
AALIM   MUHAMMED SALEGH COLLEGE OF ENGINEERING
DEPARTMENT   OF COMPUTER APPLICATION
SEMESTER- I
MC5102 – PROBLEM SOLVING AND PROGRAMMING
UNIT – II NOTES

SYLLABUS: 

UNIT I INTRODUCTION TO COMPUTER PROBLEM SOLVING 		
Introduction – The Problem Solving aspect – Top down design – Implementation of algorithm – Program Verification – The efficiency of algorithm – The analysis of algorithm.


Programs and requirements for problem solving

Problem solving can be stated as intricate process requiring much thought, careful planning, logical precision, persistence and attention to detail. It can be challenging, exciting and satisfying experience with considerable room for personal creativity and expression.

Programs and Algorithms

Computer solution to a problem is a set of explicit and unambiguous instructions expressed in a programming language.

Set of instructions is called a program.

A Program can thought as algorithm expressed in a programming language.

An algorithm corresponds to a solution to a problem that is independent of any programming language.

Program should supply with input data.

Input data manipulate according to the instructions and produce the output.

Output represents computer solution to the problem.


Problem
[image: ]




Algorithm
[image: ]




I/P [image: ]  Computer    [image: ]O/P






Algorithm:

Algorithm consists of a set of explicit and unambiguous final steps which, when carried out for a given set of initial conditions, produce the corresponding output and terminate in a finite time.


Requirements for solving problems by Computer 
One can employ algorithms to solve problems.



Depth understanding is needed to design algorithm which solve any complex problem.


Example : Telephone Directory Look up Problem:

A Telephone directory has thousands of names and numbers.

Searching by name or number from page 1 is lengthy and time consuming process.

Probably the directory is sorted by number than name.

Data structure is linked with algorithm for high performance.



Problem Solving Aspect

Problem Solving is a creative process which largely defines systemization and mechanization.

Problem solving has number of steps to achieve the goal.


Problem definition phase:

Defining the problem fully is done in the problem definition phase.

This phase decides “What must be done” rather “How to do it”.

Problem statement gives a set of precisely defined tasks.


Getting started on a problem:

Many ways to solve most problems.

Many solutions to most problems.

Difficult to identify which path is fruitful and fruitless while solving a problem.

After getting complete idea it is better to start implementation. It means “What can we do”.

Proverb states that “Sooner your start coding your program the longer it is going to take”.





Use of specific examples:

Many strategies, while using, we may stuck in some point.

It is usually much easier to work out the details of a solution to a specific problem.

Geometrical or schematic diagrams representing certain aspects of the problem can be usefully employed in many instances.

Example: The Greatest common divisor of 2 numbers.



[bookmark: page4]Problem: Given 2 positive non zero integers n and m. find GCD of n and m.

Algorithm development:

Ordinary Procedure

Find the common divisors of both n and m.

hen find the GCD of both in common.

Step 1: Find the prime factors of m

Step 2: Find the prime factors of n

Step 3: Find the common factors in prime expansion

Step 4: Compute the product of common factors. It gives the output.

Example : input m and n

Say m=60 and n=24

[image: ]




















2×2×3=12

GCD of 60, 24 is 12. Here step 3 is tedious.

Euclid’s Algorithm: gcd(m, n) = gcd(n, m mod n)

i.e Remainder of division m by n

Step 1: If n=0 return value of m and stop Else goto step 2
Step 2: Divid

Step 3: Assign m=n  and n=r

Goto step 1 i.e making r=0.

