAY 2011, May/June 2016,
April/May 2017, Nov/Dec 2017)

Lag compensation is employed for stable system for improvement in steady state performance. Lead
compensation is employed for stable/ unstable system for improvement in transient state performance. Lag —
lead compensation is employed for stable/unstable system for improvement in both steady state and transient
state performance.



27. What are the effects of adding a zero to a system?

Adding a zero to a system results in pronounced early peak to system response thereby the peak overshoot
increase appreciably.

28. What are the characteristics of phase lead network? (APRIL/MAY 2015)
e Inlead compensation, if the bandwidth increases, the speed off response will also get increased
e The lead compensator having the phase lead frequency response characteristics which will improve the
transient response and will also extent to steady state response.

29. What is the significant of Nichol’s plot? (NOV/DEC 2016)

The complete closed loop frequency response can be obtained by using Nichol’s chart. All the frequency
domain specification can be obtained by sketching open loop magnitude — phase plot on the Nichol’s chart.

30. What is series compensation? (NOV/DEC 2016)

If the compensator is placed in the forward path of the plant then, the compensation is termed as series
compensation.

PART - B

BODE PLOT

1. For the following transfer function, sketch the Bode plot. Also determine gain margin & phase margin.

G(s)H(s) = 5
s(10+s)(20+5s)
Solution:-
The sinusoidal transfer function G(jo) is obtained by replacing s by jo in the s — domain transfer function.
5
G(s)H(s) =
(HE) sx10(1+0.1s)20(1+0.05s)
B 5
200s(1+0.1s)(1+0.05s)
B 0.025
s(1+0.1s)(1+0.05s)
Puts=jo
. . 0.025
G(jo)H(jw) = - , .
jo(1+j0.10)(1+ j0.05w)
Magnitude plot
The corner frequencies are o, = % =10rad / sec
1
®,, =—— =20 rad/sec
0.05
Corner frequency Slope Change in

Team rad /sec db/dec slope db/dec




0.025
jo - 20 -
1 1
Irjode | ® =70 20 220 — 20 = -40
1 1
1110050 | =505~ 20 220 -40-20 = -60

Choose a low frequency o, such that o, <®, & choose a high frequency ®, such that o, >,
Let o, =0.1rad/ sec, o, =50 rad/sec

Let A=|G(jo)|in dB

Calculating of gain A at o=0,,0,,0,, +®,
0.025
At o=0,, A =20log|——|o=0,=0.1
jo
=20log 002
0.1
=-12.04dB
.02
At o=, A:ZOIOg‘m =0, =10
jo
_ ZOIOg‘o.ozs‘
10
=-52.04db
At =0, A= {slope from o to ®_, xlog O } +Aat o=0,
cl
20
=40xlog T + (—52.04)

—12.04 +(-52.04) = —64.08dB

o)
At o=0, A= {slope from o, tow, x log—h} +Aato=0,
c2

=—-60x log(;—gj + (—64.08) =-88db

o rad/sec A dB
0.1 -12.04
10 -52.04
20 -64.08
50 -88
Phase angle plot

¢=[G(jw)=-90—tan"'0.1o— tan"' 0.05

o rad/sec ¢ =|G(jw) deg
0.01 -90.08
0.1 -90.85
1 -98.57
5 -130.6
10 -161.6




14
15
20

-179.45
-183.17
-198.43

i
-1o0
—20

-uo

—160

From graph,
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gain crossover frequency o, = 0.024rad/ sec

-10D



Phase crossover frequency o, = 14rad/ sec
Gain margin = 57 db
Phase margin y = 90°
2. Sketch the Bode plot for the following transfer function and determine the phase margin and gain
20
margin Gs)=—————
gin G s(1+3s)(1+4s)
Solution:-
The sinusoidal transfer function of G(jo) is obtained by replacing s by jo in the given transfer function.

. 20
G(jo) =~ , -
jo(1+ jBo)(1+ j4o)
Magnitude plot
The corner frequencies, o, = i =0.25 rad /sec
1
W, = 3 =0.33 rad / sec
Corner frequency Slope Change in slope
Term rad/sec db/dec db/sec
20
jo - -20 -
1 1
- =—=0.25
1+ 3o Pa =Y 20 20— 20 =-40
1 1
- =—=0.33
1+ 4o N 20 40 - 20 = -60

Choose a frequency ®, such that ®, <@, and choose a frequency o, such that o, >,

Let ®, =0.15rad/sec and o, = 2rad/sec

Calculation of gain A at ®=0,,0,,®,, +®,
. 20
At o=0,, A =|G(jo)|=20log|—|w=0, =0.15
jo
=20log P =42.5dB
0.15
. 20
At 0=0,, A=|G(J®)|:2010g 015 0=, =0.25
=20log 200 38dB
0.25
At o=0, A= {Slope from o, tow,, xlog Pez } +Aato=0,
cl
=—40x log%+38: 33dB
0.25
At o=, A:{Slope fromo, tow, ><10g&}+Aatm:cocz
c2

=—60x logi +33=-13.95014dB
0.33

o
rad/sec A dB




0.15 42.5
0.25 38
0.33 33
2 -14

Phase angle plot

$=|G(jo)=—-90°—tan"' 3w—tan" 4o

®

rad/sec ¢ =|G(jo)deg
0.15 -146

0.2 -160

0.25 -172

0.33 -188

0.6 -218

1 -238

2 -253

From graph,

Gain cross over frequency, wg. = 1.12 rad/sec
Phase cross over frequency, o, = 0.29 rad/sec

Gain margin = -35db
Phase margin y = 180°+dgc

=180°-240°

= -60°
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3. Sketch the Bode plot for the following transfer function and determine the system gain K for the gain
k2
cross over frequency to be Srad/ sec. G(s)= > APRIL/MAY 2017
(1+0.25)(1+0.02s)

Solution:-

The sinusoidal transfer function G(jo) is obtained by replacing s by (jo) in the s-domain transfer function

Puts=jo



k(jw)’

~G(jw) =
0O = 0.20) 1+ 0.020)
Letk =1
. (jo)*
~G(jw)=
(e (1+j0.20)(1+0.020)
Magnitude plot

The corner frequency are o, = é =5rad /sec

®,, =——=50rad /sec
0.02

Corner frequency Change in slope
Term rad/sec Slope db/ dec | db/deg
. 2

(jo) - +40 -

1 1
1230 9m 0‘)01 == 5
1+j0.20 0.2 -20 40-20=20

1
P YN =——=50
1+j0.020 | 2 "5 20 20-20=0

Choose a low frequency o, such that o, <o, and choose a high frequency o, such that o, >®_,
Let o, =0.5rad/sec and , =100rad/sec
Let A=|G(jo)|indb

Calculating of gain A at o=0w,,0,,®,, +®,
At o=0,, A =20log|(jw)’
=20log(o)’
=20log(0.5)" =—12db
At =0, A =20log|(jw)’|
= ZOlog(m)2
=20log(0.5)" =28db
At o=0,,, A= {slope from o, tow,, xlog Dz } +Aato=0,
cl
=20x log? +28=48db
At o=, A= {slope from o, to o, x log&} +Aato=on,
c2

=0x log@ +48=48db
50
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Table-1

o rad / sec

°—tan"'0.200— tan"' 0.020

Table 2
o = rad/sec $=[G(joo)deg
0.5 174
1 168
5 130
10 106
50 50

i

L

wnd



100 30

Bode plot for the above table 1 & 2 is shown in fig.

To find K
Gain cross over frequency m,. = 5 rad/sec (given) At @ = w,. = 5 rad/sec, the gain is 28 dB.
If gain cross over frequency is Srad/sec, then at that frequency, the dB gain should be zero.

Hence to every point of magnitude plot a dB gain of -28dB should be added.
The value of k is calculated by equating
20 log k to -28 dB

20 log k =-28 dB

20logk = —28dB;k =10 /20;k = 0.0398
ke%),Zs

4. Given G(s)=————— . Find K so that the system is stable with
s(s+2)(s+8)

(a) gain margin equal to 6db (b) Phase margin equal to 45°

Solution:-
Put k =1 and convert the given transfer function to time constant form (or) bode form

-0.2s -0.2s

Gls)= e B e
s(s+2)(s+8)  sx2(1+0.5s)x8(1+0.125s)
0.0625¢ %

" 5(1+0.55)(1+0.1255)
The sinusoidal transfer function G(jo) is obtained by replacing s by jo.
~ 0.0625¢ 102
jol+j0.50)(1+ j0.1250)
Magnitude plot

~.G(j)

The corner frequency are, o, = % =2rad/sec

W, = . 8rad/sec
0.125
Corner frequency Change in
Term rad/sec Slope db/dec slope db/dec
0.0625
jo - -20 -
1 1
o050 | @a=mz=2
1+j0.50 0.5 -20 20— 20 =-40
1 1
PR ®,=——=8
1+j0.1250 0.125 -20 -40 - 20 =-60

Choose a low frequency ®, such that o, <®,, and choose a high frequency o, such that o, > ®,,

Let o, =0.5rad/sec and ®, =50rad/sec

Calculation of gain A at o=w,,0,,®,, +®,

cl?



At o=, A =20log 0'9625 =20log 0.0625) _ -18db
jo 0.5
At o=0,, A =20log 0'9625 =20log 00625 -30db
o 2
At o=0,,, A= {slope form o tow,, xlog Bz } +Aato=0,
cl
8
= —40><10g§+(—30) =—54db
At o=0w,, A:{slope form o, tow, ><10g&}+Aatco:ooC2
c2
=—-60x log%0 +(—54)=-102db
w rad/sec A db
0.5 -18
2 -30
8 -54
50 -102
Phase angle plot

¢=|G(jow) =-0.2x cox@—90°—tan*l 0.50—tan"' 0.125w
T

w rad/sec ¢=|G(jo)deg
0.01 -90

0.1 -94

0.5 -114

1 -134

2 -172

3 -202

4 -226

The above Bode plot for the above transfer function is shown in fig.

To find K

With k = 1, gain margin = 32 db

But required gain margin is 6db. Hence to every point of magnitude plot, a db gain of 26 db is added.

20logk =26
k=107 =19.95
Phase margin y = 180° +¢,
When 7., =45% 0y o = Voo —180°=45°~180° = ~135°
When K = 1, the db gain at ¢, =-135° is -24 db.

The gain must be made zero, to have PM = 45°. Hence to every point of magnitude plot a db gain of 24 db
should be added.
The value of k is calculated by

>
20logk =24;k =10 72,k =15.84
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5. Sketch the bode plot for the following transfer function & determine phase margin

75(1+0.2s
Ge)=—F5"—""= ( )
s(s* +16s+100)
75(1+0.2s) 75(1+0.2s)
O = e 16s4100) =16
(7 +165+100) joof 7,168
100 100
_0.75(1+0.2s)
$(1+0.01s> +0.16s)
Puts =jw
. 0.75(1+j0.2m
Gjo) = — L 020)
jo(1-0.010 + j0.160)
0751+ j0.20)
jo(1-0.010" + j0.160)
Magnitude plot
The corner frequencies are, o, = 1 Srad/sec
o, =, =10rad /sec
Corner frequency Change in slope
Term rad/sec Slope db/dec db/dec
0.75
jo - -20 -
(O L =5
1+j0.20 02 +20 20 +20=0
1
1+0.01w° + j0.16® o,=0, =10 40 0—40 = -40

Choose a low frequency o, such that ®, <o,

Let o, =0.5rad/sec and ®, =20rad/sec

and choose a high frequency ®, such that o, >,

(’0(:2

}+Aatco=wc,

cl

Calculation of gain A at 0 =0,,0,,0, +©,
0.75 0.75
At o=, A =20log|—|=20log—— =3.5db
jo 0.5
0.75 0.75
At o=0,, A =20log|—|=20log—— =-16.5db
jo 5
At o=, A= {slope from o, tow,, xlog
10
= Oxlog? +(-16.5)=-16.5db
At o=0,,

A= {slope fromw,, to o, x log&} +Aato =0,

cl

=40+ 1og% +(~16.5)=—28.5db



w rad/sec A dB

0.5 3.5

5 -16.5

10 -16.5

20 -28.5
Phase angle plot.

0.160
=|G(jo)=tan"0.20-90° —tan' ——— foro<®
$=16(jo) 0.0l "

0.16
=|G(jo)=tan"0.20-90°| tan ' ————— +180° |for® >®
#=IG(jo) ( 1-0.01e’ j "

o rad/sec ¢ =2G(jo)deg
0.5 -88
1 -88
5 -92
10 -116
20 -148
50 -168
100 -174
From graph
(gc = -88°

Phase Marginy = 180° + ¢y
=180 ° - 88°=92°
Gain Margin = + o [As phase plot crosses the -180° at infinity. |G(jw)| at infinity = -co db]
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1
1. The open loop transfer function of a unity feedback system is given by G(s) =—————— .Sketch
s?(1+s)(1+2s)

the polar plot and determine the gain margin and phase margin
Solution



Given that G(s) =

s? (1+s)(1+2s)
1
Puts=jo, G(jo) =
(jo)’ (1+ jo) (1+ 20)
_ 1200
®2Z180°1+ 0> Z tan™" o1+ 4’ / tan ™ 2w
1
G (jw) = Z(—180°—tan™' @—tan' 2
o’ V1 + o> V1 +40? ( )
. 1 1
IG(o)| = =

o’ \1+ 0 1+ 40 (Dz\l(1+(oz)(1+4m2)

1
o2 \1+50° + 40
ZG(jw) =-180° - tan” ® - tan™ 2
Corner frequencies

= 1=11rad/sec

1
1
W = E =0.5rad /sec

Magnitude and phase plot of G(jo)

® |GGw)| ZG(jw)
rad/sec Deg
0.45 3.33 -246
0.5 2.5 -251
0.55 1.9 -256
0.6 1.5 -261
0.65 1.2 -265
0.7 097 =1 -269
0.75 0.8 -273
1.0 0.3 -288
From Polar graph

Gain Margin, Kg= —=0

ol

o0

Phase Margin, y = 180° - 270°
=-90°
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2. The open loop transfer function of a unity feedback system is given by G(s) = ﬁ . Sketch the polar
s(1+s

plot and determine the gain margin and phase margin.
Solution



Given that G(s)=
(5) s(1+s)2

Puts=jo
1 1
o G(ow) = =- ; :
d jo(1+jo)  jo(l+jo)(1+jo)
1
©290°1+ ®* tan" o1+ o> tan"' ®
1

+ Z(-90°-2tan ™" o)

o[i?)

