AALIM MUHAMMED SALEGH COLLEGE OF ENGINEERING
DEPARTMENT OF COMPUTER APPLICATION
SEMESTER- I
MC5102 – PROBLEM SOLVING AND PROGRAMMING
UNIT – IV NOTES

SYLLABUS:
UNIT IV ARRAYS, STRINGS, FUNCTIONS AND POINTERS
Array – One dimensional Character Arrays- Multidimensional Arrays- Arrays of Strings - Two
dimensional character array – functions - parameter passing mechanism scope – storage classes –
recursion - comparing iteration and recursion- pointers – pointer operators - uses of pointers- arrays and pointers – pointers and strings - pointer indirection- pointers to functions - Dynamic memory allocation.

ARRAYS
· C programming language provides a data structure called the array, which can store a
fixed-size sequential collection of elements of the same type.

What is an Array?

· An array is used to store a collection of data, of the same data name and data type.
An array is a sequence of data item of homogeneous value (same type).

Example:
If the user wants to store marks of 100 students.
This can be done by creating 100 variables individually but, this process is rather tedious and impracticable.
This type of problem can be handled in C programming using arrays.

int marks[100];

This declaration statement can able to store 100 marks of integer values.

That is, 100 blocks of memory of 4 bytes each ranges of index 0 to 99.

Two major types of Arrays

· Arrays are of two types:
i. One-dimensional arrays
ii. Multidimensional arrays

Declaration of one-dimensional array
· To declare an array in C, a programmer specifies the type of the elements and the number of elements required by an array as follows:
data_type array_name[array_size];

· Example:

int age[5];

Here, the name of array is age. The size of array is 5,i.e., there are 5 items(elements) of
array age. All element in an array are of the same type (int, in this case).

Array elements
· Size of array defines the number of elements in an array. Each element of array can be
accessed and used by user according to the need of program.
For example:
int age[5];

[image:]

The first element is numbered is indexed as 0 and so on.
o Here, the size of array age is 5 times the size of int because there are 5 elements.
o Suppose, the starting address of age[0] is 2120d and the size of int be 4 bytes.
Then, the next address (address of a[1]) will be 2124d, address of a[2] will be
2128d and so on.

Initialization of one-dimensional array:
· Arrays can be initialized at declaration time in this source code as:
int age[5]={2,4,34,3,4};
It is not necessary to define the size of arrays during initialization.
int age[]={2,4,34,3,4};
In this case, the compiler determines the size of array by calculating the number of elements of an array.

[image:]

Accessing array elements
In C programming, arrays can be accessed and treated like variables in C.

Example of array in C programming

/* C program to find the sum marks of n students using arrays */
#include <stdio.h>
int main(){
int marks[10],i,n,sum=0;
printf("Enter number of students: ");
scanf("%d",&n);
for(i=0;i<n;++i){
printf("Enter marks of student%d: ",i+1);
scanf("%d",&marks[i]);
sum+=marks[i];
}
printf("Sum= %d",sum);
return 0;
}

Output

Enter number of students: 3
Enter marks of student1: 12
Enter marks of student2: 31
Enter marks of student3: 2
sum=45

 MULTIDIMENSIONAL ARRAYS
· C programming language allows programmer to create arrays of arrays known as
multidimensional arrays.

· Example: float a[2][6];

o Here, a is an array of two dimension, which is an example of multidimensional
array. This array has 2 rows and 6 columns
o For better understanding of multidimensional arrays, array elements of above
example can be think of as below:

[image:]

Initialization of Multidimensional Arrays

In C, multidimensional arrays can be initialized in different number of ways.
int c[2][3]={{1,3,0}, {-1,5,9}};

OR

int c[][3]={{1,3,0}, {-1,5,9}};

OR

int c[2][3]={1,3,0,-1,5,9};

Example:
#include <stdio.h>
int main ()
{
/* an array with 5 rows and 2 columns*/
int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};
int i, j;
/* output each array element's value */
for (i = 0; i < 5; i++)
{
for (j = 0; j < 2; j++)
{
printf("a[%d][%d] = %d\n", i,j, a[i][j]);
}

}
return 0;
}

When the above code is compiled and executed, it produces the following result:
a[0][0]: 0
a[0][1]: 0
a[1][0]: 1
a[1][1]: 2
a[2][0]: 2
a[2][1]: 4
a[3][0]: 3
a[3][1]: 6
a[4][0]: 4
a[4][1]: 8

Initialization Of three-dimensional Array
double cprogram[3][2][4]={
{{-0.1, 0.22, 0.3, 4.3}, {2.3, 4.7, -0.9, 2}},
{{0.9, 3.6, 4.5, 4}, {1.2, 2.4, 0.22, -1}},
{{8.2, 3.12, 34.2, 0.1}, {2.1, 3.2, 4.3, -2.0}}
};

· Suppose there is a multidimensional array arr[i][j][k][m]. Then this array can hold
i*j*k*m numbers of data.
· Similarly, the array of any dimension can be initialized in C programming.