Pseudo code:

While n≠0

r←m mod n

m←n

n←r

return m

Thus, largest integer that divides both numbers evenly is called GCD.
[image: ]












Another Method:

The GCD of 2 numbers may be the least of the 2 numbers (or) less than the small number of the given 2 numbers

Take min of 2 numbers t = min {m,n}

Check whether t divides m and n

if (t)

Then t is the answer
Else

T=t-1

Decrease by 1









Algorithm:

Step 1: t=min {m,n}

Step 2: Divide m by t

M mod t = 0

Goto step 3

Other

Goto step 4

[bookmark: page6]Step 3: Divide n by t

If (n mod t = 0)

Return t

Else

Goto step 4

Step 4: t = t-1

Goto step 2

Algorithm work fine when one i/p is zero. Otherwise it is time consuming.


Similarities among problems:

Get the past experience for any current problem

Start any solving process with specific example.

Have aware about the similarities of various problems.

More experience in more tools and techniques helps to solve the problem easily.

Sometimes previous experience blocks new creativity or better solution.

Place only cautious reliance on past experience.

Independently solving the problem sometimes gives better solution.

Analyzing past problems and experience sometimes leads to dead end.

Solve a problem after viewing the problem from different angles.
Analyze the problem by turning a problem upside down, inside out, sideways, backwards, forwards and so on…..


Working backwards from the solution

Try to work backwards to the starting conditions. This is significantly better.

Important thing in developing problem solving skills is practice.

Piaget says that “We learn more when we have to intent”.







General problem solving strategies:

There are many general and powerful computational strategies that are used in many guises in computer science.

Mostly used principle is “Divide and Conquer Strategy”.

Divide and Conquer:

It divide the original problem in to sub problems

It is possible to split the problem into smaller and smaller sub problems.

Applied for sorting, selecting and searching algorithms.


Example : Binary search algorithm

Step 1: Arrange the elements in order (sequential order)
Step 2: Split the list and find the middle value and compare with the element to be searched.

Step 3: If middle value > element to be searched

Perform step 2 for second half

Else

Perform step 2 for first half

Perform step 2 and 3 until goal achieved.

A[0]………A[m-1] A[m] A[m+1] …A[n-1]. Find k	l = 0, r = n-1

Step 4: Split the sorted array (l+r)/2

Step 5: if k = A[m] m-> middle index

Stop

Elseif

Divide and conquer for k < A[m]

Else

	
	Divide and conquer applied k > A[m] (second half of the list).

	3
	14
	27
	31
	39
	42
	55
	m


[image: ]


70	74	81	85	93	98

r

Need log2n comparison rather than n comparison.

It is good for searching problems. 




Example: Dynamic Programming

Build up a solution to a problem through a sequence of intermediate steps.

Idea that a good solution to a large problems by finding good solution to smaller problems


It is technique for solving problems with overlapping sub problems 
Example: Fibonacci series.

0	1	1	2	3	5	8	13	21	34


By Recurrence:

F(n) = f(n-1) + f(n-2) for n≥2

Initial condition f(0)=0	f(1)=1

n=5


Dynamic Programming algorithm:

Refined to avoid using extra space.

Avoid solving unnecessary sub problems.

It is an algorithm design technique for optimization problems.

Solves problems by combing solutions to sub problems.

Sub problems dependent.

Solutions of sub problem not affect another sub problem.



Top Down Design

An algorithm is able to implement a correct and efficient computer program.

To solve a problem powerful techniques are used to design an algorithm.

The problem can be solved effectively if the algorithm manages the inherent complexity.

[image: ]A technique for algorithm design that tries to accommodate some human limitations is known as Top down design or stepwise refinement.












Solve the problem in stepwise fashion.

Breaking a problem into sub problems

First the ground work should be done that gives the outline of a solution.

Problem description itself sometimes gives starting point for top down desi gn.

Outline may have set of statement or a single statement.

One statement or task can be splitted into sub tasks.

These well-defined sub tasks are useful to reach the final goal.

Sub tasks need to interact with each other should well defined. This preserve over all structure of the solution to t he problem.

Preservation of overall structure needed to prove the correctness of the sol ution.

Large task is divided into sub tasks. Sub tasks are again sub divided into sub tasks. End sub tasks form the program statement.