1 1

m(l+mz):co+0)3

IG()| =
£G(jo) =-90° - 2tan” ®
Corner frequencies.
W1 = %= 1 rad / sec

Table Magnitude and phase plot of G(jw)

® |GGw)| £G(jw)
rad/sec Deg
0.4 2.2 -134
0.5 1.6 -143
0.6 1.2 -151
0.7 1 -159
0.8 0.8 -167
0.9 0.6 -174
1.0 0.5 -180
1.1 04 -185
From Polar graph,

Gain Margin kg = 2
Phase Margin y = 21°
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3. Consider a unity feedback system having an open loop transfer function, G (s) =
s(1+0.5s)(1+4s)

Sketch the polar plot and determine the value of k so that (i) Gain Margin is 20db
(ii) Phase Margin is 30°
Solution



k

Given that G(s) =

s(1+0.5s)(1+4s)
Putk =1 and s = jo in G(s)
1
© G(jo)=
(o) = i o 50) (1= o)
1

©290°1+(0.50)" tan" 0501+ (40) Ztan™ 4o

1
oV 1+0.250% V1 +160> (+90° +tan ' 0.5@+tan 40))

= ! L(—90°—tan’1 0.50—tan™ 40))

on1+0.250> 1+ 1601
1
IG(jo)| =
ov1+0.250% V1 +160°

ZG(jo) = —90°—tan™' 0.50—tan™" 4
Corner frequencies

W = i: 0.25 rad / sec

Wy = L=2rad/sec
0.5

32 Table Magnitude and Phase plot of G(jw)

® |GGw)| ZG(jo)
rad/sec Deg
0.3 2.11 -149
0.4 1.3 -159
0.5 0.87 -167
0.6 0.61 -174
0.8 0.35 -184
1.0 0.22 -193
1.2 0.15 -199

From polar plot, k =1
Gain Margin kg = b =2.27
0.44

Gain Margin in db =20 log 2.27 =7.12 db
Phase Margin, y = 180 ° + ¢, - 180° - 165° =15°
To find k
Case (i)
Let Gy be the magnitude of open loop transfer fn G(jw) at -180° with k = 1
Let G4 be the magnitude of open loop transfer function G(jw) at -180° with k = ? & gain margin of 20 db.
Now20log 2 =20 = log 4 = 20~ 1
G, G, 20
= G4 =0.1

The value of k = Ga = 0.1 =0.227
G 0.44

B

k =0.227
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Case (ii)

With k = 1, the phase margin is 15°. This has to be increased to 30°. Hence the gain has to be decreased.
Let 4> be the phase of G(jo) for a phase margin of 30°.

5.30° =180° + g2

$oc2 = 30° - 180° = -150°

In the polar plot the -150° line cuts the locus of G(jw) at point ¢ and cut the unity circle at point D.



Let G¢ be magnitude of G(jw) at point C
Gp be magnitude of G(jw) at point D
From polar plot, G¢c = 2.04

Gp=1

Nowk= o — 1 _ (49
GC

k = 0.49

* INCLUDE THIS *
Compensator design using Bode plots

1. Write short notes on different types of compensation

Types of compensation

Series Compensation or Cascade Compensation
This is the most commonly used system where the controller is placed in series with the controlled

process.
Figure shows the series compensation.
R e ) e i

Controller

e et

Controlled

oll)

process

Series compensation

Feedback compensation or Parallel compensation
This is the system where the controller is placed in the sensor feedback path as shown in fig.

nn en
: +

| Controlled 9(2
| process =
‘
e

Feedback compensation or parallel compensation

State Feedback Compensation

This is a system which generates the control signal by feeding back the state variables through constant
real gains. The scheme is termed state feedback. It is shown in Fig.

")

Controller

xn

Controlled

K

process

ol1)

SR

State feedback compensation

The compensation schemes shown in Figs above have one degree of freedom, since there is only one controller
in each system. The demerit with one degree of freedom controllers is that the performance criteria that can be

realized are limited.

That is why there are compensation schemes which have two degree freedoms, such as:

a) Series — feedback compensation
b) Feed forward compensation



Series- Feedback Compensation

Series-feedback compensation is the scheme for which is series controller and a feedback controller are used.
Figure shows the series-feedback compensation scheme.

_ Contmllcd. oft) w
- 1 Controller . : =
|
- Controller

Series-feedback compensation.
Feed forward Compensation
The feed forward controller is placed in series with the closed-loop system which has a controller in the
forward path. In Fig. Feed forward the is placed in parallel with the controller in the forward path. The

commonly used controller in the above-mentioned compensation schemes are now described in the section
below.

i) e
=1 Controller C‘w ox)

Feed forward controller in series with the closed-loop system.

" Controlled ol1)

process

Feed forward controller in parallel with the controller in the forward path.
2. Realize the lead compensator using electrical network and obtain the transfer function
Lead Compensator

It has a zero and a pole with zero closer to the origin. The general form of the transfer function of the
load compensator is




E, RI E«
k. =
2
E, (S) _ R, _ KRR, + C
E, (s 1
i Rlx—S+R2 R,+—S RR,+—(R, +R,)
R, +L
Cs
_ GsRR, +R,
CsRR, +R, +R,
~ R, (CsR, +1)
(R, +R,)| SRR2
R, +R,

_( R, J CR;s+1
R, +R, [CR1R2S+1]

R, +R,
Subsisting
1=CRy; Bt = %( ‘CZCRI)
+R

1 2

Transfer function
s+1
G(s) =
g Bts+1
3. Realize the lag compensator using electrical network and obtain the transfer function
Lag Compensator
It has a zero and a pole with the zero situated on the left of the pole on the negative real axis. The

general form of the transfer function of the lag compensator is

S+
G(s) - ; :a(rs+1)
St ats+1
ot

Where o> 1, 1> 0.
Therefore, the frequency response of the above transfer function will be

. a(to+1)
G el S el
(J(D) atjo+1

EO(S):L)l(RZ +LJ

R, +R,+— Cs
Cs



R

B

E(s) ol3)
y ot

Lag compensator

-

o

1
E(s) Rt

E(s) R 4R+ L
Cs

(R, +R,)Cs+1

R,C| s+ !
R,C

(R1+R2)C[s+

1 S+
R2 RZC B R2 RZC

Now comparing with

1
S+—
T
G(s)= 1
S+—
(040
11 N
1 RC at (R, +R,)R,C
1_ R, 1 1_1
at (R1+R2)‘E T_ch
oc=R1+R2
R2
Therefore
s+1
Eo(s):l T
El(S) (XS-‘,-L



4. Realize the lag-lead compensator using electrical network and obtain the transfer function
Lag-Lead Compensator

The lag-lead compensator is the combination of a lag compensator and a lead compensator.
The lag-section is provided with one real pole and one real zero, the pole being to the right of zero,
whereas the lead section has one real pole and one real came with the zero being to the right of the
pole.

The transfer function of the lag-lead compensator will be

s+— || s+—
T 13

G(S)— 1
s+— || s+——

oT, B,

Wherea>1, f <1.

Ey(s) (RéJERéJ

E.
) Rlxi+ R2+L R, + !
sC, sC, sC,

(SCR, +1) (sC,R, +1)
sC, sC,

R, , (R,sC, +1) (R;sC, +1)

sC, sC, sC,




(1+sCR,)(1+sC,R,)
B s°C,C,
 RsC, +R,sC, +1+R,R,s°C,C, + R sC,
s’C,C,

3 (1+sCR,)(1+sC,R,)
~s’RR,C,C, +s(R,C, +R,C, ) +1+RsC,

B (1+sCR,)(1+5C,R,)
~ s’R,R,C,C, +5(R,C, +R,C, ) +1+R sC,

CRC,R,|s+ b s+ S
_ CR, C,R,

R,R,CC,|s*+ LS A S O !
R2C2 RICI R2C1 RIR2C1C2

SR (P
ClRl Csz

, 1 1 1 1
st + + + s+
RICI RZCI R2C2 RIRZCICZ

The above transfer functions are comparing with

k)

+—= + +
(X‘Tl BTZ RICI RZCI R2C2

1 1
a1, h RR,CC,

7,=C; Ry
Ty = C2 Rz

(X,BTl Ty = R1 Rz C1 Cz
1
of=1lorP=—
o

Therefore



wherea >1

R,C, i R,C, " R,C, - at, T,

M&N circles

1. Prove that the loci of the constant magnitude of closed loop transfer function is a circle
Constant M circles

Consider the polar plot of the open loop transfer function of a unity feedback system. A point on the
polar plot is given by:

G(jo) =x +jy
The closed loop frequency response is given by

C(jw) _ G(jo) _ x+jy

T j = = =
(i) R(jo) 1+G(jo) 1+x+jy
V2 x> +y’
[Tlio) =——=—
(1+x) +y
let  |T(jo)=M
- x2+y2
(1-1—)()2—i-y2
M? (1+Xx)* + M>y? = x> +y°
Rearranging, we have
X2 (M?- 1) #2xM* +y? (M?-1) = - M? e (a)
, o 2M? 5 M2
Tt TTwe

Making a perfect square of the terms, we have,




M Y
:(mj
2

. . . M 2
Represents a circle with a radius of M1 and centre at (—%,O].

For various assumed values of M, a family of circles can be drawn which represent the above
equation.

These circles are called constant M-circles.

Properties of M-circles:

2

- ,O]. ie., (-0, 0).

1. For M =1, the centre of the circle is at ( Lt —
M-I M

The radius is also infinity

Substituting M = 1 in equation (a), we have

This M = 1 is a straight line parallel to y axis at x = —%.

2. For M > 1, centre of the circle is on the negative real axis and as M — o, the centre approaches

(-1, jO) point and the radius approaches zero; ie (-1, jO) point represents a circle of M = oo,

2

3.ForO<M<1, - " is positive and hence the centre is on the positive real axis.

M* -
4. For M =0, the centre is at (0, 0) and radius is O; ie., origin represents the circle for M = 0.

5. As M is made smaller and smaller than unity, the centre moves from +oo towards the origin on the
positive real axis.

The M circles are sketched in Fig. below



2. Prove that the loci of the constant phase angle of closed loop transfer function is a circle
Constant N circles

Constant N circles are obtained for the points on the open loop polar plot which result in constant
phase angle for the closed loop system. Consider the phase angle of the closed loop transfer

function

ZT(jm)zezéLjy

1+x+jy
—tan' L—gan'
X 1+x

Taking tangent of the angles on both sides of equation. 7.23, we have

y y
1+ y
tan 0 = X 2X ==
1+ y X +y +X
x(1+x)
LettanO=N
Then X yz =N
X +y +Xx

Rearranging, we get,

N (x> +x) + Ny’ —y=0




Represents the equation of a family of circles for different values of N with centre at
L
22N
And Radius =—
2N

These circles are known as constant N circles.

The constant N-circles are shown in Figure. Instead of marking the values of N on the various circles,

value of o = tan™ N are marked so that the phase angle can be read from the curves.
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UNIT-4
STABILITY AND COMPENSATOR DESIGN
PART -A
1. Defined stability

A linear relaxed system is said to have BIBIO stability if every bounded input result in a bounded
output.

2. What is nyquist contour?
The contour that enclosed entire right half of s plane is called nyquist contour.
3. State Nyquist stability criterion. (April/May 2019, Nov/Dec 2019, NOV/DEC 2015 & MAY/JUNE 2013)

If the nyquist plot of the open loop transfer function G(s) corresponding to the nyquist contour
in the s plane encircle the critical point -1+j0 in the contour in clockwise direction as many time as the
number of right half s plane poles of G(s), the closed loop system is stable.

4. Defined relative stability.

Relative stability is degree of closeness of the system; it is an indication of strength or degree of
stability.

5. What will be the nature of impulse response when the roots of characteristic equation are lying on
imaginary axis?

If the root of characteristic equation lies on imaginary axis the nature of impulse response is
oscillatory.

6. What is the relationship between stability and coefficient of characteristic polynomial?

If the coefficients of characteristic polynomial are negative or zero, then some of the roots lies
on the negative half of the s plane. Hence the system is unstable. If the coefficients of the characteristic
polynomial are positive and if no coefficient is zero then there is possibility of the system to be stable
provided all the roots are lying on the left half of the s-plane.

7. What is Routh stability criterion? (APIRL/MAY 2010)

Routh criterion states that the necessary and sufficient condition for stability is that all of the
element in the first column of the routh array is positive. If this condition is not met, the systemis
unstable and the number of sign changes in the element of the first column of the routh array
corresponds to the number of roots of characteristic equation in the right half of s plane.

8. What is limitedly stable system?



For a bounded input signal if the output has constant amplitude oscillation , then the system
may be stable or unstable under some limited constraints. Such a system is called limitedly stable
system.

9. In the routh array what conclusion you can make when there is row of all zero?

All zero rows in the routh array indicate the existence of an even polynomial as a factor of the
given characteristic equation. The even polynomial may have roots on imaginary axis.

10. What is the principle of argument?

The principle of argument states that let F(s) are analytic function and if an arbitrary closed
contour in a clockwise direction is chosen in the s plane so that F(s) is analytic at every point of the
contour. Then the corresponding F(s) plane contour mapped in the F(s) plane will encircle the origin N
times in the anti clockwise direction, where N is the difference between number of poles and zeroes of
F(s) that are encircle by the chosen closed contour in the s plane.

11. What are the two segment of Nyquist contour?
i. An finite line segment C1 along the imaginary axis.
ii. An arc C2 of infinite radius.

12. What are the root loci?

The path taken by the root of the open loop transfer function when the loop gain is varied from
0 to infinity are called root loci.

13. What is the dominant pole? (NOV/DEC 2015, 2016), APRIL/MAY 2017

The dominant pole is a pair of conjugate pole which decides the transient response of the
system. In higher order system the dominant poles are very close to origin and all other poles of the
system are widely separated and so they have less effect on transient response of the system.

14. What are the main significance of root locus?

i. The root locus technique is used for stability analysis.
ii. Using root locus techniques the range of value of K, for as stable system can be determined.

15. What are the breakaway point are break in points?

At break away point the root locus break from the real axis to enter into the complex plane. At break in
point the root locus enters the real axis from then complex plane. To find the breakaway or break in points, from
a equation for K from the characteristic equation and differentiate the equation of K with respect to s. Then find the
roots of the equations dK/dS = 0. The root of dK/dS = 0 are breakaway or break in points provided for this value of
root the gain K should be positive and real.