The two major types of Arrays are :
· Arrays are of two types:
i. One-dimensional arrays
ii. Multidimensional arrays

(i) ONE-DIMENSIONAL ARRAY

An array having a single index is called one-dimensional array in C.
For example:
If the user wants to store marks of 100 students.
int marks[100];
This declaration statement can able to store 100 marks of integer values.
That is, 100 blocks of memory of 4 bytes each ranges of index 0 to 99.

Declaration of one-dimensional array
· To declare an array in C, a programmer specifies the type of the elements and the number of elements required by an array as follows:

data_type array_name[array_size];

· Example: 		int age[5];
Here, the name of array is age. The size of array is 5,i.e., there are 5 items(elements) of
array age. All element in an array are of the same type (int, in this case).

Array elements
· Size of array defines the number of elements in an array. Each element of array can be accessed and used by user according to the need of program.
For example:
int age[5];

[image:]

· The first element is numbered is indexed as 0 and so on.
· Here, the size of array age is 5 times the size of int because there are 5 elements.
· Suppose, the starting address of age[0] is 2120d and the size of int be 4 bytes.
· Then, the next address (address of a[1]) will be 2124d, address of a[2] will be
· 2128d and so on.

Initialization of one-dimensional array:
· Arrays can be initialized at declaration time in this source code as:
int age[5]={2,4,34,3,4};
It is not necessary to define the size of arrays during initialization.
int age[]={2,4,34,3,4};
In this case, the compiler determines the size of array by calculating the number of elements of an array.

[image:]

Accessing array elements
In C programming, arrays can be accessed and treated like variables in C.

Example of array in C programming

/* C program to find the sum marks of n students using arrays */
#include <stdio.h>
int main(){
int marks[10],i,n,sum=0;
printf("Enter number of students: ");
scanf("%d",&n);
for(i=0;i<n;++i){
printf("Enter marks of student%d: ",i+1);
scanf("%d",&marks[i]);
sum+=marks[i];
}
printf("Sum= %d",sum);
return 0;
}

Output

Enter number of students: 3
Enter marks of student1: 12
Enter marks of student2: 31
Enter marks of student3: 2
sum=45

ii) MULTIDIMENSIONAL ARRAY
· C programming language allows programmer to create arrays of arrays known as
multidimensional arrays.

· Example: float a[2][6];

o Here, a is an array of two dimension, which is an example of multidimensional
array. This array has 2 rows and 6 columns
o For better understanding of multidimensional arrays, array elements of above
example can be think of as below:

[image:]

Initialization of Multidimensional Arrays
In C, multidimensional arrays can be initialized in different number of ways.
int c[2][3]={{1,3,0}, {-1,5,9}};

OR

int c[][3]={{1,3,0}, {-1,5,9}};

OR

int c[2][3]={1,3,0,-1,5,9};

Example:
#include <stdio.h>
int main ()
{
/* an array with 5 rows and 2 columns*/
int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};
int i, j;
/* output each array element's value */
for (i = 0; i < 5; i++)
{
for (j = 0; j < 2; j++)
{
printf("a[%d][%d] = %d\n", i,j, a[i][j]);
}

}
return 0;
}

When the above code is compiled and executed, it produces the following result:
a[0][0]: 0
a[0][1]: 0
a[1][0]: 1
a[1][1]: 2
a[2][0]: 2
a[2][1]: 4
a[3][0]: 3
a[3][1]: 6
a[4][0]: 4
a[4][1]: 8

STRING IN C
· In C programming, array of character are called strings. A string is terminated by null
character /0.
· Example: "C-data type"

Here, "c string tutorial" is a string. When, compiler encounters strings, it
appends null character at the end of string.
C – d a t a t y p e \0
Example
char greeting[] = "Hello";
· Following is the memory presentation of above defined string in C/C++:
[image:]

· Following is the memory presentation of above defined string in C/C++:

Program
#include <stdio.h>
int main ()
{
char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
printf("Greeting message: %s\n", greeting);
return 0;
}
Output
Greeting message: Hello

ii) String handling functions in C
C supports a wide range of functions that manipulate null-terminated strings:
	S.No.
	Function
	Purpose

	1
	strcpy(s1, s2);
	Copies string s2 into string s1.

	2
	strcat(s1, s2);
	Concatenates string s2 onto the end of string s1.