Schematic breakdown of a problem into sub tasks as employed in top dow n design.

[image: ]































[2] Choice of a suitable data structure
Important decision in formulating computer solutions to problems is the choice of appropriate data structures.

Organized data has the effect on final solution.

Inappropriate choice leads to a simple, transparent and efficient implementation.

Data structure can be defined at any stage of the algorithm development.

It is desirable when considered DS at very outset of our problem solving explorations before the top down design.

It can also be refined as the algorithm is developed.

Data structures and algorithms are linked to each other.

A small change in data organization can have a significant influence on an algorithm.

There is no formula that is problem must use this choice of data structure.

Things to be asked or aware when DS chosen are

How can the intermediate results are arranged that reduce computation in the later stage?

Can the data structure be easily searched?

Can the data structure be easily updated?

Can earlier state can be recovered?

Whether need excess storage?

It is possible to impose some data structures on a problem that is not initially apparent?

Can be problem be formulated in terms of one of the common data structures. Example: array, set, queue, stack, tree, graph, list?


Construction of loops:

Sub tasks are leads to series of iterative constructs, loops or structures that work under condition.

These, work with i/p or o/p statements, computable expressions and assignments form the heart of the program implementation.

Loop has three important parts

Initial condition – loop begins

Invariant relation – apply for each iteration

Terminate (condition) – Under which iterative process work or terminate.

Some problems use straight forward process instead of loops.


Summation problem
[image: ]


















Establishing initial conditions for loops Set loop variable to a value

The range may be 0≤i≤n for n iterations.

A smallest problem has i=0 or i=1

n=0 means i=0 and s=0

Finding the iterative construc t

To solve a problem of i=1 th en we must solve i=0 The solution for n=1 is
[image: ]

i=1

s=a[ 1]

The solution for n>1 is
[image: ]

i=i+1

s=s+a [i]


The solution to summation problem is n≥0
[image: ]


i=0; s=0;

while i <n do

beg in

i=i +1;

s=s+a[i];

en d


Example 3 with sample data
[image: ]







Termination of loops Loops terminated by

. Known number of it erations.

. Direct termination fa cility in program code.

Example 1: Pascal for l oop
[image: ]

For i=1 to n do

Begin

.

.

.

end


Unconditionally loop terminates after n

Example 2: Pascal while loop
[image: ]

While(x>0) and (x<10) do

begin

.

end


No guarantee of termination of loop

Example 3: Termination possible with simplifying test.

Establish an array of n elements

a[1]<a[2]<……<a[n]

a[n+1]=a[n]

i=1

while a[0]<a[i+1]

do

i=i+1;



29



[bookmark: page9][bookmark: page11]IV.	Implementation of Algorithms

Properly designed in a top down fashion

Top down rule easy to understand and debug

Also easy to modify because the program are much more apparent.


Use of procedure to emphasize modularity:

Top down design are easy to understand and more readable, thus it can be modularize.

Modularize means splitting the large or lengthy program into set of independent procedures.

This set of procedures will perform well defined tasks.


Procedure sort

Begin

Writeln(‘sort called’)

end


Choice of variable names:

Proper variable names are chosen so that easy to understand and remember in future work.

Example : To name a variable to store a day means, variable name is day instead of just d or a.

A clean definition of all variables and constants at the start of each procedure can makes the program more meaningful. This is a process of self documenting.


Documentation of programs:

A program should be more effective and useful if it understood and used by other people.

It must give the extract requirement i.e input with format for the user.


Example: Enter a number between 0 to 10 as a whole number.


The program should prope rly handle the wrong request i.e proper resp onse should be given.


Debugging programs:

Various test should be done even for a small program to have a error free program.

Additional information give n with output that it can work normal or abnormal situation respect to the input given.





A simple debugging tool is Boolean variable.

if debug the n

Begin

Writeln(…..)

End

Error should be handled more effectively which results in a good program.