16. What are asymptotes? How will you find angle of asymptotes?



Asymptotes are the straight line which are parallel to root locus going to infinity and meet the
root locus at infinity.

180°(2q+1)

n—-m

Angle of asymptotes = + q=0,1,2,3,..n—m

N= number of poles
M = number of zeroes.
17. What is the centriod?

The meeting point of the asymptotes with the real axis is called centroid. The centroid is given
by Centroid = (sum of the poles-sum of the zeros)/n-m

N= number of poles
M = number of zeroes.
18. What is magnitude criterion?

The magnitude criterion states that s = s, will be a point on root locus if for that value of s,
magnitude of G(s)H(s) is equal to 1.

., (productlength of vector fromopen loop zeros to the points =s,)

|G(s)H(s)| =K 1

(product length of vector fromopen loop poles to the points =s, )

19. What is angle criterion?

The angle criterion states that s = s, will be a point on root locus if for that value of s, the
argument or phase of G(s)H(s) is equal to an odd multiple 180° .

(sumof theangleof vectors fromzeros tothepoints =s, )—(sumof theangleof vectors frompoles to thepoints =s, ) =+180°(2q +1)

20. How will you find the root locus on real axis? (MAY/JUNE 2016)

To find the root locus on real axis choose the test point on real axis to the right of this test point

is odd number then the test point lie on the root locus. If it is even the test point does not lie on the root

locus.
21. What is characteristic equation? May/June 2016
The denominator polynomial of C(s)/R(s) is the characteristic equation of the system.

22. How the roots of characteristic are related to stability? Nov/Dec 2015



If the root of characteristic equation has positive real part then the impulse response of the
system not bounded. Hence the system will be unstable. If the root has negative real part then the
impulse response is bounded. Hence the system will be stable.

23. What is necessary condition for stability? (MAY/JUNE 2013, 2016 ,APRIL/MAY 2017,
Nov/Dec 2017)

e The necessary condition for stability is that all the coefficient of the characteristic polynomial be positive
e The necessary and sufficient condition for stability is that all of the element in the first column of the
routh array should be positive.
24. What are the requirements of BIBO stability? (Nov/DEC 2016)

The requirement of BIBO stability is that the absolute integer of the impulse response of the system should
take only the finite value.

PART-B

ROUTH HURWITZ CRITERION

1. Construct Routh array and determine the stability of the system whose characteristic equation is

s* +8s’ +18s* +16s+5=0
Solution:
The characteristic equation of the system is , s* +8s® +18s* +16s+5=0

The order of the equation is 4, so it has 4 roots

st 1 18 5 .. Row 1
& 8 16 ... Row 2
s 1 18 5 .. Row 1
s’ 1 2 ... Row 2
s* 16 5 ..Row 3
st 1.7 .. Row 4
s 5 ..Row 5

Column1



S2.1><18—1><2 Ix5-1x0

)

1 1
s?: 16 5
o 16x2-5x1
’ 16
s': 1.7

0. 1.7x5-16x0
| 1.7
% 5

On examining the first column of routh array it is observed that all the elements are positive and there is
no sign change. Hence all the roots are lying on left half of the s plane and the system is stable.

2. By routh stability criterion, determine the stability of the system represented by the characteristic
equation s’ +5s° +2s” +4s* +3s® +8s* +25s+8=0

Solution: Routh array

s’ 1 2 3 2 Row1l
s° 5 4 8 8 ... Row2
s 1.2 1.4 o4 . Row3
st -1.8 6.3 8 . Row4
st 5.6 57 . Row5
2 .

§ 8.1 2 - Row6
st 0.17 o Row7
s’ A N — Row8

Column1

Explanation

35'5X2_1X4 S5x3-1x8 5x2-1x8
5 5 5
s 1.2 1.4 0.4

@ 12x4-5x14 1.2x8-5x04 1.2x8
o 1.2 1.2 1.2
st —1.8 6.3 8




; —1.8x1.4-1.2x63 —1.8x0.4—12x8
’ -1.8 -1.8
s 5.6 5.7

L 5.6x63—(~1.8)x5.7 57x8-0
S

5.6 5.7
s%; 8.1 8

o, B1x5.7-5.6x8
’ 8.1
s': 0.17

0. 0.17x8—-8.1x0
T
s’ 8

Result

There are two sign changes in the first column of the routh array. Therefore 2 roots are
located on the right half of the s p lane & remaining five roots are located on the left half of the
plane. Therefore System is unstable

3. By using routh criterion, determine the stability of the system represented by the following
characteristic equation s° +s* +2s* +2s> +11s+10=0

Solution:

The characteristic equation is s* +s* +2s’> +2s* +11s+10 =0, the order of the equation is
5& so it has 5 roots

Routh array;

s° 1 2 11 ..Row 1
st - 1 2 10 .. Row 2
s? 0—>e -2 ...Row 3
s c -2 ... Row 3
2 .
S 2e+2 10 .. Row 4

(S
s' —(10€* +4 € +4)

B A ..Row 5
(2€+2)

0
S

5 ... Row 6




53'1X2_1X2 1x11-1x10
o1 1
s’ 0 -2
[l replace Oby €

52'26+2 10e-0
e 10
s +2e+2 10
e

(2 e+2)(—2)—10€
1, €
2e+2
€
—4e-4-10¢°
1. f_—mé —4ec—-4
2e+2 - 2e-2

€

-10&®> 4e-4

s%; —2€+2__,10=10
-10e” 44

2e+2

On letting e—> 0 we get

s> 1 2 1 L Row1
st 1 2 0 ... Row?2
s’ 0 2 Row3
SZ
0 o . Row4
1
s 2 Row5
0
s 5 1 .. Row6
Column1

On observing the first column, there are two sign changes. Therefore two roots are
located on the right half of the s plane & remaining 3 roots are located on the left half of the s
plane. System is unstable.



4. The characteristic polynomial of a system is s’ +9s° +24s’ +24s* + 245’ +24s* +23s+15=0 Determine

the location of roots on s plane & hence the stability of the system

Solution:

The characteristic equation is s” +9s° +24s® +24s* 4+ 24s® +24s® +23s+15=0

Routh array

s: 1 24 24 23 ROW 1

s®: 9 24 24 15 ROW 2

Divide s° ROW by 3
s’ 1 24 24 23 Rowl
s° 3 8 8 5 Row2
s’ 1 1 T Row3
st 1 1 1 Row4
s? 0 o Row5
s3 2 1 & . Row5
s’ 0.5 1 @ QF & .. Row6
s' 3 | £ N .. Row7
s’ TR e —— Row8

1°* column

s5'3X24_8X1 3x24-8x1 3x23-5x1

’ 3 3 5
$ 213 21.3 21.3
1 1 1

s4'1X8_1X3 Ix8—1x3 1x5-0x3

s

1 1 1
st 5 5 5
1 1 1

g3.1x1—1><1 1x1-1x1
B 1
s’ 0 0



The auxiliary polynomial

A=s'+s+1

9A e 42
ds

=4 2
= 2 1

52'2X1_1X1 2x1-0x1
o2 2
s?: 0.5 1

N 0.5x1-1x2
0.5
s'; -3

0. —3x1-0.5x0

-3
S 1

On examining the first column element routh array it is found that there are two sign changes.
Hence two roots are lying on the right half of s plane and the system is unstable.

The rows of all zeros indicate the possibility of complex roots
The auxiliary equation iss* +s*>+1=0
Put s°= x in auxiliary equation,
s'+s°+1=0=> X’ +x+1=0
The roots of the quadrant equation

L4 1 B

2 2 72
=1/120°,1£-120°

Buts®=x, .. s= +x =+/2120°, /2 —120°

=+1£120°/2,4J £ -120°/2
=+/60°, / —60°
=£(0.5+j0.866),%(0.5— j0.866)



The two roots of auxiliary polynomial all lying on the right half of s plane & the
remaining two on the left half of s plane. The roots of the auxiliary equation are also roots of the
characteristic equation. No roots are lying on the imaginary axis.

— The system is unstable

— Two roots are lying on right half of s plane & five roots are lying on left half of s
plane.

5. Use the routh stability criterion to determine the location of roots on the s plane and hence the
stability for the system represented by the characteristic equation s’ +4s* +8s®> +8s* +7s+4 =0

Solution:
The characteristic equation is s”> +4s* +8s* +8s* +7s+4=0
The order of the characteristic equation is 5& it has 5 roots

Routh array

s’ 1 8 7 Row1

s 1 2 1 Row2

s’ 1 T Row3

5 1 T Row4

s 0O>e | L. Row5

s’ o Row6
1°" column

3 Ix8-2x1 1x7-1x1
ST 1
s’ 6 6
s*: 1 1




S2.1><2—1><1 Ix1-0x1

)

1 1
s?: 1 1
s's Ix1-1x1
s’ 0
Let 0 >¢

When €— 0 there is no sign change in the first column of routh array. But we have a row of all
zeros (s' row).

So there is a possibility of roots on imaginary axis this can be found from the roots of
auxiliary equation.

Auxiliary equation is s>+1 =0

s=2-1=4%jl
The roots of auxiliary equation are +j,-j lying on imaginary axis.
e Two roots are lying on imaginary axis and there are no sign changes in the first column of routh array ,

remaining three roots are located in the left half of s plane
e Hence the system is limitedly or marginally stable.

6. For each of the characteristic equations of feedback control system given, determine the range of K
for stability. Determine the value of K so that the system is marginally stable & find the frequency of

sustained oscillations.

)s* +25s° +15s% +20s + K

ii)s* + Ks’ +s* +s+1=0

iii)s* +3Ks” +(K+2)s+4=0
iv)s* + Ks® +5s* +10s + 10K = 0

Solution:



i) Given s* +25s5% +15s +20s +K

st . 1 15 K ..Row 1
s* 25 20 .. Row 2
2 71
S = K ... Row 3
5
b 284 —25K
s ——— o ...Row 4
7175
s* K ... Row 5
Column1

s2'25X15_2OX1 25xK-1x0

25 25

s%; 7 K
5

T 20-25K
5
71
5
g, 284-25K
o
5

284 -25K
71
0. 5
284 —25K
71
5

K-0

For the system to be stable all the element in the first column must be positive

Therefore for s* row, to be positive,



284 -25K
71/5

>0=284-25K>0

K<&; K <1136 = (1)
25
From s row, K>0 —(2)
Combining 1 and 2

The range of K for stability isO < K <11.36. When K=11.36 the elements in s* row , becomes zero &
the root are on the jo axis . Hence the system is under sustained oscillations.

To find the frequency oscillation:
7?132+K=0; K=11.36

%sz +11.36=0=>5s=+j0.894

®=0.894rad /sec

ii) Given s*+Ks®+s>+s+1=0

Routh array

1 1 1 ..Row 1
K 1 ... Row 2
K—_l ... Row 3
K
K1 .. Row 4
K
1 ... Row 5

For the system to be stable, all the elements in the first column must be positive

From s> row, K>1



From szrow,%>O:K>1

K-1
From s° row,T—K>0

If both condition,K > 1 &K-1 > K? are satisfied, then the system is stable. But when K>1, K
-1 > K% is not satisfied therefore for all values of K, the system is unstable.

iii) Given s’ +3Ks* +(K+2)s+4=0

1 K+2 ... Row 1
SZ

3K 4 ... Row 2
b 3K(K+2
> g 0 ... Row 3

3K
S0

4 ... Row 4

For the system to be stable,

3K >0 :>K>O(from g row)
3K(K+2)-4>0 (from s' row)

3K*+6K—-4>0
K?>-2K-=1.33>0
(K +2.2527)(K—0.527) > 0

From which K>0.527

For the system to be stable,

= K>0.527
To find auxiliary equation & frequency of sustained oscillation.
When K= 0.527, s’ row become zero.

.. The auxiliary equation



3K s’ +4=0 putk =0.527
1.581s*> +4 =0.
= m=1.59 rad/sec

iv)s* +Ks® +5s% +10s +10K =0

1 5 10K ..Row 1
S3
K 10 ... Row 2
2
s SK-10 10k ..Row 3
K
1
® (SK_“)jlo—mK2
K .. Row 4
5K-10
K
SO
10K ..Row5
s =10K
5K-10

For the system to be stable, >0= K>2 (From s* row )

5K-10

( )10-10K” >0 (from s'row)

= 10K* =50K* +100 < 0
K*-5K+10<0
(K+ 2.9055)(1(2 —2.9055K+3.442) <0

K is real when K < -2.9055

Therefore the condition for stability are K > 2, &K< -2.9055.the condition are contradicting to
each other. So unstable for all value of k.

7. Using routh Hurwitz criterion determine the stability of a system representing the characteristic
equation s° +2s° +8s* +12s® +20s” +16s +16 =0and comment on the location of root of the
characteristic equation.

Solution:



The characteristic equation is s® +2s° +8s* +12s> +20s*> +165s+16 =0
The order of the equation is 6 & number of roots are 6.

Routh array

s 1 8 20 16 .. Row 1
s 2 12 16 0 ... Row 2
st 2 12 16 ... Row 3

§4
) 0 0 ...Row 4

§3
) 4 12 ... Row 4

SZ
6 16 ... Row 5

s1
.. Row 6

1.33

SO

16 ... Row 7
Column1

There is no sign change in first column. But row of zeros indicates the presence of
complex roots.

S4.2><8—1><12 2x20-1x16 2x16—0
’ 2 2 2
st 2 12 16

S3_2><12—2><12 2x16-2x16
| 2 2
s’ 0 0

Row of zeros;
Auxiliary equation is

2s* +12s* +16 =0
s*+6s>+8=0
dA

— =45’ +12s
ds



Sz_4><12—2><12 4x16-0x1
’ 4 4
s?: 6 16

g 6x12-4x16
S5 e
s'; 1.33

0. 1.33x16-0
133
s’ 16

From auxiliary equation

st 465> +8=0
put s> =x.

X +6x+8=0
(x+4)(x+2):O
X =—-4,-2.

The roots are +j2, -j2,+j1.414,-j1.414. The four roots are lying on imaginary axis. Remaining 2 roots
are located on the left half of the s plane. Hence the system is limitedly or marginally stable.

8. Using Routh Hurwitz criterion, determine the stability of the system represented the characteristic
equation s’ +s* +2s° +2s* +3s+5 =0. Comment on location of roots of the characteristic equation

Solution:

The characteristic equation is s* +s* +2s* +2s* +3s+5=0, the order of the equationis 5 & the
number of the roots is 5.