	3
	strlen(s1);
	Returns the length of string s1.

	4
	strcmp(s1, s2);
	Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

	5
	strchr(s1, ch);
	Returns a pointer to the first occurrence of character ch in string s1.

	6
	strstr(s1, s2);
	Returns a pointer to the first occurrence of string s2 in string s1.

Following example makes use of few of the above-mentioned functions:
#include <stdio.h>
#include <string.h>
int main ()
{
char str1[12] = "Hello";
char str2[12] = "World";
char str3[12];
int len ;
/* copy str1 into str3 */
strcpy(str3, str1);
printf("strcpy(str3, str1) : %s\n", str3);
/* concatenates str1 and str2 */
strcat(str1, str2);
printf("strcat(str1, str2): %s\n", str1);
/* total lenghth of str1 after concatenation */
len = strlen(str1);
printf("strlen(str1) : %d\n", len);
return 0;
}

Output
strcpy(str3, str1) : Hello
strcat(str1, str2): HelloWorld
strlen(str1) : 10

ARRAYS OF STRINGS
· An array of strings is a special form of a two-dimensional array.
· The size of the left index determines the number of strings.
· The size of the right index specifies the maximum length of each string.

For example, the following declares an array of 30 strings, each having a maximum
length of 80 characters (with one extra character for the null terminator):

char string_array[30][81];

· For accessing an individual string, one simply specifies only the left index:
firstString = string_array[0];
sixthString = string_array[5];

· The following example calls the gets() function with the third string in the array:
gets(string_array[2]);

This program accepts lines of text entered at the keyboard and redisplays them after a blank line is entered.
// includes go here
int main()
{
int t, i;
char text[100][80];
for(t=0; t<100; t++) {
cout << t << “: “;
gets(text[t]);
if(!text[t][0]) break; // quit on blank line
}
for(i=0; i<t; i++) // redisplay the strings
cout << text[i] << ‘\n’;
return(0);}

An Example Using String Arrays
Arrays of strings are commonly used for handling tables ofvinformation.
One such application would be an employee database that stores
• the name
• telephone number
• hours worked per pay period, and
• hourly wage.
These data we could store in arrays:
char name[20][80]; // employee names
int phone[20]; // phone numbers
float hours[20]; // hours worked
float wage[20]; // wage

ONE DIMENSIONAL CHARACTER ARRAY INITIALIZATION

Character arrays that will hold strings allow a shorthand initialization that takes this form:
Char array-name[size] = “string”;

For example, the following code fragment initializes Str to the phrase “hello”:
char str[6] = “hello”;

This is the same as writing
char str[6] = {‘h’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};

Remember that one has to make sure to make the array long enough to include the
null terminator.

#include <stdio.h>
int main(void)
{
char text[10][80];
int i;
for(i = 0; i < 10; i++) {
printf("some string for index %d: ", i + 1);
gets(text[i]);
}
do {
printf("Enter number of string (1 - 10) : ");
scanf("%d", &i);
i--; /* adjust value to match array index */
if(i >= 0 && i < 10)
printf("%s\n", text[i]);
} while(i>=0);
return 0;
}

TWO-DIMENSIONAL ARRAY OF CHARACTERS

· It has 2 sub scripts.
· The order of the subscripts in the array declaration is important. The first subscript gives
the number of names in the array, while the second subscript gives the length of each
item in the array.

· Example
char masterlist[6][10] = {
"akshay",
"parag",
"raman",
"srinivas",
"gopal",
"rajesh"};

· Instead of initializing names, names can supplied from the keyboard
for (i = 0 ; i <= 5 ; i++)
scanf ("%s", &masterlist[i][0]) ;
· The names would be stored in the memory as shown in Figure. Note that each string ends
with a ‘\0’. The arrangement is similar to that of a two-dimensional numeric array.
[image:]
Here, 65454, 65464, 65474, etc. are the base addresses of successive names.
· Even though 10 bytes are reserved for storing the name “akshay”, it occupies only 7
bytes. Thus, 3 bytes go waste.

· ‘Array of pointers’ used to avoid wastage.

FUNCTION
· In programming, a function is a segment that groups code to perform a specific task.
· A function is a self-contained block of statements that performs a specified task. The
specified task is repeated each time that the program calls the function.
· Functions break large computing tasks into smaller ones. They work together to
accomplish the goal of the whole program.
· Every program must contain one function named main() where the program always
begin execution.
· The function name is an identifier and should be unique.