Work the program by hand before put in to the system.

No method for debugging b ut some steps makes the task easy.


Example : Binary search pro cedure
[image: ]






















Problem

Search value x

Array a[1….n]

x=44; n=15


[image: ]







To get proper result do the task by hand written stepwise procedure.

Do not assume anything. M ake it clear and then proceed.








[image: ]


















Program Testing

A program must be designed to solve a problem which can accommodate with limiting and unusual cases.

Unusual cases make the program critical.

Necessary to handle all types of inputs.

A program should properly respond to the user inputs.

Writing a program to a specific case generally need a lot of time and effort.

Program must solve wide area of problems.

Instead of fixed constants, variables are used.

Example 1: while i<100 do	// Fixed constatnt

Example 2: while i<n do	// Variable

Fixed constant are useful for specific cases.   Example Tmonths=12;



Program Verification

Software development an d debugging need more time and effort.

Large program need more time and more effort.

Top down design are useful to make the program readable and understandable.


Program correctness can be a matter of life or death in the case of military, space and medical applications.

Demonstrating program correctness is more needed that working different input to a particular problem.








Program Verification:

It refers to a application of mathematical proof techniques to establish that the results obtained by the execution of a program with arbitrary inputs are in accord with formally defined output specifications.

Prove the algorithm at the basic level itself or abstract or superficial level.


Computer model for program execution

A program may have variety of path for termination.
According to the input path has chosen for execution and terminate.

A program may transit from one state to another.

A state transition changes the value of the variable in a current execution path.

As well as instructions that change the computation state there also other instructions that simply makes tests on the current state.

These tests make change in the sequential flow of execution.

This model for program execution provides us with a foundation on which to construct correctness proofs of algorithms.


Input and Output assertions:

Program correctness depends on formal statement

Formal statement has 2 parts:

Input assertion

Output assertion

Input assertion: Specify any condition placed on the values of the input variable

Output assertion: Produce for input data that satisfies the input assertion. (x=q * y+r) ^ (r<y)

The output assertion can written as logical notation
(x=q * y + r) ^ r<y


- Logical connectivity “and” Q - Quotient

R  - remainder

x  divided y











Implication and Symbolic execution

Problem can be verified by a set of implication.



General form of implication


P  [image: ]   Q

P   assumption
Q  conclusion


	P
	Q
	P[image: ]Q

	True
	True
	True

	True
	False
	False

	False
	True
	True

	False
	False
	True





If assumption and conclusion are same then true else if conclusion is true then true.

Symbolic execution replaces all input data values into symbolic value and all arithmetic operations into algebraic manipulation of symbolic expressions.


Normal execution

x=3	y=1

x=x-y ===> x=3-1

=2

Symbolic execution

x=α	y=β

x=x-y ===> x=α-β

if x=α-β and  y=β

then find y=x+y

y= α-β+ β

y= α

Symbolic execution enables us to transform the verification procedure into proving that the input assertion with symbolic values substituted for all input variables implies the output assertion with final symbolic values substituted for all variables. This is called as Verification condition.

[bookmark: page18]
A number of intermediate verification conditions between the input and o utput assertions are needed.

Verification conditions are straight line segment, branching segments and loop segment.


[image: ]




























[4] Verification of straight line program segments:

[image: ]

























[bookmark: page19]










[5] Verification of program segm ents with branches:

[image: ]
















































































[bookmark: page20][6] Verification of program segm ents with loops:

[image: ]
























































[image: ]









[bookmark: page22]






[7]Verification of program segments that employ arrays

[image: ]











































[bookmark: page23][image: ][image: ]































[image: ]






[bookmark: page24]





[image: ]





























































[image: ][image: ]VI.	The efficiency of algorithms

Efficiency lies on design, im plementation and analysis of algorithms

CPU and internal memory efficiency helps to improve algorithm efficiency .

Computer resources are nee ded to complete the task of a algorithm.