Routh array

s’ 1 2 3 ... Row 1
st 1 2 5 ... Row 2
s 0 -2 ... Row 3

c -2 ... Row 3



s” 2e+2

€

2e+2

s3'1X2_1X2 I1x3-1x5
S| 1

s’ 0 -2

[ replace O by €

s7; IS -2

(52

€
2e+2
€
—<4€+4+€2)
2e+42

€

—(4e+4+ ez)
2e+42
g0 €
—(4e+4+ ez)
2e+2

€

x5

$%: 5

On letting e—>0

s? 1
st 1
s? 0

S —(62 +4e+4)

... Row 4

... Row 5

... Row 6

..Row 1

.. Row 2

.. Row 3

..Row 4



-2 ... Row 5

5 ... Row 6

Column1

There are two sign change in the first column of routh array. Therefore two roots are located on
the right half of the s plane and remaining three roots are located on the left half of the s plane.
Hence the system is unstable.

9. The open loop transfer function of a unity feedback control system is given by

G(s)= K . By applying the routh criterion, discuss the stability of the closed |

(s+2)(s-i—4)(s2 +6s+25)

loop system as a function of K. Determine the value of K which will cause sustained oscillation in the
closed loop system what are the corresponding oscillation frequency.

Solution:

C(s)  G(s)

The closed loop transfer function =
P R(s) 1+G(s)

k
C(s) _ (s+2)(s+4)(s* +6s+25)
R(s) 1+ k
(s+2)(s+4)(s2 +6s+25)

The characteristic equation is given by the denominator
polynomial of closed loop transfer function

The characteristic equation is

(s+2)(s+4)(s* +6s+25)+K =0
(s2+6s+8)(s2 +6s+25)+K=0
s* +12s8* + 695 +198s + 200+ K =0

The routh array is constructed as below

st 1 69 200+k .. Row 1

s’ 12 198 ... Row 2



Divided s° by 12

st 1 69 200+K ... Row 1
s 1 16.5 ... Row 2
SZ
525 200+K ... Row 3
1, _
S 666.25-K _Row 4
52.5
SO
200+K ... Row 5
Column 1

S2_l><69—16.5><1 4x(200+K)
’ 1 1
s%; 52.5 200+K

| 52.5%16.5—-(200+K)x1
o

b}

52.5
g 666.25-K
’ 52.5
666.25-K <(200+K)
. 52.5
’ 666.25—-K
52.5
s%; 200+ K

For the system to be stable, all the element in the first column is positive

666.25-K >0

= K<66625 ..1

200+K >0

K >-200

but practical value of K starts from 0
~K>0 .2

Combining 1& 2
The change K for stability 0 <K < 666.25
To find the sustained oscillation frequency:

When K=666.25, s' row will become zero



The auxiliary equation is

52.55* +200+K =0 froms’ row

put K =666.25

52.55> +200+666.25 =0

kN —200-666.25
52.5

s =+/-16.5 = jJ-16.5 = +j4.06

=-16.5

When K = 666.25, the system has roots on imaginary axis & so it oscillates.
The frequency of the oscillation is given by the value of root on imaginary axis.

The frequency of oscillation ®w=4.06 rad/sec

NYQUIST STABILITY
. 10 . .
1. A unity feedback control system has G(s) =————— . Draw the Nyquist plot and determine the closed
s(s+1)(s+2)
loop stability.
Solution:-
. 10
Given that G(s).H(s)=——asH(s)=1
s(s+1)(s+2)

i. Number of poles in the right half of the s — plane P =0
ii. For stability no of encirclements N = - P =0
The nyquist plot should not encircle (-1+j0) point for absolute stability of this system.
iii. As there is one pole at origin, the Nyquist contour is as shown in figure which contains section C1, C2, C3 & C4

Ajo

+j0<R=0 C,

v




iv. Mapping of section C1:
In section C1 ,0—0 to oo, that is mapping of section C1 gives the pole of G(j®) H(jw) in (u-v) plane.
Put s=jo in G(s) H(s)

10
(u(l—i— j(u)(2 + j(o)

10
oVl+ o> Vi4+ o’

¢ =|G(jw)H(jo) =-90°—tan™' @—tan™" %

G(jo)H(jo) = ;

H =|G(jo)H(jo)| =

® M ¢
0 % -90°
% 0 -270°
o 10
CUeRe) = o) (2 o)
B 10
(—m2 +jco)(2+jm)
~ ~10 X(mz +j0))(2—jm)
- (032 —jo))(2+j03) (032 +j(n)(2—j(o)
B -10(30” +j)(20+o*)
- ((,04+(x)2)(4+0)2)

To find crossing point on —ve axis, equate imaginary of G(jo) Hjw) =0

-10(20-o") )

(co4+o)2)(4+0)2) A

o -2=0=0=2
—-30x2 —-60

G(J(O)H(J(,O) N m = % =-1.667

Equate real part of G(jw) H(jo) =0

—300°

(0)4+(02)(4+oo2) =0= o=

Thus mapping of section C1 in (u-v) planes is as follows

Aiv

1270
-1.667

W0 > >
T180° b u

oo -90°




5. Mapping of section C3: In section C3, o is varying from -oo to 0. The mapping of section C3 is given by the locus

of G(jo) H(jw) where o is varying from - oo to 0. The inverse polar plot is given by the minor image of polarplot
with respect to real axis as shown in fig.

jv

-270

[e) 4
o
[=h 4

-180°

6. Mapping of section C2: The may| -90°  section C2 from s — plane to (u-v) planes is obtained by putting

s = 1£mt Re” inG(s)H(s) and varying 6 from +7t2to —% . Since s — Re’® and R — oo,

G(s) H(s) can be approximate as (14s T = sT)

G(s).H(s) = L
s(s+1)(s+2)
B 10 _ 10 A Q
2s(1+0.58)1+s) 2xsx0.5sxs §°
o_ 10
G(s)H(s) - Re” = P N !
R—w

3n

When 0 = +—2”,G(s)H(s) . NG

3n

When 6 = _—2“ ,G(s)H(s) = 0e "2

Therefore in (u-v) plane, 0 varies from —%Tto%c and magnitude of radius R reduces to 0.

-270

-180




7. Mapping section C4: The mapping of section C4 from s — plane to (u-v) plane (ie.G(s)H(s) plane) is obtained by
putting s = Lt Re” in G(s) H(s) & varying 6 from _—Znto? since s — Re, & R — 0,G(s)H(s) can be

approximated as 1+sT = T.

G(s)H(s) = > > S

s(1+05)(1+s) sxixl

— -jo

s= Lt Rel® o

s Riﬂ ¢ Lt Re'
R—0

|G(s)H(s)

When 6 = _7” _G(s)H(s) = o0e

When 6 = g,G(s)H(s) =g 2

Therefore section C4 in the s- plane is mapped as a circle of infinite radius with arguments varying from +90°to -90°

-180°

-90°

8. Complete Nyquist plot: The complex Nyquist plot is G(s)H(s) plane can be obtained by combining the mappings
of individual sections



e

-90°

v
9. The number of encirclements of (-1+j0) are N = +2
However, for stability, N = 0, the given system is unstable
According to mapping theorem, N=7—-P
2=72-0-272=2

There are two zeros of 1+ G(s) H(s) encircled by Nyquist path, i.e two closed loop poles are there in the right half of
the s — plane due to which the closed loop system is unstable.

1+4s
s (1+s)(1+2s)
of closed loop system by using Nyquist criterian. If the closed loop system is not stable, then find the number
of closed loop poles bying on the right half of the S — plane.

2. The open loop transfer function of a system is given as G(s).H(s) = . Determine the stability

Solution:

1+4s

. H)=—————"—"—
Given that G(s)H(s) s (1+s)(1+25)

1. Number of poles in the right half of the s — plane P =0
2. For stability, N=-P =0

3. As there are two poles at origin, the nyquist contour is as shown in fig which contains the section C1, C2, C3 &
C4

v



+ JoO

4. Mapping of section Cl1: in section C1, w — Otooo i.e, the mapping of section C1 gives the poles plot of
G(jo) H(jo) in (u-v) plane
Put s = jo in G(s)H(s),
. . 1+ j4o
GoH(jo) = ———
(jo) (1+jo)(1+ 2m)

G (o H o] - — 10
1/(1+m ) 1+4(02)

¢=|G(jo)H(jo)=-180°~tan" ®—tan"' 2w+ tan”' 4w

® M [0}
0 1.5 -180°
© 0 270°
) . 1+ 4
G (jo)H (jo)= —

-’ (1—20)2 +j3co)
~(1+ j40) ) (1 -2’ —j3c0)
o’ (1-20" + Bo)  (1-20" - j3)
[1+10@2 +j(m—8w3)]
o’ [(1 ~20?)’ +9@2}
) i)

o’ [(1 -2’ )2 +90° } o’ [(1 -2’ )2 + 90)2J




To find crossing point on —ve real axis,

Equate imaginary part to zero

®—8n -0
o [(1 ~207) +9c02}
o(1-80")=0
:>(x):0,m:L
22

0Q = -10.64

Thus the mapping of section C1 in (u-v) plane is as shown in figures.

=hly )

A
v

5. Mapping of section C2: Mapping of section C2 from s — plane to (u-v) plane is obtained by taking

s= RLt Re" isG(s)H(s) & varying 8 from %to_—; .

Since s — Re®, R —> o0, 1+8TL sT

1+4s 4s 2
G(s)H(s) = = =—
(SH() s?(1+s)(1+2s) s’xsx2s s’
2 —j30
G(S)H(S)L:RU v = Trrogw = 0
R—w

When 0 = g,G(s)H(s) —0e "

When 0 = _—2“ _G(s)H(s) = 0" 7>



-3 +3 . .
In (u-v) plane, 0 varies from TTEtOTn of magnitude of radius R reduces to 0.

>

-270

g FEWON
[€0 S&W/ -k

6. Mapping of section C3: In section C3, @ —>ooto0 i.e the mapping of section C3 gives the inverse polar plotof
G(jo)H(jo) as shown in fig.

RS RET T AW
M

’)10 ]

,c'g

7. Mapping of section C4: mapping of section C4 from s plane to (u-v) plane can be obtained by substituting
s= Lt Re"&R - 0,1+sTLC 1
R—0

1+4s 1 1

G(S)H(S) = 82 (1+S)(1 +2S) = SZ x1x1 = 52

—j20

G(s)H(s)

N = — = 00¢C
s= Lt Rel’ 20
TR Lt Re’

R0

When 6 = _—2“ ,G(s)H(S) = woe* ™



When 0 = g,G(S)H(S) =ooe "

Section C4 in the s — plane is mapped into a circle of infinite radius with arguments varying from +xto—n

AYJ~

— g0

'ﬁs

8. Complete Nyquist plot: The complete Nyquist plot in G(s)H(s) (or) (u-v) plane can be obtained by combining the

mapping of the individual sections as shown in fig.

yé\y

e, i 8

N=2
[thock wtte encivele me ,,K:,.)

9. The number of encirclement of (-1+j0) are
N= +2 (clockwise encirclements)

However, for stability, N =0



The closed loop system is unstable

According to the mapping theorem, we have

N=Z-P

2=72-0-272=2

There are 2 zeros of 1+G(s)H(s) encircled by Nyquist path, that is 2 closed loop poles are there in the right half of

the s — plane, due to which the closed loop system is unstable.

3. Draw the Nyquist plot for the system whose open loop transfer function is G(s)H(s) = ———
s(s+2)(s+10)

Determine the range of K for which the closed loop system is stable.

Solution:-

K

. H =
Given that G(s)H(s) s(s +2)(s +10)

1. Number of poles in the right of half of s — plane P =0

2. For stability N=-P =0

3. As there is one pole at origin, the Nyquist contour is chosen as shown in fig. which contains sections C1, C2, C3,
& C4.

4. Mapping of section C1: In section C1, @ —> Otoco that is mapping of section C1 gives the polar plot of
G(jo)H(jo) in (u-v) plane

Put s = jo in G(s)H(s)



K

LG(jo)H(jo) =
(jo)H(jo) jo(jo+2)(jot 10)
K
M =|G(jo)H(jw)| =
| | oV + 4o’ +100
¢ =|G(jw)H(jo) =-90—tan "' 0.5w—tan "' 0.10
® M ¢
0 o -90°
% 0 -270°
K
G(s)H(s) =
) = (1 0.59)10x(1+0.15)
_ 0.05K
s(1+0.5s)(1+0.1s)
. . 0.05K
G({o)H(jo) =

~0.600" + jo(1-0.050")
0.051([—0.6032 — jo(1-0.050? )]
- [-0.60" + jo(1-0.050") || -0.60° - jo(1-0.050 )

~0.05Kx0.60°  j0.05Ko(1-0050" )

T 0360" + o (1-0050%) 0.360" +0* (1-0.050° )

To find crossing point on —ve real axis equate imaginary part to zero

1
1-0.050° =0=> o= =4.47
J0.05
= o, =4.47rad/sec
—0.05K x0.6x4.47°

0Q =|G(jwH(jo)| =

0.36x4.47% +4.47° (1-0.05% 4.47° )2
0Q| = -0.00417K

Thus the mapping of section C1 in the (u-v) plane gives the following figure.

\od

>

N\ g°

»270/\5\]
|
pre 8 Nwaﬂ o
i
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—0-CO4LIT i



5. Mapping of section C2: the mapping of section C2 from S — plane to (u-v) plane is obtained by putting

s= RLt Re" in G(s)H(s) and varying 0 from %to_—; . Since s — Re® & R — oo G(s)H(s) can be approximates as

(1 +sTL sT)
G(9)H(s) = ————
s(s+2)(s+10)
_ 0.05K 0 0.05K
s(1+0.55)(1+0.1s)  3x0.5sx0.1s
_K
S3
K —j36
COHON 1w =T Rogm =0

R—o

When 0 = +—2" _G(s)H(s) = 0e 7

When 0= _—2“ _G(s)H(s) = 0" 7>

-3 3
In (u-v) plane, 0 varies from Tnto—i_—;E and magnitude of radius R reduces to 0.