Types of C functions
Basically, there are two types of functions in C on basis of whether it is defined by user or not.
· Library function
· User defined function
i. Library function
Library functions are the in-built function in C programming system. For example:
main()
- The execution of every C program starts from this main() function.
printf()
- prinf() is used for displaying output in C.
scanf()
- scanf() is used for taking input in C.

ii. User defined function
· C allows programmer to define their own function according to their requirement.
These types of functions are known as user-defined functions.

· Example:
Suppose, a programmer wants to find factorial of a number and check whether it is prime or not in same program.
Then, he/she can create two separate user-defined functions in that program: one for finding factorial and other for checking whether it is prime or not.

Working of user-defined function in C Programming
· Every C program begins from main() and program starts executing the codes inside
main() function.
· When the control of program reaches to function_name() inside main() function. The
control of program jumps to void function_name() and executes the codes inside it.
· When all the codes inside that user-defined function are executed, control of the program jumps to the statement just after function_name() from where it is called.

[image:]

Example of user-defined function

Write a C program to add two integers. Make a function add to add integers and
display sum in main() function.

/*Program to demonstrate the working of user defined function*/
#include <stdio.h>
int add(int a, int b); //function prototype(declaration)
int main(){
int num1,num2,sum;
printf("Enters two number to add\n");
scanf("%d %d",&num1,&num2);
sum=add(num1,num2); //function call
printf("sum=%d",sum);
return 0;
}
int add(int a,int b) //function declarator
{
/* Start of function definition. */
int add;
add=a+b;
return add; //return statement of function
/* End of function definition. */
}

Function prototype(declaration):
· Every function in C programming should be declared before they are used. These type of declaration are also called function prototype.
· Function prototype gives compiler information about function name, type of arguments
to be passed and return type.

Syntax of function prototype
return_type function_name(type(1) argument(1),....,type(n) argument(n));
· In the above example,int add(int a, int b); is a function prototype which provides
following information to the compiler:
o name of the function is add()
o return type of the function is int.
o two arguments of type int are passed to function.
· Function prototype are not needed if user-definition function is written before
main() function.

Function call
· Control of the program cannot be transferred to user-defined function unless it is
called invoked.

· Syntax of function call
function_name(argument(1),....argument(n));

· In the above example, function call is made using statement add(num1,num2);
from main().
· This makes the control of program jump from that statement to function definition
and executes the codes inside that function.

Function definition
· Function definition contains programming codes to perform specific task.
Syntax of function definition
return_type function_name(type(1) argument(1),..,type(n) argument(n))
{
//body of function
}
Function definition has two major components:
1. Function declarator
· Function declarator is the first line of function definition. When a function is
called, control of the program is transferred to function declarator.
Syntax of function declaratory

type function_name(type(1) argument(1),....,type(n) argument(n))
· Syntax of function declaration and declarator are almost same except, there is no
semicolon at the end of declarator and function declarator is followed by function
body.
2. Function body
· Function declarator is followed by body of function inside braces.

The advantages of functions:
1. The length of a source program can be reduced using functions at appropriate places.
2. It is easy to locate and isolate a faulty function.
3. A function may be used by many other programs.

TYPES OF FUNCTIONS
For better understanding of arguments and return type in functions, user-defined functions can be categorized as:
1. Function with no arguments and no return values
2. Function with arguments but no return values
3. Function with arguments and return values

Passing arguments to functions
· In programming, argument(parameter) refers to data this is passed to
function(function definition) while calling function.
· In above example two variable, num1 and num2 are passed to function during
function call and these arguments are accepted by arguments a and b in function
definition.

[image:]

Arguments that are passed in function call and arguments that are accepted in
function definition should have same data type. For example:

If argument num1 was of int type and num2 was of float type then, argument
variable a should be of type int and b should be of type float,i.e., type of
argument during function call and function definition should be same.
· A function can be called with or without an argument.

· Calling a Function :
o Call a C function just by writing function name with opening and
closing round brackets followed with semicolon.
o If we have to supply parameters then we can write parameters inside pair
of round brackets.
o Parameters are optional.
· Call Function without Passing Parameter :
display();
· Passing 1 Parameter to function :
display(num);
· Passing 2 Parameters to function :
display(num1,num2);
· Called function: It is a function and a function is a group of statements that
together perform a task.

Return Statement
Return statement is used for returning a value from function definition to calling
function.