Always aware to design a algorithm which was more economical.

This is possible by only by giving specific response regarding to the char acteristics of a problem.

Redundant Computations:

Redundant computation leads to inefficiency.

When it occurs inside for loop or any other loops, it will be executed m any times. That leads more serious.

Repeatly recalculating s ame set of statements remains constant.

Unnecessary multiplications and additions should be removed.








[image: ]

























Redundancy inside the inner loops should be eliminated.


Referring array elements:

Redundancy easily creeps into array processing.

Version 1 is not more efficient because of condition a[i]>a[p].


The condition a[i]>a[p] need only one memory reference.
[image: ]





























Inefficiency due to late termination

The inefficiency will occur if the algorithm terminates late.

Late in-sense, suppose after achieving the goal the other data also visited.


Example: Alphabetical (linear) search

In linear search each data is visited and if target achieved the program term inates. If it does not terminate then occur inefficiency.

Version 1 terminates after visiting complete list of items.
Version 2 terminates once the target is obtained.
[image: ][image: ][image: ]




















Early detection of desired output conditions

Inefficiency sometimes involved due to early detection of desired output conditions.

This early detection of desired output condition leads to termination problem Eg Bubble sort

Due to the nature of input the output condition met early before termination condition met.

This will happen when i/p list is in sorted order.


Trading storage for efficiency gains

To speed up an algorithm, always include least number of loops.

One loop to do one job is better. This is like one variable hold one value.

Trade between storage and efficiency improve performance.

Save some intermediate results to avoid unnecessary testing.

Always use less memory space algorithm to improve efficiency.











VII.	The Analysis of algorithms


Every one follow algorithm which gives good solution.

Good solution to a problem is always appreciable.

Good solution should be quantitative or qualitative.

The solution should be more economical.

Economical in terms of human as well as system.




Good algorithm qualities and capabilities

They are simple but powerful and general solution.

Easy to understood and clear in implementation without tricky.

Easily modified if needed.

Correct for clearly defined situations.

Able to understand on number of levels.

Economical in terms of time, storage and peripherals.

Documented clearly that anyone can understand.

Must machine independent.

Used as sub procedure for other problems.


The solution must please, satisfy and made to feel proud to its designer. Quantitative measures give the way to predict the performance of an algorithm and can be comparing with other algorithm of same problem.


A algorithm is efficient if its saves computing resources which saves times and money.



[1]Computational complexity:

Computational model that gives the algorithm performance foe specified input conditions.

It is a quantitative measurement.

Performance measured in terms of problem size (n).

n increases then cost increases.

Lower end of the scale, also have logarithmic dependence of n.

Higher end of the scale, also have exponential dependence on n.

Computational cost as a function of problem size for a range of computational complexities.


	Log 2n
	N
	Nlog2n
	N2
	N3
	2n

	1
	2
	2
	4
	8
	4

	3.322
	10
	33.22
	102
	103
	>103

	6.644
	102
	664.4
	104
	106
	>>1025

	9.966
	103
	9966.0
	106
	109
	>>10250

	13.287
	104
	132,877
	108
	1012
	>>102500



One can solve only very small problem with an algorithm that exhibits exponential behavior.

Logarithmic dependence on n

If problem n=104, 13 steps needed 13 micro seconds needed.

Exponential algorithm on n if n=100, Time taken : Earth terminate

N grows due to comparison or number of times some arithmetic expressions repeated.


The Order notation

A standard notation developed to represent functions which bound the computing time for algorithms.

It is three types.

Usually O notation is used. O notation can be called “Big O” notation.

An algorithm in which the dominant mechanism is executed cn2 times for c, a constant and n problem size is said to be order n2 complexity. It can be written as O(n2).

A function g(n) is Of(n) provided there is a constant c, the relation is g(n) ≤ c f(n) holds for all value of n that are finite andlimpositive. =

G(n) and f(n) can be expressed as:→:







C is not equal to zero.