3/ JU—

N qoe
6. Mapping of section C3: In section C3, @ —> oo to O that is mapping of section C3 gives the inverse polar plot of
G(jo)H(jo) as shown in fig.
o
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y
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7. Mapping of section C4: The rapping of section C4 from S — plane to (u-v) plane can be obtained by substituting

s= RLtOReje inG(s)H(s) & varying 8 from _—2Tctog since s=Re®&R — 0, 1+sTLC 1

K
s(s+2)(s+10)
005K 005K

T s(140.55)(1+0.0s) s
_ 005K

- o 0
s R]iORE Lt RCJ
R—-0

G(s)H(s) =

G(s)H(s)

When 0 = _—2“ _G(s)H(s) = 0e 72

When 6 = %,G(S)H(s) —ge

Section C4 is the S — plane mapped into a circle of infinite radius with arguments varying from +90° to -90° as
shown in fig

s Lhapwer

W
N

Oe <

]

—180° o

8. Complete Nyquist plot: The complete Nyquist plot in (u-v) plane can be obtained by combining the mapping of
individual section as shown in fig.



N\
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9. For absolute stability N = 0 i.e [-1+j0] point should be located on the left side of point Q.
|0Q| <1
|0.00417K]| <1
K<——<240
0.00417K
The range of value of K for stability is
0<K <240

4. Describe about Nyquist contour & its various segments. [MAY/JUNE 2016]

In order to investigate the presence of poles of G(s)H(s) on the right half of s — plane a contour C is chosen such that
it enclose the entire right half of s —plane. Such a contour is called Nyquist contour.

JN
w=1® Cx,
g-plare -
(V] e,
v \
W=D \
w=° | I o
! J
| /
£
& l /J’ Ca,
DA

Nyquist contour is directed clockwise and comprises of three segments.

1. An infinite line segment C1 along the positive imaginary axis



2. An are C2 of infinite radius, enclosing entire right half of s — plane
3. An infinite line segment C3 along the negative imaginary axis.

Along C1, s = jo with o varying from 0 to oo
o . . +
Along C2, s = RLt Re” with 8 varying from Tntog

Along C3, s = jo with @ varying from —octoQ

5. State Nyquist stability criterion and explain the situations while examining the stability of linear control
system. [NOV/DEC 2016]

Nyquist stability criterion can be stated as follows.

If the G(s)H(s) contour in the G(s)H(s) plane corresponding to Nyquist contour in the s - plane encircles the
point -1+j0 in the number of right half of s plane poles of G(s)H(s), then the closed loop system is stable”.

1. No encirclement of -1+j0 point:

This impiles that the system is stable if there are no poles of G(s)H(s) in the right half of s - plane. If there are
poles on right half of s - plane then the system is unstable.

2. Anti clockwise encirclements of -1+4j0 point:

In this case the system is stable if the number of anticlockwise encirclements is same as the number of poles
of G(s)H(s) in the right half of s - plane. If the number of anticlockwise encirclements is not equal to number
of poles on right half of s - plane, then the system is unstable.

3. Clockwise encirclements of the -14j0 point:

In this case, the system is always unstable. Also in this case if no poles of G(s)H(s) in the right of s - plane,
then the number of clockwise encirclements is equal to number of poles of closed loop system on right half of
s - plane,,

Relative Stability
1. Write detailed notes on relative stability with its roots of S — plane AU NOV/DEC 2015

The relative stability indicates the closeness of the system to stable region. It is an indication of the strength
or degree of stability.

In time domain, the relative stability may be measured by relative settling times of each root (or) pairs of
roots. The settling time is inversely proportional to the location of roots of characteristic equation. If the root
is located far away the imaginary axis then the transient dies out faster and so the relative stability of the
system will improve. The transient response and so the relative stability for various locations of roots in s -
plane are shown in fig
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*INCLUDE THIS*

1. Write down the procedure for designing lag compensator using bode plot

The steps to design the lag Compensator are

1. Determine K in uncompensated system to meet the steady state error requirement
2. Sketch the bode plot of the uncompensated system

3. Determine phase margin of the uncompensated system from the bode plot. If the phase margin does
not satisfy the requirement then lag compensation is required.

4. Choose a suitable value for the phase margin of the compensated system.

Let y4 = Desired phase margin of the compensated system

Yn = Phase Margin of the compensated system

Now y, =74+ €

Where € = additional phase lag to compensate for shift in gain crossover frequency.

Choose an initial value of € = 5°



5. Determine the new gain crossover frequency, g The new wy, is the frequency corresponding to a
phase margin of v, on the bode plot of uncompensated system.

Let, ¢gcn = Phase of the G(jw) at new gain crossover frequency, Mg
Now, v, = 180° + {gen; Pgen = Yn - 180°
The new gain crossover frequency, mg, is given by the frequency at which the phase of G(j®) is ¢gcn

6. Determine the parameter,  of the compensator. The value of 3 is given by the magnitude of G(jo) at
new gain crossover frequency, .. Find the db gain (Ag,) at new gain crossover frequency, ®g,

A
Now, A, = 20 log 3 or % =logB, ..P =10A., /20

7. Determine the transfer function of the lag compensator

Place the zero of the compensator arbitrarily at 1/10™ of the new gain crossover frequency, Mgen

1 0) cn
.. Zero of the lag compensator, Zc= —=—=2
T 10
Now, T = ﬂ
0,

gen

Pole of the lag compensator, p. = 1
T

S+—
Transfer function of lag compensator G(S) = T _ B( 1+sT j
sS4 1+spT

BT

8. Determine the open loop transfer function of compensated system. The lag compensator is
connected in series with the plant as shown below

1+ sT S
1+ spT

v

| =

G(s)

When the lag compensator is inserted in series with plant, the open loop gain of the system is amplified

by the factor B. If the gain produced is not required then attenuator with gain %can be introduced in



series with the lag compensator to nullify the gain produced lag compensator. The open loop transfer
function of the compensated system,

G.()a()- )

(1+5sT)

S = )

-G(s)

Gy (s)=
9. Determine the actual phase margin of compensated system. Calculate actual phase angle of the
compensated system using the compensated transfer function at new gain crossover frequency, Mg
Let, ¢geo = phase of Gy (jo) at ® = @gen
Actual phase margin of the compensated system, 7o = 180° + {gco;
If the actual phase margin satisfies the given specification then the design is accepted.
Otherwise repeat the procedure from step 4 to 9 by taking € as 5° more than the previous design.
2. Write down the procedure for designing lead compensator using bode plot
The steps to design the Lead Compensator are
1. Determine K in uncompensated system to meet the steady state error requirement
2. Sketch the bode plot of the uncompensated system
3. Determine phase margin of the uncompensated system from the bode plot.
4. Determine the amount of phase angle to be contributed by lead network by using the formula

O =7, —Y+E

Where, ¢, = maximum phase lead angle of the lead compensator
Y4 = desired phase margin
v = Phase margin of the uncompensated system

€ = Additional phase lead to compensate for shift in gain crossover frequency. Choose an initial choice
of € as 5°

5. Determine the transfer function of the lead compensator.

1-sind,,

Calculate a using the equation o = -
1+sind,,

From the bode plot, determine the frequency at which the magnitude of G(jm) is — 20log 1 db. This

Jou

frequency is @,



Calculate T from the relation, ®, = — ST=
T

Transfer function of lead compensator G(s) = =

6. Determine the open loop transfer function of compensated system.

The lead compensator is connected in series with the plant as shown below

= 1+ sT
a
1+ saT

A 4
v

Gs)

RIr

When the lead compensator is inserted in series with plant, the open loop gain of the system is

attenuated by the factor a, so an amplifier of gain L can be introduced in series with the lead
[0

compensator to nullify the gain produced lead compensator.

The open loop transfer function of the compensated system,

1 (1+sT) (1+sT)

Go(s):l.Gc(s)G(s):—a—-G(S):m.G(s)

o a (I+saT)

7. Verify the design.

Finally the bode plot of the compensated system is drawn and verify whether it satisfies the given
specifications. If the phase margin of the compensated system is less than the required phase margin
then repeat step 4 to 7 by taking € as 5° more than the previous design.

8. Write down the procedure for designing lag — lead compensator using bode plot
The steps to design the Lag — Lead compensator are
1. Determine K in uncompensated system to meet the steady state error requirement

2. Sketch the bode plot of the uncompensated system



3. Determine phase margin of the uncompensated system from the bode plot. If the phase margin does
not satisfy the requirement then lag compensation is required.

4. Choose a suitable value for the phase margin of the compensated system.

Let y4 = Desired phase margin of the compensated system

¥n = Phase Margin of the compensated system.

Now, vy, =yq + €

Where € = additional phase lag to compensate for shift in gain crossover frequency.

5. Determine the new gain crossover frequency, ®gcn. The new g, is the frequency corresponding
to a phase margin of v, on the bode plot of uncompensated system.

Let, dgcn = Phase of the G(jo) at new gain crossover frequency, @gen

Now, yn = 180° + dgen ; Pgen = Yn - 180°

The new gain crossover frequency, ®gn is given by the frequency at which the phase of G(jo) is ¢gen
Choose the gain crossover frequency of the lag compensator, o greater than mgen

6. Calculate B of the lag compensator.

Let Aga = |G(jo)| in db at ® = @ga

From the bode plot find Aga

A
Now, Agcl = 20log B or Zg(;l =logB, .. P=10As /20

7. Determine the transfer function of the lag section

Place the zero of the compensator arbitrarily at 1 / 10t of the new gain crossover frequency, wga

1 o,
.. Zero of the lag compensator, T = —=-2
T, 10
10
Now, T1 = —
()

gel

Pole of the lag compensator, pc1 = —



1
s+—

Transfer function of lag section G1(s) = 1;1 - B( 1+5T, j
sS4 1+sPT,
BT,

8. Determine the transfer function of the lead compensator.

Calculated o using the equation o =

= | =

4

db
Jo

From the bode plot, determine the frequency wm. At which the db gain is -20log

1 , 1

oNoo T oo

Calculate T; from the relation, T, =

S+—

. . a(l+sT

Transfer function of lead section Gz(s) = L _ ( )
- I (1+asT,)

aT,

9. Determine the transfer function of lag - lead compensator.

1+sT
Transfer function of lag - lead compensator G¢(s) = G1 (s) x G2 (s) = B( LT, ]x o(L+5T;)

1+spT, ) (1+asT,)

Since =

_[ 14sT, X(1+ST2)
GC(S)_[HSBTJ (1+asT,)

1
p
10. Determine the open loop transfer function of compensation system.

The lag-lead compensator is connected in series with G(s) as shown below

A 4
v

G(s)

(1+sT1)>< (1 +sT,)
1+ sBT; (1+ asT,)

The open loop transfer function of compensated system

Go(s)=( 1+5T, jx((nst) <G(s)

1+spT, ) (1+asT,)




11. Draw the bode plot of compensated system and verify whether the specifications are satisfied or

R - . 1
not. If the specifications are not satisfied then choose another choice of a such that o <E and repeat

the steps 8 to 11.

3. Design a phase lag compensator for the given transfer function G(s) = with the unity

s(s+1)(s+4)
feedback has specifications a) Phase Margin is 40° b) Steady state error e, < 0.2

Solution

Step 1: Find the value of K for the uncompensated system.

660 = eaneay HEI=1
K, =SE%S-G(S)~H(5)=SL;%S.m=§

The steady state error e, = 0.2

. Kv = L=L=5
e, 02

AIsoKV=§:>K=4KV=K=4><5=20

Step 2 Construct the Bode plot for uncompensated system & find the value of phase margin (y)

20 )
G(s)= s(s+1)(s+4)  s(1+s)(1+0.25s)

Puts=jo

5
jo(1+ jo)(1+j0.250)

G(jw) =

Corner frequencies are w., = - = 1 rad/sec

—_ ] —

1
W= —— =4 rad/sec
27 025 /

Term Corner frequency Slope Change in slope
rad/sec dB/dec (dB/dec)




5 - -20
jo

1 1 -20 -20-20=-40

. ®c1 = - =
1+jo 1
1 1 -20 -40-20 =-60

[— Oy=——=4
1+j0.25w 0.25

Choose m, = 0.1 rad/sec & ®, = 10 rad/sec

Calculation of Gain A.

(i) whenw=wm=0.1, A=20log

%‘= 33.97 dB 0 34dB

i‘ =20 log
JO

5

(ii) when = w1 =1, A=20log 1

i‘ =20log
Jo

‘= 33.97 dB 0 14dB

(’Ocz

(iii) when o = o, = 4, A =[change in slope from o, to ®.,] X log +Aatw=w0q

cl

=-40log (?]-&13.9 =-10.102dBU -10dB

(iv) when ® = o, = 10, A = [change in slope from ®, to @] x log D taate=s [
c2

=-60 log (%) -10.102 =-33.978dB [ 34dB

0] A
rad/sec dB
0.1 34
1 14
4 -10
10 -34
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Phase Angle Plot

¢=2G(jo)=-90°—tan" 0—tan"' 0.250

™ 0.1 0.5 1 1.5 2
rad/sec

[0} -97.14° -123.7° -149° -167° -180°
Degrees

From graph, Phase Margin is -7.3°

Step 3 Select the suitable Phase Margin for compensated system
Desired Phase Margin y4 = 40°

The small value of correction € =5°

Yn = Y4 + € =40° +5° =45°

Step 4 Find the new gain crossover frequency (mge) corresponding to new phase margin
dgen = Vn - 180°

{gen =45° - 180° = -135° & corresponding

®gcn = 0.67 rad/sec (graph)

Step 5 Obtain B corresponding to the magnitude G(jo) at ®g,
A, = 15.6 dB corresponding to ®,, = 0.67 rad/sec (from graph)
Agen = 20 log B = = 10 &/

= B =10 "%*°=6.025

Step 6: Obtain the transfer function of lag compensator

(Dgcn

1
Zero of lag compensator Zc = T %




Poles of lag compensator P, = L
BT

The compensated transfer function,

_ (1+sT)  (1+11.94s)
Gels) (1+sBT)  (1+71.94s)

Step 7 Determine the open loop transfer function
Gols) = Ge(s)- G(s)

(1+11.94s) 20
= X

(1+71.94s) s(s+1)(s+4)

Step 8: Determine the phase angle of the compensated system at new frequency (®gn)
Pgen = £G(j) G(jo) | = Ogen

Ogen = -90° -tan ' © - tan ! 25 @ + tan™ (11.940) — tan™(71.94w)

Put ® = g, = 0.67 rad/sec

Ogen = -90 —tan™(0.67) — tan™(0.25 x 0.67) + tan'(11.94 x 0.67) —tan™ (71.94 x 0.67)
=-139.26°

The phase margin of compensated system

Ynew = 180° - 139.26° = 40.74°

The given phase margin is 40° & the obtained value of phase margin is 40.74°. Hence the design is
acceptable.