Syntax of return statement
return (expression);

For example:
return a;
return (a+b);

i. Function With No Arguments and No Return Values
· The function does not receive any data from the calling function.
· The function has no return values, which mean calling function does not receive
any data from the called function.
· There is no data transfer between the calling function and the called function.
/*C program to check whether a number entered by user is prime or not using function with no
arguments and no return value*/
#include <stdio.h>
void prime();
int main(){

prime(); //No argument is passed to prime().
return 0;
}
void prime(){
/* There is no return value to calling function main(). Hence, return type of prime() is void */
int num,i,flag=0;
printf("Enter positive integer enter to check:\n");
scanf("%d",&num);
for(i=2;i<=num/2;++i){
if(num%i==0){
flag=1;
}
}
if (flag==1)
printf("%d is not prime",num);
else
printf("%d is prime",num);
}

Expected output
Enter positive integer enter to check 5
5 is prime

ii. Function With Arguments But No Return Values
· The function receives data from the calling function.
· The main() function will not have any control over the way the functions receive
input data.
· User can read data from the input terminal and pass it to the called function.
#include <stdio.h>
void prime(int);
int main(){
int n=5;
// printf("Enter positive integer enter to check:\n");
// scanf("%d",&n);
prime(n); //No argument is passed to prime().
return 0;
}
void prime(int n){

/* There is no return value to calling function main(). Hence, return type of prime() is void */
int num=n,i,flag=0;
for(i=2;i<=num/2;++i){
if(num%i==0){
flag=1;
}
}
if (flag==1)
printf("%d is not prime",num);
else
printf("%d is prime",num);
}
Expected output
Enter positive integer enter to check 5
5 is prime

iii. Function With Arguments and Return Values
· The function receives data from the calling function and does some process and
then returns the result to the called function.
· In this way, the main() function will have control over the function. This
approach seems better because the calling function can check the validity of data
before it passed to the calling function and to check the validity of the result
before it is sent to the standard output device (i.e. screen).
· When a function is called, a copy of the values of actual arguments is passed to
the called function.
Example : find Factorial of a number.

FUNCTION PROTOTYPES
· Any C function returns n integer value by default.
· If a function should return a value other than an int, then it is necessary to mention the
calling function in the called function, which is called as the function prototype.
· Function prototype are usually written at the beginning of the program explicitly
before all user defined functions including the main() function.
The syntax is :

return_type function_name(dt1 arg1, dt2 arg2, . . . dtn argn) ;

o Where return_type represents the data type of the value that is returned by
the function and dt1, dt2, . . . dtn represents the data type of the arguments
arg1, arg2, . . . argn.

The data types of the actual arguments must confirm to the data types of
the arguments with the prototype. For example :

long fact(long num) ;
o Here fact is the name of the function, long before the function name fact
indicates that the function returns a value of type long. num inside the
parenthesis is the parameter passed to the called function. long before the
num indicates that it is of type long.

RECURSION
· In C it is possible for the functions to call itself.
· Recursion is a process by which a function calls itself repeatedly until some specified
condition has been satisfied.
· A function is called recursive if a statement within the body of a function calls the
same function, sometimes called circular definition.
· Recursion is the process of defining something in terms of itself.
· When a recursive program is executed the recursive function calls are not executed
immediately, they are placed on a Stack (Last In First Out) until the condition that
terminates the recursive function.
· The function calls are then executed in reverse order as they are popped off the stack.
· Recursive functions can be effectively used in applications in which the solution to a
problem can be expressed in terms of successively applying the same solution to the
subsets of the problem.

· Simple example

void count_to_ten (int count)
{
/* we only keep counting if we have a value less than ten
if (count < 10)
{

count_to_ten(count + 1);
}
}
int main()
{
count_to_ten (0);
}

· Example: Factorial of a number
/* Source code to find factorial of a number. */
#include<stdio.h>
int factorial(int n);
int main()
{
int n;
printf("Enter an positive integer: ");
scanf("%d",&n);
printf("Factorial of %d = %ld", n, factorial(n));
return 0;
}
int factorial(int n)
{
if(n!=1)
return n*factorial(n-1);
}

Difference between Recursion and Iteration

	RECURSION
	ITERATION

	Recursive function – is a function that is
partially defined by itself
	Iterative Instructions –are loop based
repetitions of a process

	Recursion Uses selection structure
	Iteration uses repetition structure

	Infinite recursion occurs if the recursion step
does not reduce the problem in a manner that
converges on some condition.(base case)
	An infinite loop occurs with iteration if
the loop-condition test never becomes
false

	Recursion terminates when a base case is
Recognized
	Iteration terminates when the loopcondition
Fails

	Recursion is usually slower then iteration due
to overhead of maintaining stack
	Iteration does not use stack so it's faster
than recursion

	Recursion uses more memory than iteration
	Iteration consume less memory

	Infinite recursion can crash the system
	infinite looping uses CPU
cycles repeatedly

	Recursion makes code smaller
	Iteration makes code

Here, p is the name of a variable that stores the value 10 and is stored in memory in the
address, say 1234. This could be represented as follows :
/* Example to demonstrate use of reference operator in C programming. */
#include <stdio.h>
int main(){
int var=5;
printf("Value: %d\n",var);
printf("Address: %d",&var); //Notice, the ampersand(&) before var.
return 0;
}
Output
Value: 5
Address: 2686778