Example:

An algorithm that requires 3n2+6n+3 comparisons to complete its task.

(G(n)=)= 3n2+6n+3

3n2+6n+3   =3


N2

The particular algorithm has an asymptotic complexity of O(N2).

An algorithm with a higher asymptotic complexity has a very small constant of proportionality and hence for some particular range of n it will give better performance than an algorithm with lower complexity and a higher proportionality constant.

Worst and average case behavior

Worst and average case applied to both the time and space complexity of an algorithm.


Worst complexity:

Given problem size n corresponds to the maximum complexity encountered among all problem of size n.

In many practical applications it is much more important to have a measure of the expected complexity of a given algorithm rather than the worst case behavior.

The expected complexity gives a measure of the behavior of the algorithm averaged over all possible problems of size n.

In comparing 2 algorithms to solve a given problem, generally opt in preference for the algorithm that has the lower expected complexity.








Probabilistic average case analysis

Characteristic the behavior of an algorithm that linearly searches an ordered list of elements for some value x.
	1
	2
	…………
	N




Worst case:

Necessary for the algorithm to examine all n values in the list before terminating.

Average case:

A probabilistic average case analysis it is generally assumed that all possible points are equally likely, i.e the probability that x will be found at position 1 is 1/n and at position 2 is 1/n and so on.

The average search cost is t herefore the sum of all possible search costs ea ch multiplied by their associated probabili ty.

Example: If n=5

Average search cost=1/5(1+ 2+3+4+5) = 3 General case

Average search cost=1/n(n/ 2(n+1)) =n+1/2

Average number of iteration s of the search loop that are required before th e algorithm terminates in a successful se arch.

The associated binary searc h for an array of size 15.


[image: ]















One element can found with 1 comparison

Two elements with 2 comparisons.

Four elements with 3 comparisons

So on……


 The sum of over all possible elements = 1+2+2+3+3+3+3+4+… ..

2i elements require i+1 comparison.

Average search cost is again just the sum over all possible search costs, each multiplied by their associated probability.


It is exact only when n is one l ess than a power of two. Some calculus is nee ded to evaluate the sum






Sum is a geometric progress ion
[image: ]









To compute the sum take the derivation of (xk+1)/(x-1) multiplied by 2








After substituting the sum in average search cost expression, average search cost is got
[image: ]


**********************************


 
image4.jpeg




image5.jpeg




image6.jpeg




image7.jpeg




image8.jpeg
f(5)

f4) f(3)

A% N

f(3) f2) 2y £

AVAYE

2) f1) 1) f0) f1) f0)

/N

f1) £(0)




image9.jpeg
General outline

Input conditions Output requirements

Body of algorithm

Subtask 1 Subtask 3

Subtask 2

Subtask 1a

Subtask 2a

Fig. Schematic breakdown of a problem into subtasks as employed in top-down design.




image10.jpeg
for loop and solution to

} initialization conditions
summing problem when n=0

while i<n do solution to summation
begin solution of the problem for n=0
=i array summation

s := s+ali] problem for n=1
end




image11.jpeg




image12.jpeg




image13.jpeg




image14.jpeg
a[n+1] = a[n);
1;
wlllle dlil<a[i+1]doi:= i+1

If n was assigned the value S and the data set was 2, 3, 5, 11, 14, then the first
assignment prior to the loop would result in the array configuration below:

o1 a2 - a[n) a[n+1]
23 [s[ufuaue

The two 14s guarantee that the test a[i]<a[i+1] will be false when i =n and
50 the loop will terminate correctly when i = n if not before.




image15.jpeg




image16.jpeg




image17.jpeg
‘The essential steps in the procedure are:

lower := 1; upper : 5
while lower<upper do
begin
middle := (lower+upper) div 2;
if x>a[middle] then
lower := middle+1
else
upper := middle
end;

found := (x = allower])





image18.jpeg
Initial a1 a15]

contiguration  [10[12[20[23]27]30[31[39[42[44[as[a9]57[63] 70
t 1 t

Tower middle upper




image19.jpeg
Table  Stepwise exccution table for binary scarch.