4) Design a phase lead compensator for the given transfer function G(s) = K with a unity

s(s+2)
feedback system has the specifications a) Phase Margin > 55° b) The steady state error for unit ramp
input <0.40

Solution
Step 1 Find the value of K from the steady state error e, (or) velocity error constant Kv

For Ramp input

€5 = Ls0.4 Kv = L=2.5
Kv 0.40



Given G(s) = K H(s)=1
S

(s+1)’

k k
Kv = SE%S'G(S)-H(S)st%S.S(S+2) =3

K=2Kv=2x25=5

Step 2 Draw the bode plot for uncompensated system and find the value of Phase Margin (y)

The uncompensated transfer function G(s) = K
s(s+2)
B 5
s(s+2)
Puts=jmo
. 5 2.5
- Gjo) = — =- .
jo(jo+2) jo(1+j0.50)
The corner frequencies o, = 0—15 = 2rad/sec
Term Corner Frequency Slope Change in slop
rad/sec dB/dec dB/dec
2.5 -20
jo
1 1 -20 -20-20=-40
. mcl Ny — 2’
1+j0.50 .5
Assume o, = 0.1 rad/sec & o, = 10 rad/sec
Calculation of Gain A
When o = ®;=0.1, A =20 log 2—5‘ = 2010g‘21;5
JO

=27.96 dB

U 28dB




When o = o = 2, A =20 log

2—5‘ = ZOIOg‘E
jo 2

=1.94dB

U 2dB

When o = o, =10, A = [change in slope from wcl to wh] x log£&j+

cl

Aat o=y

=—40log (%j +1.94

=-26.09 dB
0] A
rad/sec dB
0.1 28
2 2
10 -26

Phase angle plot

Phase angle ¢ = ZG(jo) = -90° - tan™ 0.5®

) 0.1 0.5 1 5 8 20 40
rad/sec

[0} -92.86° -104.03° -116.56° -158.19° -165.96° -174.28° -177.13°
Degrees

Phase Margin  =180° +¢gc =180°—-132°=48°

Step 3: maximum phase lead angle of the lead compensatord,, is given by

OLzl—s%nd)m =l—s%n12 _ 0792 06557 €
1+sin¢, 1+sin12° 1.2079

The desired phase margin v, >55°
Uncompensated phase marginy, =48°(from graph)

Small correction value =5°

¢, =55°-48°+5°=12°




Step-4 Obtain the transfer function of lead compensator

1-si —sin12° .
o= sind, :1 s%n12 _ 0.792 ~0.6557
I+sing,, 1+sinl12° 1.2079

The value of magnitude dB corresponding to

o, =—20log

L
o

=-20log =-1.833dB

1
70.6557

From uncompensated bode plot for dB value -1.833, corresponding value of frequency o, is 2.2 rad/sec

1 1

T oo 22406557

T =0.5613

The transfer function of lead compensator

1
o (s+T) _a(1+sT) _ 0.6557(1+0.5613s)
¢ ( 1 j (I+saT) 1+(0.6557%0.5613)s

S+——
aT

_ 0.6557(1+0.5613s)
© 1+0.3680s

Step 5 Open loop transfer function of compensated system

The block diagram of compensated system

N 1 0.6557(1+0.5613s) 5
0.6557 1+0.3680s (s+2)

A 4

72}

A




The open loop transfer function of lead compensator = G (s) = G(s) - G(s)

__ 1 06557(1+05613) 5
06557 1+0.3680s s(s+2)

_ 5(1+0.5613s)
~ s(s+2)(1+0.3680s)

~ 2.5(1+0.5613s)
~5(1+0.55)(1+0.3680s)

Step 6 Draw the Bode plot for the compensated system

2.5(1+0.5613s)
G, (s)=
s(1+0.5s)(1+0.3680s)
Puts=jm
, 2.5(1+ j0.56130
G(jo)= ( )

jo(1+j0.50)(1+ j0.36800)

The corner frequencies are

o, = L 1.78rad/sec ®,, = ¥ 2rad/sec
0.5613 0.5
1
®,, =———=2.7rad/sec
©0.3680
Magnitude plot
Term Corner frequency Slope Change in slope
rad/sec dB/dec dB/dec
25 - -20
jo
1+j0.5613w __ 78 20 -20+20=0
° 05613
1 1 -20 0-20=-20
. (’002 == 2
1+j0.50 0.5
. 1 o = 1 2717 -20 -20-20=-40
1+ j0.368w 0.368

Assume o, = 0.1 rad/sec & w, =100 rad/sec

Calculation of gain A,




When ® =l =0.1, A =20log

2,—'5 = 2010g‘2—'5
jo 0.1
=27.95dB

=28 dB

When o =wcl =1.78, A =20log

2 =20log £
jo 1.78

=2.95dB

0 3dB

,
When o = ®., = 2, A = change in slope from o, to @ X log( = ]
()

cl

+Aatow=m,

=0><log(i}r3 =3dB
1.78
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0‘)03

When o = ©i3 =2.717, A =(change in slope from w., to ®) x log
wc2

+Aato=m.
=-20 x log(ﬂj +3
2
=0.3388 0 0.34dB

A = (change in slope from m to m;) x log&
c3

When o = o, = 100,

+Aatw=mg

::—40xlog[ 100 j4—034
2717
=-62.296
[0 —-62.3dB

o A
rad/sec dB
0.1 28
1.78 3

2 3
2.717 0.34
100 -62.3

Phase angle plot

¢ =2G(jo)=-90+tan" (0.56130)—tan™" (0.50)—tan™" (0.368w)

o 0.1 0.5 1 5 8 15 30 50
rad/sec

[0} -91.76° -98.79° -107.5° -149.3° -159.3° -168.91° | -174.4° -176.6°
Degrees

Step 7

Phase Margin of the compensated system

Y =180°+¢

gen

=180° + (-125.5)° = 54.5° [1 55°




Phase Margin of the compensated system is matching with desired phase margin
Therefore the design is acceptable.

K

5) Consider the unity feedback system, whose open loop transfer function is G(s) = m .
S(S+ S+

Design a lag-lead compensator to meet the following specifications. i) Velocity error constant K, = 80
ii) Phase Margin y > 35°

Solution

Step 1: Determine K

For unity feedback system

Velocity error constant, K, = Lt S-G(s)

s—0

K
. Lts-G(s)=LtS:—— =80
Lis-Gls)= Ly s(s+2)(s+6)
= K =80
3x6

= K =80x3x6=1440

1440

G(s)= s(s+3)(s+6)

_ 1440
~sx3(140.338)x6(1+0.167s)

_ 80
s(1+0.33s)(1+0.167s)

Step 2: Bode plot of uncompensated system.

In G(s), puts=jm

6 (jo) = 80
jo(1+j0.330)(1+j0.1670)

Magnitude Plot

The corner frequencies are



= L = 3rad/sec

(’Ocl
0.33

1
., = —— = 6rad/sec
0.167

Term Corner frequency Slope Change in slope
rad/sec dB/dec dB/dec
80 - -20 -
jo
1 1 -20 -20-20=-40
PR O, =—>=3
1+ j0.330 0.33
1 1 -20 -40-20=-60
P — w,=——=06
1+j0.167® 0.167

Choose ®,=0.5 rad/sec

oy = 20 rad/sec

Ato =, A:2010g$—O :2010gﬁz44dB
jo 0.5
At o = 0, A =20log &‘ = ZOlog? =28.5dBL 28dB
jo
At ® = 0, A= [slope fromo, tow,, xlog Ber j+ Aato =0,
cl
6
= —40><log§+ 28 =16dB
At o = o, A= (slopefrom(oc2 tow, xlog &] +Aato=w,
O‘)c2

2
=—60x log?0+l6 =—-15dB

0] A

rad/sec dB
0.5 44
3 28
6 16
20 -15




Phase angle plot

¢=2G(jw)=-90°—tan"' 0.330—tan"' 0.167®

[0 0.5 1.0 3.0 6 10 20
rad/sec

ZG(jw) -104 -118 -161 -198 -222 -244.7
Deg 0 244

Step 3 Find the phase margin of uncompensated system.

Let dgc = Phase of G(jo) at gain cross over frequency
v = Phase margin of uncompensated system

From bode plot of uncompensated system,

{gc = - 226°

y = 180° + ¢y = 180° -226° = -46°

Step 4 Choose a new phase margin

The desired phase margin y4 = 35°

The phase margin of compensated system

Yn=VYat+E Let € be 5°

S Y =35°+5°=40°

Step 5: Determine new gain crossover frequency

Let wgn = New gain cross over frequency

{gen = Phase of G(jo) at @gen

Now v, = 180° + (g

. Qgen = Vn - 180° = 40° - 180° = -140°

From the bode plot, we found that the frequency corresponding to a phase of -140° is 1.8 rad/sec.

Let mg = Gain cross over frequency of lag compensator

Choose @y such that, Mg > Wgen

Let wgq = 4 rad/sec




Step 6: Calculate B of lag compensator

From the bode plot, we found that the dB magnitude at mg is 23 dB.
2 |G(jm)| in dB at (® = 0gq) = Ag =23 dB

Also A = 20 log B; S P=A10P =100 =14

Step 7: Determine the transfer function of lag section

The zero of the lag compensator is placed at a frequency one-tenth of wy

-1 o,
.. Zero of lag compensator, Zg=—=-"=
g p cl Tl 10
Tl =£:&:2,5
Oy 4
1 1 1
Pole of lag compensator, P =—= -

Transfer function of lag section

_B(1+sT)  14(1+2.55)
Gils)= (1+sBT)  (1+35s)

Step 8: Determine the transfer function of lead section

Letoc:l .'.OL=L=O.07
B 14
The dB gain (Magnitude) corresponding to ®,, = —2010g%
o

=-11.5dB0 -12dB

=—20log

1
V0.07
From the bode plot of uncompensated system, the frequency ®,, corresponding to a dB gain of
-12dB is found to be 17 rad/sec.

. o, =17rad/sec

1

1
"o o 174007

T, =0.22




a(1+sT,)

Transfer function of lead section G, (s) =
(1+saT,)

_0.07(1+0.225)
~ (1+0.0154s)

Step 9: Determine the transfer function of lag-lead compensator
Transfer function of lag-lead compensator G, (s)=G, (s)xG, (s)

_la(e2s) oo (1+0225)

X

.(s) (1135)  (1+0.0154s)

(1+2.5s)(1+0.22s)
~ (1+355)(1+0.0154s)

Step 10: Determine open loop transfer function of compensated system.

The lag-lead compensator is connected in series with G(s) as shown in fig.

(1+2.55)(1+0.225) 80

(1+35s)(1+0.0154s) s(1+0.335)(1+0.167s)

v

Open loop transfer function G ( ) 80(1 + 2.55)(1 + 0.225)
S)=
of compensated system 0 s(1+35s)(1+0.0154s)(1+0.33s)(1+0.167s)

Step 11 Bode plot of compensated system

Put's =jmin Gg(s)

6, (jo) 80(1+ 2.50) (1+j0.220)
W)=
o o1+ 350) (1+ J0.0154m) (1+ 0.330) (1+ 0.1670)

Magnitude Plot

Corner frequencies:



®, = 1. 0.03rad/sec  ®,, = L 0.4rad/sec
35 2.5
1 1
., = ——=3rad/sec ., = ——=4.5rad/sec
0.33 0.22
1 1
0., =———=6rad/sec ©, = = 65rad/sec
0.167 0.0154
Term Corner frequency Slope Change in slope
rad/sec dB/dec dB/dec
80 - -20
jo
-2 -20-20=-
! 0 == =0.03 0 Y
1+ j35m 35
1+j25m o, =L=0.4 +20 -40+20=-20
2.5
1 1 -20 -20-20=-40
T 0, =——=3
1+ j0.330 0.33
1+j0.22w 1 +20 -40+20=-20
o,=——=45
0.22
1 1 -20 -20-20=-40
— 05 =—>=6
1+j0.167® 0.167
1 1 -20 -40 -20 = -60
P W5 = =65
1+j0.0154® 0.0154
Choose o, = 0.01 rad/sec & oy =80 rad/sec

Calculation of Gain:

A, =[G, (jo)| indB

Ato=w, A, :2010gﬂ278dB
0.01
_ 80
At 0 =0, A, = 2010g—0'03 =68dB
0.4
Ato =0, A, =—-40xlog——+68 =23dB
0.03

At o=, A0=—20xlog%+23:5dB




At ® = 0, A0:—40xlog%+5:—2dB

At ® = O, A, = —20x10g%+(—2) =-4dB
65

At ® = O, A, = —40><10g€+(—4) =-45dB
80

At o= o, A, ==60xlog =+ (~45) = -50dB

Phase plot

ho = LGol(jw) = tan™2.5m + tan™0.22m - 90° - tan 35w - tan'0.0154w - tan'0.33m - tan'0.167®

[0 0.01 0.03 0.1 0.4 1 4 10 65 80
rad/sec

do -108 -132 -152 -138 -126 -144 -168 -220 -228
deg

From the Bode plot of the compensated system,

Let ¢gco = Phase of Gy(jw) at gain crossover frequency of compensated system,
Yo= phase margin of compensated system

{geo = -144° (From bode plot)

Yo =180° + {geo® = 180° - 144° = 36°

Conclusion

The phase margin of the compensated system is satisfactory. Hence the design is acceptable.




o~
“a Relel] fewn 2l rn%wna 9“593 | Lo . lo0

I i T il AT I LR =
1 “M i 1 i I
—ll i) Il
OJ“-). = I 1HIE i e
\\hv - .
Fe-="9 = i
£ : I
A«.“;, I 3 B as—
i :
] N [ 1]
A 3 i
~ i
QaE- T i =
; ¥ it
Il
ot Hl AR 1111
asl- I I
l t I
SRR s
0 T : iiifEED - >
2 Al EXNEE ° qQl1—
0 oW TN L E ¥ 1 al m;
HED NG 7 ] T
N EEE I i 0
L 1 |
] ] il il ?
] u I 1
. al -
i I
! i} I ~“
1 i ] I
03~ i 1 +x 1 TR T
- T pe gy e | 1 — ]
il H i I |
= Il ]
Il 1] ] | JHIN ]
I ] 11 m 1 I o 0&
N 2} (il Il
™~ I B Il ]
1 Il |
1l ) 1 h ALID RS TT
i TIHH 1 1 T
.._.E il T
i ] ! HHTN I
Il Il I oI e
Il i il Il Il I [l T
N 1! Il I I e 11 [
Il Il i il {1088 1 Il | {
[} 4] Il o) 1 |
Liﬂ i 1 MDD T 1
I 1 ] 1 i Z 1 I
min i1 35! i11[]31] 1 i il ..MJ i I | 1! | S
ﬁ i 2 1 & Il q I 1 104811 I
I Il N i T T T - i 1
1 TSt il T I !
® I __. S i i T L1 0 i T I 1 ittt L
Z16920¢ v ¢ z 16820 csfly ¢ z Vg4 MES ¥ tes zs s » o z 169 2% ¢ v ¢ 3
> L0t/ X STI0AD Didwd DOTIES .