STORAGE CLASS
· Every variable in C programming has two properties: type and storage class.
o Type refers to the data type of variable whether it is character or integer or
floating-point value etc.
o Storage class determines how long it stays in existence.
· There are 4 types of storage class:
i. automatic
ii. external
iii. static
iv. register

Automatic storage class

Keyword for automatic variable is auto
· Variables declared inside the function body are automatic by default. These variable
are also known as local variables as they are local to the function and doesn't have
meaning outside that function
· Variable inside a function is automatic by default, keyword auto are rarely used.
· Example
void main()
{
auto mum = 20 ;
{
auto num = 60 ;
printf("nNum : %d",num);
}
printf("nNum : %d",num);
}
Output :
Num : 60
Num : 20

Check();
Check();
}
void Check(){
static int c=0;
printf("%d\t",c);
c+=5;
}
Output
0 5 10
· During first function call, it will display 0. Then, during second function call, variable
c will not be initialized to 0 again, as it is static variable. So, 5 is displayed in second
function call and 10 in third call.
· If variable c had been automatic variable, the output would have been:
0 0 0

External storage class
· External variable can be accessed by any function. They are also known as global
variables. Variables declared outside every function are external variables.
· In case of large program, containing more than one file, if the global variable is
declared in file 1 and that variable is used in file 2 then, compiler will show error.
· To solve this problem, keyword extern is used in file 2 to indicate that, the variable
specified is global variable and declared in another file.

Example to demonstrate working of external variable
int num = 75 ;
void display();
void main()
{
extern int num ;
printf("nNum : %d",num);
display();
}
void display()
{
extern int num ;
printf("nNum : %d",num);
}
Output :
Num : 75
Num : 75

Register Storage Class
Keywords to declare register variable register

Example of register variable
register int a;

· Register variables are similar to automatic variable and exists inside that particular
function only.
· If the compiler encounters register variable, it tries to store variable in
microprocessor's register rather than memory.
· Values stored in register are much faster than that of memory. In case of larger
program, variables that are used in loops and function parameters are declared register
variables.

Since, there are limited number of register in processor and if it couldn't store the
variable in register, it will automatically store it in memory.

Register storage classes example
#include<stdio.h>
int main()
{
int num1,num2;
register int sum;
printf("\nEnter the Number 1 : ");
scanf("%d",&num1);
printf("\nEnter the Number 2 : ");
scanf("%d",&num2);
sum = num1 + num2;
printf("\nSum of Numbers : %d",sum);
return(0);
}
[image:]

Static Storage Class
· The value of static variable persists until the end of the program. A variable can be
declared static using keyword: static. For example:
static int i;
Here, i is a static variable.

Example to demonstrate the static variable
#include <stdio.h>
void Check();
int main(){
Check();

POINTERS
· Pointer is a variable that holds a memory address, usually the location of another variable in memory.
The pointers are one of C’s most useful and strongest features.
· C Pointer is a variable that stores/points the address of another variable. C Pointer is used to allocate memory dynamically i.e. at run time. The pointer variable might be belonging to any of the data type such as int, float, char, double, short etc.
Syntax : data_type *var_name;

Example : int *p; char *p;
· Where, * is used to denote that “p” is pointer variable and not a normal variable.

1234 Address of the variable p
10 Value of the variable p

Uses of POINTERS
There are number of advantages of using pointers. They are :
a) Pointers increase the speed of execution of a program.
b) Pointers reduce the length and complexity of a program.
c) Pointers are more efficient in handling the data tables.
d) A pointer enables us to access a variable that is defined outside the function.
e) The use of a pointer array to character strings results in saving of data storage space in memory.

INITIALIZING POINTERS
· It is always good practice to initialize pointers as soon as it is declared. Since a pointer is just an address, if it is not initialized, it may randomly point to some location in memory.
· The ampersand (&) symbol, also called address operator, is applied to a variable to refer
the address of that variable.
· Initializing pointers can be made to point to a variable using an assignment statement.

The syntax is :

ptr_variable = &variable ;

Here, the address of the variable is assigned to ptr_variable as its value.

· example :
ptr = &price ;

· Will cause ptr to point to price i.e., ptr now contain the address of price.
· A pointer variable can be initialized in its declaration itself.

For example :
int price, *ptr = &price ;
Is also valid.