UNIT -5
STATE VARIABLE ANALYSIS
Part - A
1. Define state and state variable.

The state of a dynamical system is a minimal set of variables (known as state
variables) such that we knowledge of these variables at t-t, together with the knowledge of

the input for t > to, completely determines the behaviour of the system for t > to.

The state variables are the minimal or the smallest set of variable which determines
the dynamic behaviour of the linear system.

2. Write the general form of state variable matrix.

The most general state space representation of a linear system with m inputs,p output
and n state variable is written in the following form:

X=AX+BU
Y=CX+DU
Where X = state vector of order nx 1,
U = input vector of order nx 1,
A = system matrix of order nxn
B = input matrix of order nxm
C = output matrix of order pxn
D = transmission matrix of order pxm
3. What is the necessary condition to be satisfied for design using state feedback?

The state feedback design requires arbitrary pole to achieve the desire performance.
The necessary and sufficient condition to be satisfied for arbitrary pole placement is that the
system is completely state controllable.

4. What is controllability? April/May 2017

A system is said to be completely state controllable if it is possible to transfer the
system state from any initial stated X(t), in specified finite time by a control vector U(t).

5. What is observability? April/May 2018

A system is said to be completely observable if every state X(t) can be completely
identified by measurement of the output Y(t) over a finite time interval.



6. Write the properties of state transition matrix.

The following are the properties of state transition matrix

1.9(0)

2.0(t)=e = (e’A‘ )71 = [CD(—t)T. .

30(t, +1,) =) = (1) D(t,)

e = 1(unit matrix)

9. What is nyquist rate?

The sampling frequency equal to twice the highest frequency of the signal is called
nyquist rate fm= 2fn

10. What is similarity transformation?

The process of transforming a square matrix A to another similar matrix B by a
transformation PAP =B is called similarly transformation. The matrix P is called
transformation matrix.

11. What is mean by diagonalization?

The process of converting the system matrix A into a diagon al matrix by a similarity
transformation using the model matrix M is called diagonalization .

12. What is modal matrix?

The modael matrix is a matrix used to diagonalize the system matrix. It is also called
diagonalization matrix.

If A = system matrix
M = Modal matrix
And M= inverse of modal matrix
Then M*AM will be a diagonalized system matrix.
13. How the modal matrix is determined?

The modal matrix M can be formed from eigenvectors. Let m,,m,,m,,...m_ be the

eigenvector of the n'™ order of the system. Now the modal matrix M is obtained arranging all
the eigenvector column wise asshown below.

Modal matrix, M =[ m,,m,,m,,...m, ].
14. What is need for controllability test ?

The controllability test is necessary to find the usefulness of the state variable. If the
state variables are controllable then by controlling the state variable the desired output of the
system are achieved.



15. What is need for observability test? Nov/Dec 2018, Nov/Dec 2019

~

The observability test is necessary to find whether the state variable are measurable or
not. If the state variables are measurable then the state of the system can be determined by
practical measurement of the state variables.

16. State the condition for controllability by Gilbert’s method.
Case (i) when the eigen values are distinct

Consider the canonical form of state model shown below which is obtained by using the
transformation

X =MZ
Z=AZ+BU
Y =Cz+DU

Where A =M1 AM: ¢=CM, 8= M-'B and M = modal matrix

In this case the necessary and sufficient condition for complex controllability is that, the
matrix must have no row with all zeroes. If any row of the matrix is zero then the
corresponding state variable is uncontrollable

Case ii) when eigen value have multiplicity
In the case the state modal can be converted to Jordan canonical form shown below

Z=JZ+BU
Y=CZ+DU Where J=M*AM

In this case the system is completely controllable if the element of any row of that
corresponding to the last row of each Jordan block is not all zero.

17. State the condition for observability by Gilbert’s method.

Consider the transfer function canonical or Jordan canonical form of the state model
shown below which obtained by using the transformation,

X =MZ
Z=AZ+BU
Y =Cz+DU

or

Z=JZ+BU
Y=CzZ+DU Where J=M*AM
matrix

Where A =M1AM: C=CM, B= M-1B and M = modal



The necessary and sufficient condition for complete observability is that none of the column
of the matrix be zero. If any of column is of all zeroes then corresponding state variable is
not observable.

18. State the duality between controllability and observability.

The concept of controllability and observability are dual concept and it is proposed by
Kalman as principle of duality. The principle of duality states that a system is completely
state controllable if and only if its dual system is completely state controllable if its dual
system is completely observable or vice versa.

19. Enumerate the advantages of state space analysis. April/May 2018, April/May 2019

It can be applied to non linear systems, time variant systems and multiple input
multiple output systems

20. When a System is said to be completely observable? Nov/Dec 2015, May/ June 2016

A System is said to be completely observable if all the possible initial states of the
system can be observed. Systems that fails this criteria are said to be non observable

21. When a System is said to be completely controllable? Nov/Dec 2015

A System is said to be completely controllable if it is possible to transfer the system
state from any initial state X(to) at any other desired state X(t), in specified finite time by a
control vector v(t).

Part—B

1. Obtain the state model of the given mechanical system .

(6 _ 8 ‘

——{ \—

%
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A
7

A ey
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e i e Ui G B o (8
N

Solution:

Free body diagram



)
—pp,; ) é‘ﬁ_

A
‘QL = kA

By D’Alembert’s principle,

> applied forces = opposing forces

f(t)=f, +f+f,

2
F()=mIX B, iy 1
d® o dt

Equation 1 represents the differential equation covering the system. Let position and
velocity be chosen as state variables then stable variable xiand x> & input variable be

u(t).
x =x(t) .. 2
X, =x(t) .. 3
u(t)y=Ff(t) .. 3a
Therefore x, =x(t)=x, ... 4

From the equation 1,

dzxgt) _f(t) B dx(t) Kyty..6
dt M M dt M

X(t)z%f(t)—%)‘((t)—%x(t) 7

Substituting the state variable,

1 B K
X, =—u(t)——x, ——X .8
2 M () M 2 M 1

.. the state equation are
X, =X, .9
., K B 1
X2 :VXI—MXZ +Mu(t) ...10

Equation 9&10, forms the state equation



Let the displacement x(t) be the output of the system
Ly=x .11

Equation 11 is the output equation.

State & output equation in matrix form

(Zj{l _1E Kj{i}u(t) 12

M M M

Equation 12 & 13 forms the state model.

2. Obtain the state model of the mechanical system by choosing minimum of these state
variables .

Solution:

Let the the stable variable be x,, x, ,x, input variable is u(t) they are related to
the physical variables,

d
X =Yi, X5 =VYa, x3=%:v1, u(t)="F(t)

Free body diagram of mass M is shown in fig

Prb.
< 5w
M Py

Fez

dy, . :
fm =M dt? le = Klyl! sz = Kz(yl_yZ)

DAlemberts principle

> applied forces = opposing forces



f(t)=f, +f, +f

d’y,
M dtz + Klyl + Kz (yl _yz) =f (t)
d’y,
M—dt2 +(K +K,y, Ky, =f(t) .1

2
PUt ddt)2ll :Xg; y1 =X1; yz :XZ & f(t) = U(t) in equ 1

Mx, +(k, +k2)x, —k,x, =u(t)

. -k, +K, K, 1
X, =——=X, +—=X, +—Uu(t) ..2
3 M 1 M 2 M ()

The free body diagram of node 2

d’y
fB = BTZZ; sz ~ Kz(yz _yl)

Writing force balance equation at the meeting point of K, & B, we get

fo+f, =0

d2
B dt{Z +K, (Y, —y,) =0

d’y, K, K,
. W2 |/ .3
dt> B img Y2

p d’y, . .
ut F:XZ' Y, =X, Y,=X, inequ3

K K
. 2 2
X, ==X ——2

X LA
B B ?

State variable x1 = y1

dy.
Sy

dx, . dy,

Let —Lox, 2ZL=x,,
gt "t odt

X, =X, .5

The equation 2,4 & 5 are called state equations



. K K
X, = le—szz
K,+K K
= 1M 2%, +—2X, +—Uu(t)

State equation in matrix form

. 0 0 1

X, K K X, 0

X, |=| —* -—2 0|x,[+| 0] ..a

. B B 1

Yl K, +K, K, . X | |1
Y Mo M

If the desired output are y1 &y> theny1 = X1, Y2 =X

The output equation in matrix form

MEEHM

Equation a& b form the state model of the given mechanical system..

3. Obtained the state model of the electrical network shown in fig choosing minimal
number of state variable.

e®.L)

Solution:

Let us chosen the current through the inductance i1 & i> & voltage across the
capacitor v¢ be the stable variables

Let the stable be



X, X, &X, u(t) are the input variable

X, =1, = current throughL,
X, =i, —>current through L,
X, =V, — voltage across C;

u(t)=e(t);

At node A, by KCL,

i1+i2+CdV°=0 |
dt

On substituting the stable variables,

X, +X,+Cx; =0

Xy =——=X, —=X
3 1 2
C Cc

By krichoff ‘s voltage law to mesh1

e(t)+i1Rl+Ll%:vC

On substituting the state variables,

u+x,R, +LX, =X,
L X, =%X;—%XR,-u
R, 1 1

X, =——X, +—X;——U 4
Ll Ll I—l

By krichoff’s voltage law to mesh 2

c

di,
VemLo g tiRe 5

On substituting the state variable,



Xy = L,X, +X,R,
L,X, =X; —X,R,
-R 1 - 6

X ,=—=X,+—X
2 L2 2 L2 3

The equation 2, 4 & 6 are the state equation of the system

xlz—R—x1+ Xy ——U
Ll 1 1

X ——&x +ix

2 Ll 2 I—l 1

X :—lx —lx

3 C 1 C 2

Ry 1] ]
X L bk L,
1 1 1
X, |[=| 0 R 1 X, [+| 0 |[u]
Y LZ LZ
X, Xy 0
N
L ¢ ¢ ]

Let uis chosen the voltage across the resistance as output variable are denoted by y1
&Y.

y, =R, .8
Y, =i,R, .9

On substituting the state variables,

Y =X +Ry 10

YZ:X2+R2

On arranging output equation in matrix form,

AR
y2 0 RZ XZ

The stable equation 7 & the output equation 11 together constant the state model of the
system.

4. Construct a state model for a system characterized by the differential equation,

3 2
Yy, 6dY 11 ¥

— — +6y+u=0given the block diagram representation of the state model.
dae  dt? dt

Solution:



Let us choose y and their derivation as state variables the system is governed
by third order differential equation & the number of state variable are three

Let the state variable be x,, x,,x, are related to phase variable as follows

X, =Y
dy . .
X, =—=X
2 dt 1
d’y
2 3
Put y=X, %:Xz' %:x3 &%:x3 the given equation

S Xy +6X, +11X, +6X, +U
X, =—6x, 11X, —6X,—u
The state equations are

X =X,

XZ 3
X, =—6X, 11X, —6X, —Uu

On arranging the state equation in matrix form,

x] [0 1 olfx] o
X, =0 0 1| x,|+|0]|[u]
%,| |-6 -11 —6|x,| |-1

Let y=[1 0 0] x,

The state equation and output equation constitutes the state model of the
system . Block diagram of the state model is shown in fig

H=X,

RSNy




5. For the transfer function MO = 10(s+4) , obtain the state space representation
U(S) s(s+2)(s+5)

using 1) controllable canonical form 2) Observe canonical form using mason’s gain
formula.

Given:1.Controllable canonical form

Y(s)= 10(s+4) __10s+40
U(s) s(s+2)(s+5) s°+7s*+10s

<
©
<

(s) X,(s) ~ 10s+40
U(s) X,(s) U(s) s*+7s*+10s

X Y
1(9) L and () =10s+40

Where =
U(s) s°+7s*+10s X, (s)

Xi(s) _ 1
U(s) s°+7s%+10s

Y
(S) =10s+40

Y (s) =10sX, (s)+40X, (s) A

Realization of equation 1 & 2 are shown fig

The output is given by

y = 40x, +10x, .4

The state equation and output equation in matrix form.



X, 0 1 0|x 0
X;| [0 10 —7|[x;] [1

Xl
And y=[40 10 0] x, .6
XS

Equation 5& 6 gives the state model in controllable canonical form.
i1) Observable canonical from using mason’s gain formula.

_Y(s)  10(s+4)  10s+40
G(s)= U(s) s(s+2)(s+5) §°+7s*+10s

10, 40

10 40
'

Comparing with masons gain formula, there are two forward path with gain e

Two feedback loop with gain _?7 and ;—23

Signal flow graph

From fig

X, =40u
X, =X, —=10x, +10u
X3 =X, =X,

Yy =X,

X | [0 0 0 |x| [40
X, 0 1 —7]|[x, 0



Xl
And [y]=[0 0 1]|x,
X3
6. Obtain the state model of the system by drawing the signal flow graph whose t/f is

given as Y(s) 5 10 :
U(s) s°+4s’+2s+1

Solution:
Given

Y (s) _ 10 _ 10
U(s) s’+4s*+2s+1 3( 4 2 1)
S +

Comparing with mason gain formula, forward path gain = 1—?