ACCESSING A VARIABLE THROUGH ITS POINTER
· Accessing the value of the variable using pointer is done by using unary operator *
(asterisk), usually known as indirection operator. Consider the following statements :
int price, *ptr, n ;

price = 100 ;
ptr = &price ;
n = *ptr ;

· The first line declares the price and n as integer variables and ptr as a pointer variable pointing to an integer.
· The second line assigns the value 100 to price and
· Third line assigns the address of price to the pointer variable ptr.
· The fourth line contains the indirection operator *.

· When the operator * is placed before a pointer variable in an expression (on the right
hand side of the equal sign), the pointer returns the value of the variable of which the
pointer value is the address.

*ptr returns the value of the variable price, because ptr is the address of price. The * can
be remembered as value at address. Thus the value of n would be 100.

C Program to compute sum of the array elements using pointers
#include<stdio.h>
#include<conio.h>
void main() {
int numArray[10];
int i, sum = 0;
int *ptr;
printf("\nEnter 10 elements : ");
for (i = 0; i < 10; i++)
scanf("%d", &numArray[i]);
ptr = numArray; /* a=&a[0] */
for (i = 0; i < 10; i++) {
sum = sum + *ptr;
ptr++;
}
printf("The sum of array elements : %d", sum);
}

Output:
Enter 10 elements : 11 12 13 14 15 16 17 18 19 20
The sum of array elements is 155

ARRAYS AND POINTERS
· Arrays are closely related to pointers in C programming but the important difference is, a pointer variable can take different addresses as value whereas, in case of array it is fixed.

This can be demonstrated by an example:
#include <stdio.h>
int main(){
char c[4];
int i;
for(i=0;i<4;++i){
printf("Address of c[%d]=%x\n",i,&c[i]);
}
return 0;
}
Address of c[0]=28ff44
Address of c[1]=28ff45
Address of c[2]=28ff46
Address of c[3]=28ff47
· Notice, that there is equal difference (difference of 1 byte) between any two consecutive
elements of array.

Relation between Arrays and Pointers

Consider an array:
int arr[4];

[image:]

In arrays of C programming, name of the array always points to the first element of an
array. Here, address of first element of an array is &arr[0]. Also, arr represents the
address of the pointer where it is pointing. Hence, &arr[0] is equivalent to arr.
· Also, value inside the address &arr[0] and address arr are equal. Value in address &arr[0]
is arr[0] and value in address arr is *arr. Hence, arr[0] is equivalent to *arr.
· Similarly,
&a[1] is equivalent to (a+1) AND, a[1] is equivalent to *(a+1).
&a[2] is equivalent to (a+2) AND, a[2] is equivalent to *(a+2).
&a[3] is equivalent to (a+1) AND, a[3] is equivalent to *(a+3).
.
.
&a[i] is equivalent to (a+i) AND, a[i] is equivalent to *(a+i).
· In C, one can declare an array and can use pointer to alter the data of an array.
//Program to find the sum of six numbers with arrays and pointers.
#include <stdio.h>
int main(){
int i,class[6],sum=0;
printf("Enter 6 numbers:\n");
for(i=0;i<6;++i){
scanf("%d",(class+i)); // (class+i) is equivalent to &class[i]
sum += *(class+i); // *(class+i) is equivalent to class[i]
}
printf("Sum=%d",sum);
return 0;
}

Output
Enter 6 numbers:
2
3
4
5
3
4
Sum=21

 POINTER AND FUNCTIONS
· When, argument is passed using pointer, address of the memory location is passed instead of value.

Program to swap two number using call by reference.
/* C Program to swap two numbers using pointers and function. */
#include <stdio.h>
void swap(int *a,int *b);
int main(){
int num1=5,num2=10;
swap(&num1,&num2); /* address of num1 and num2 is passed to swap
function */
printf("Number1 = %d\n",num1);
printf("Number2 = %d",num2);
return 0;
}
void swap(int *a,int *b){ /* pointer a and b points to address of num1 and
num2 respectively */
int temp;
temp=*a;
*a=*b;
*b=temp;
}
Output
Number1 = 10
Number2 = 5

· Explanation
o The address of memory location num1 and num2 are passed to function and the
pointers *a and *b accept those values. So, the pointer a and b points to address of
num1 and num2 respectively.
o When, the value of pointer are changed, the value in memory location also
changed correspondingly. Hence, change made to *a and *b was reflected in
num1 and num2 in main function.