Three individual loop gain = —g, ;—22 ;—31
. = e \ \
Xa l/S 2 & /4 /

Assign state variable at the output of the integrators

The state equations are

X, =—4X, + X,
X, ==2X; + X,
X, =—-X, +10u



The output equation is y = X1

The state model in the matrix form is

%] [-4 1 0][x,] [0
X, [=|-2 0 1|{/x,|+| 0 |[u] and
%, | |-1 0 0] x| [10

X, |

[y]=[1 © 0]{x2

X3 |

7. Determine the diagonal canonical state model of the system, whose transfer function
2(s+5)

[(s+2)(s+3)(s+4)]

IS T(s)=

Solution:
Given:

Y(s) . 2(s+5)
Lt T [(5+2)(5+3)(s+4)]

By partial fraction expansion,

Y(s) 2(s+5) A B C

U(s) [(s+2)(s+3)(s+4)] (5+2) (s+3) (s+4)

2(s+5) | 2(-2+5) _2x3_,
(s+2)(s+4)|_, (-2+3)(-2+4) 1x2

_ 2(s+5) S:__ 2(-3+5) _2x2 _,
_(s+2)(s+4)sz_3—(—3+2)(—3+4)_—1><1_

2(s+5) 2(-4+5)  2x1

(s+2)(s+4)|_, (-4+2)(-4+3) -2x-1

.'.Y(S): 3 4 + 1 A
U(s) s+2 s+3 s+4

Equation 1 can be rearranged a follows

Y(s) 3 4 L1
U(S) ) s(1+§j s(l+§j s(1+jj

1 1 1
V() =| —5—x3|U(s)~| —S—x4|U(s)| —S—x1|u(s) .2



Equation 2 can be represented in block diagram

Assign state variables at the output of the integer as shown in fig. at the input of the
integrators the derivation of the stable variable are assigned.

State equation s are

X, ==2X,+U
X, ==3X, +U
X, =—4X, +U

The output equation isy = 3x1 -4X2+X3.

x] [-2 0o ollx] 1
X, =] 0 =8 0 [[x,|+|1|[u]
Hitce i
)=fs 1]H

X3

8. Obtained the state space representation in Jordan canonical form for the given
Y(S) _ 28" +465+7
u(s) (s+1)2 (s+2)

transfer function

Solution:
Given

Y(s) 2s°+65+7 _ A B C

U(s) (s+1)°(s+2) (s+1)° s+l s+2



A Ltl[(zs2 +65+7)(s+1)’ }

(s +1)2 (s+2)

= Lt 25 +65+7 | 2-6+7
-1 S+2 -1+2

3

d (252+65+7)(s+1)2]
s -1dS_ (s+1)"(s+2)

d 252 46547 L (s+2)(4s+6)—(252+65+7)
s>ads|  s+2 | s (s+2)

_ (-4+6)—(2-6+7) _2-3_,

(-1+ 2)2 1

oLt {(252 +6s:r7)(s+2)]
=2 (s+1) (s+2)

2
Lt 2s +632+7
s>2|  (s+1)

_8-12+7
(—2+1)?

Y(s) 3 - 2

U(s) (s+1)  (s+1) s+2

:3U(s)+—U(s) 2U(s)
(s+1)2 (s+1) s+2

Y(s)

Let the state variable be

L UE)
X6
X2 (s)= (LsJ+sl))
X, (S) = (ZJ_ESZ))
X(s)_ 1
X,(s) (s+1)
sX; (S) ==X (S) +X, (S)
5, (8) =%, (5)+ U(s)
sX;(8)=-2X,(s)+U(s)



Y (s)=3X,(s)—X,(s)+3X;(s)
Taking inverse Laplace transform

X, ==X, +X,
X, ==X, +U
X, =—2X;+U
y =3X, =X, +3X%,

This equation can be represented in matrix form

x,1 [-1 1 0][x] [0
X, =] 0 =1 0 || %, |+|1]|[u]
X, 0 0 -2x,| |1
Xl
y=[3 -1 3] x,
X3
9. Obtain the transfer function model for the following state space system.
0 1 1
A= , B|7|, c=[1 0], D=]0].
5 5] eo) e o o-p

Solution:

m=c(s|—A)’1|3+D

1-A=sf 1 Jokee, 5 e oo

(s1-A)* = 1 {s+5 1}

s(s+5)+6| 6 s

%2[1 o]mrj jmqo]

1 1
= 51
sz+53+6[SJr ]{O}

1
= 5
552+53+6[5Jr ]

Y(S): s+5
U(s) s*+5s+6




10. Find the transfer function for the system, which is represented in the state space
X, -2 1 0¢{x| |0
X,[=[ 0 =3 1%, [+|0]|[u]
X, | |-3 -4 -5x,| |1
Xl
y=[0 1 0] x,
X3

representation as follows

Solution:

1 0O -2 1 0
(sl-A)=s|0 1 0|-|0 -3 1
0 0 1 -3 -4 -5

s+2 -1 0
= 0 s+3 -1
3 4 s+5
(sI—A)fl _ adj(sl-A)
det(sl-A)
s? +85+19 S+5 1
adj(sl-A) = 4 S +7s+10  s+2

-3(s+3) —45-11 s*+55+6

det(sl—A)=[(s+2)((s+3)(s+5)+4)+1x3]

=(s+2)(s* +8s+19)+3
=5’ +10s” +35s + 41
. s’ +8s+19 s+5 1
A(S=1-A) = -3 $?47s+10  s+2
s°+10s” +35s+41 )
-3(s+3)  —4s-11 s°+5s+6
s’ +8s+19 s+5 1
Y(S) 1 2
[0 1 0] -3  s*+75+410 s+2

=3 2
U(s) s°+10s*+355+41 “3(s+3) 411 2 4Bstt



1

0
= [-3 s*+7s+10 s+2]0
§°+10s” +35s+41 1

1
== 5 . S+2
s°+10s“ +35s5+41

Y(S)_ S+2
U(s) s°+10s? +355+41

11. A linear time invariant system is characterised by the state equation

' 10 0 . . : .
B} {1 JD}MM when u is a unit step function complete the solution of these
2 2

equation assuming initial condition x, :{0} use inverse Laplace technique.

Solution:

Given A:F O}, B{O}
11 1

X(1)= L [6(5)X(5)]+ L [6(5)BU(S)]

o(s)=(s1-A)"

a5 )

(s1-A)’ adj (sl=A) 1 2[5—1 0}

I
1
| w
|
P
w
I o
[y
|

Tdet (sI-A) (s_1y| -1 s-1
L 0
s-1
I
(s-1)° s-1
1 1
s—-1 0 s—1
WEXO= T g M: L
(s-1)" s-1 (s—1)?




1+e
ol
=X(Y {—1+(it+1)et}

12. Test the controllability & observability of the system by any one method whose state

X, 0 0 1]/x 0 X,
space representation is givenas.| x, |=| -2 -3 0|/ x, [+|2[u, y=[1 0 0]|x, | .
X, 0 2 -3|x%, 0 X,

Solution:

Method: Gilberts Method.

0 0 1 0
A=|-2 -3 0|, B=|2|C=[1 0 0]
0 2 -3 0

To find Eigen values.

The characteristic equation is [A1-A] =0

100][0 0 1
[M-A]=%0 1 0|-|-2 -3 0
001 [0 2 -3



A0 -1

=[2 A+3 0

0 -2 X+3
A0 -
TM-Al=]2 A+3 0
0 -2 A+3

:?»(k+3)2 —l(—4)—k(k2 +67L+9)+4—(k3 +602+9N+4
=(A+1)(A+1) (A +4) =(k+l)2 (L+4)

The Eigen values are »=-1,A=-1xr=—4
To find eigen vectors
1 00][0 0 1

I-Al=2]0 1 0|-[-2 -3 0
001/ |0 2 -3

A, 0 -1
=2 p,+3 0
0 -2 3+3

Let Cy,C,,,Cy;be the cofactore along the 1 row of the matrix[1,1-A]

A +3 0
C.=(+1)[" ‘:(k +3)2 =A% +6A, +9
11 ( ) _2 7\'1_’_3 1 1 1
2 0
C,=(- =—(2(n,+3))=-2), -6
12 ( )‘0 }\‘1+3 ( ( 1 )) 1
c. - 2 M+3
13 0 _2 -
Cy,| |A2+61,+9| [1-6+9 4
m=|C,|=| -20,-6 |=| 2-6 |=|-4
Cp 4 -4 4
[dc,, |
ddél 26, +6] [-2+6 4
m=| g2 |=| 2 |=| 2 |=|-2
! 0 0 0
dC,




100 0 0 1 -4 0 -1
[ksl—A]:—4 010--2 -3 0|={2 -1 0
0 01 0 2 -3 0 -2 -1

Let C,,,C,,.C,, be the cofactor along 1% row of the matrix [x,1-A]

-1 0
Cu=(+1) » —J.‘ =1
2 0
Clz (_l) 0 _JJ =2
2 -1
C13 = (+1) 0 _2‘ =—4
Cu
m,=(Cyp, |=
Cs —4

To find the canonical form of state from of state model

The model matrix, M is given by

4 4 1
M=[m, m, m=|-4 -2 2
4 0 -4

[Cofactor of M]T M,

-1 _ cof

" Determination of M AM

4 4 1
AM=|-4 =2 2|=4(8)-4(24)+1(-8)=-T72
4 0 -4
8 24 -8 [8 16 10
M, =16 -12 -16| =|-24 -12 -12
10 -12 8 8 -16 8
. 8 16 10 . 2 -4 -25
Mi=—=|-24 -12 -12|=—|6 3 3

-8 -16 8 182 4 2

24 sjfo 0 1ra 4
J=M'AM=—|6 3 3|2 3 0|4 -2 2
2 4 2|0 2 -3||-4 0 4



8 7 554 4 1
=—|—-6 -3 3] -4 -2 2
-8 -16 8 ||-4 0 4
-18 18 0 -1 1 0
:i 0 -18 0 |=|0 -1 O
18
0 0 -72| |0 0 -4
-2 -4 25|10
B:M’lB:i 6 3 3 |2
2 4 =210
-8/18 —4/9
=| 6/18 |=| 3/9
8/18 4/9
4 4 1
C=CM=[1 0 0] 4 —2 2
-4 0 -4
=[4 4 1]

The Jordan canonical form of state model

0
Z=JZ+BU

[
Y=CZ+DU

1l -1 1 07z [-4/9
Z,|=| 0 -1 0| Z,|+| 3/9 |[u] and
o 0 -4z | 419

Zl
Y=[4 4 1] 27,
ZB

Conclusion
> The elements of the row of B are not all zero. Hence the system is completely
controllable.

> The elements of the column of C are not all zero. Hence the system s
completely observable

13. Consider the system defined by X=AX+BU, Y=CX

0 1 0 1
Where A=| 0 0 1| B=|0| C=[10 5 1]
-6 -11 -6 1



Check controllability and observability of the system  Nov/Dec 2015

using Kalman’s method

i) To check for controllability

1
B=|0
1
0o 1 o1l [o
AB=|0 0 1]0|= 1
6 -11 61| |-12
0 1 o] o 1
AB=A(AB)=[0 0 1| 1 |=[-12

-6 -11 -6|-12| | 61
The composite matrix for controllability

Q. =[B AB AB’]

1 0 1
=0 1 -12
1 -12 61
1 0 1
AQ,=l0 1 -12
1 -12 61
—1(61-144)+1(~1)
~-83-1=-84

Since |Q,|=0 the rank of Qcis 3 hence the system is completely controllable.

To check for observability

0 0 -6 10
AT=/1 0 -11|, C'=|5
01 -6 1



o = O
= O O

—67[10] [0+0+6 [-6

A'C { 11]{ 5 ] {10+011] {1]
6|1 0+5-6 | |-1

00 —6]|[-6] [ 0+0+6
(AT)ZCTAT.(ATCT){l 0 11}{1]{&%11]

01 6|-1 0-1+6

:

The composite matrix for observability

Qo:[CT ATCT (AT)ZCT}

10 6 6
=5 -15
1 15

AQ, =10(-5+5)+6(25-5)+6(-5+1)
= 6(20)+6(-4)
=120-24=96

Since |Q,| =0, the rank of Qo is 3. Hence the system is completely observable.
18. State the properties of state transition matrix.

¢(t) =e™ =state transition matrix

1. ¢(0)=e™? =1 = Identity matrix

ie., ¢ (1) =(=t)

5. et —eM ¢ only if AB = BA

6. [o(1)]" =[e™] =e™ =¢(nt)



7. 0(t,—t)-0(t,—t)) = (t, —t,)

This property states that the process of transition of state can be divided into number of
sequential transition. Thus to to t> can be divided as to to t1 & t; to t, as stated in the property
In terms of ¢(t), the solution is expressed as

X(t):(b(t_to)x(to)"'_": o(t—1)B-U(1)-dt
Where ¢(t_t0):eA(t—to) & ¢(t—r): eAlt=7)

8. ¢(t) is an non-singular matrix for all values of t.

19. Draw the state model of a linear single input-single output system and obtain its
corresponding equations.

The state model of a linear single input single output system can be obtained by puttingm =1
& p =1 in the state model of a linear multi input — multi- output system as

x(t) =Ax(t)+B-u(t) — State Equation

y(t)=Cx(t)+D-u(t) — Output Equation

x: (1)
x: (1)
Where x(t)=| . —» State Vector
X, (1) o
_all alZ aln
a21 a22 a'2n
A= . — System Matrix
_anl an2 ann nxn
b,
b,
B=| . — Input Matrix
_bn nx1

C=[C,C,C,..C, ], — Output matrix

d = Transmission Constant
u(t) = Input (or) Control Variable (Scalar)

y(t) = Output Variable (Scalar)



The Block diagram representation of the state model of linear single input single output
system is shown in fig.

]

20. Consider the following system with differential equation given by.

'37+6§+11§/+ 6y = 6u obtain the state model in diagonal canonical form Nov/Dec 2015
Solution

Given .)-/.+6.);+ll)./+ 6y = 6u

Taking Laplace transform on both sides

s’Y(s)+s*6Y(s)+11sY(s)+6Y(s) =6U(s)

[s°+65° +115+6 | Y(s) = U(s)-6

Y(s)_ 6
U(s) s°+6s*+11s+6

Y0 6

S U(s)  (s+1)(s+2)(s+3)

A B C

= (s+1)+ 5+2) + 5-3) [By partial fraction expansion]

6
A-— % i, V° -
(s+2)(s+3) 1x2

s=—1

6 6

S T ey R T R

Ye)_ 3 6 3
TU(s) (s+1) (s+2) (s+3) ()

Equation (1) can be rearranged as follows



Y(s)—%U(s)—{ljﬁu(sﬁﬁu(s)

Equation 2 can be represented in block diagram

Assign state variables at the output of the integrators as shown in fig. At the input of the
integrators, the derivatives of the state variables are assigned.

The state equations are
>.<1 =-X, +U

).(2 =-2X,+U =3

).<3 =-3X;+U

The output equation is

y = 3X1—6x2 + 3X3 4)

Equation (3) & (4) forms the state model

State model in Matrix form