DYNAMIC MEMORY ALLOCATION
· The size of array declared initially can be sometimes insufficient and sometimes more
than required.
· Dynamic memory allocation allows a program to obtain more memory space, while
running or to release space when no space is required.
· Although, C language inherently does not have any technique to allocated memory
dynamically, there are 4 library functions under "stdlib.h" for dynamic memory
allocation.
Function Use of Function
malloc() - Allocates requested size of bytes and returns a pointer first byte of allocated space
calloc() - Allocates space for an array elements, initializes to zero and then returns a pointer
to memory
free() - dellocate the previously allocated space
realloc() - Change the size of previously allocated space.

malloc()
· The name malloc stands for "memory allocation". The function malloc() reserves a block
of memory of specified size and return a pointer of type void which can be casted into
pointer of any form.
Syntax of malloc()
ptr=(cast-type*)malloc(byte-size)
o Here, ptr is pointer of cast-type. The malloc() function returns a pointer to an area
of memory with size of byte size. If the space is insufficient, allocation fails and
returns NULL pointer.
ptr=(int*)malloc(100*sizeof(int));
o This statement will allocate either 200 or 400 according to size of int 2 or 4 bytes
respectively and the pointer points to the address of first byte of memory.
calloc()

The name calloc stands for "contiguous allocation". The only difference between malloc()
and calloc() is that, malloc() allocates single block of memory whereas calloc() allocates
multiple blocks of memory each of same size and sets all bytes to zero.
Syntax of calloc()
ptr=(cast-type*)calloc(n,element-size);
o This statement will allocate contiguous space in memory for an array of n
elements. For example:
ptr=(float*)calloc(25,sizeof(float));
o This statement allocates contiguous space in memory for an array of 25 elements
each of size of float, i.e, 4 bytes.
free()
· Dynamically allocated memory with either calloc() or malloc() does not get return on its
own. The programmer must use free() explicitly to release space.
syntax of free()
free(ptr);
o This statement cause the space in memory pointer by ptr to be deallocated.
Examples of calloc() and malloc()
A C program to find sum of n elements entered by user. To perform this program,
allocate memory dynamically using malloc() function.
#include <stdio.h>
#include <stdlib.h>
int main(){
int n,i,*ptr,sum=0;
printf("Enter number of elements: ");
scanf("%d",&n);
ptr=(int*)malloc(n*sizeof(int)); //memory allocated using malloc
if(ptr==NULL)
{
printf("Error! memory not allocated.");
exit(0);
}
printf("Enter elements of array: ");
for(i=0;i<n;++i)
{
scanf("%d",ptr+i);
sum+=*(ptr+i);

}
printf("Sum=%d",sum);
free(ptr);
return 0;
}
A C program to find sum of n elements entered by user. To perform this program,
allocate memory dynamically using calloc() function.
#include <stdio.h>
#include <stdlib.h>
int main(){
int n,i,*ptr,sum=0;
printf("Enter number of elements: ");
scanf("%d",&n);
ptr=(int*)calloc(n,sizeof(int));
if(ptr==NULL)
{
printf("Error! memory not allocated.");
exit(0);
}
printf("Enter elements of array: ");
for(i=0;i<n;++i)
{
scanf("%d",ptr+i);
sum+=*(ptr+i);
}
printf("Sum=%d",sum);
free(ptr);
return 0;
}
realloc()
· If the previously allocated memory is insufficient or more than sufficient. Then, you can
change memory size previously allocated using realloc().
Syntax of realloc()
ptr=realloc(ptr,newsize);
Here, ptr is reallocated with size of newsize.
#include <stdio.h>

#include <stdlib.h>
int main(){
int *ptr,i,n1,n2;
printf("Enter size of array: ");
scanf("%d",&n1);
ptr=(int*)malloc(n1*sizeof(int));
printf("Address of previously allocated memory: ");
for(i=0;i<n1;++i)
printf("%u\t",ptr+i);
printf("\nEnter new size of array: ");
scanf("%d",&n2);
ptr=realloc(ptr,n2);
for(i=0;i<n2;++i)
printf("%u\t",ptr+i);
return 0;}
Source Code to Find Largest Element Using Dynamic Memory Allocation
#include <stdio.h>
#include <stdlib.h>
int main(){
int i,n;
float *data;
printf("Enter total number of elements(1 to 100): ");
scanf("%d",&n);
data=(float*)calloc(n,sizeof(float)); /* Allocates the memory for 'n' elements */
if(data==NULL)
{
printf("Error!!! memory not allocated.");
exit(0);
}
printf("\n");
for(i=0;i<n;++i) /* Stores number entered by user. */
{
printf("Enter Number %d: ",i+1);
scanf("%f",data+i);
}
for(i=1;i<n;++i) /* Loop to store largest number at address data */

{
if(*data<*(data+i)) /* Change < to > if you want to find smallest number */
data=(data+i);
}
printf("Largest element = %.2f",*data);
return 0;
}

Output
[image:]

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image1.emf

image2.emf

image3.emf

image4.emf

image5.emf