leration no._lower _middle upper lower < upper _a[middle] x > a[middle]

Initially 1= 15 true = -
1 9 8 15 true 39 true
2 9 12 12 true 49 false
3 9 10 10 true 44 false
4 10 9 10 false 42 true

NOTE: The values of variables associated with each iteration apply after the
iteration has been completed.




image20.emf

image21.jpeg
A readin(x,y);
{assert: true}

B {assert x=y0Ay =x0}
where x0 and y0 refer to the initial values of x and y respectively.

Table 1.4 Normal and symbolic execution for exchange mechanism

Step Normal execution Symbolic execution

input valucs: x=a y=p
x—y >x=a—f

Xty > y=(a—p)+p=a

y=x > x=((a-p)+p)—(a-p)=f





image22.jpeg
The best way to illustrate the verification procedure is by example. Our
exchange mechanism mentioned above will serve as an example of a
straight-line program segment.

The verification condition for this program segment is:
VC(A- B): true o {x=y0Ay =x0}
On substitution of the initial and final values of all variables, we get:
VC(A-B): irue > ((a—B)+p)~(a—p)) = pAa—p)+p) =«

The conclusion part of the verification condition can be simplified to yield
B=p and a=a which is clearly true and so the implication is true.




image23.jpeg
To handle program segments that contain branches it is necessary to set up
and prove verification conditions for each branch separately. As anexample,
consider the following program segment that ensures that x is less than or
equal to y.

readin(x,y);
A lassert P,: true}
if x>y then
begin
1:=x;
x y;
yi=t
end
B {assert Py: ((x<=y)A(x=x0Ay=y0))V(x=y0Ay=x0)}
In general, the propositions that must be proved for the basic if construct
are:

P\AC,oPy
PAA~C,oPp
where C, is the branch condition.
The two verification conditions needed in this case are given below,
where the initial values of x and y are respectively a and 8

VC(A—()— B): true Aa>B> ((a<p)NB=ara=p))V(B=pAa=a)
Since a>@ i true and the second part of the conclusion (i.e. & =aAB = B) is

true, the verification condition for the true path is true.
The verification condition for the false path is:

VC(A—(f)—B): true A~(a>B)> ((a<B)\a=aAB=B))V(a=BAB=a)

Since ~(a>B)> (a<p) and the conclusion (a = aAB = B) is true the verifica-
tion condition for the false path is true. It follows that the labelled program
segment (A—B) is true. Case statements can be treated similarly.




image24.jpeg
There are problems with trying to verify loop segments directly by symbolic
execution because the number of iterations required is usually arbitrary. To
overcome this problem, a special kind of assertion called a loop invariant
must be employed. A loop invariant should be a property (predicate) that
captures the progressive computational role of the loop while at the same
time remaining true before and after each loop traversal irrespective of how
many times the loop is executed. Once the loop invariant is established,
there are several steps that must be taken to verify the loop segment. To
understand this loop verification procedure, we will use the following
single-loop program structure as our model.

(@)

(®)

A {input assertion P}

straight-line program segment

B (lo;)p invariant Ig}
while loop-condition do
begin

loop-free program segment

end
C {output assertion Pc}

The first step that must be taken is to show that the loop invariant is
true initially, before the loop is entered. This can be done by setting up
a verification condition VC(A— B) for the program segment from A to
B. That is, the input assertion, together with any changes to variables
caused by the segment A— B, must imply that the loop invariant is true.
‘We can use symbolic execution to carry out this verification step. That
is, we must show P,ol,.

The second part of verifying a loop involves showing that the loop
invariant is still true after the segment of program within the loop has
been executed. To do this we can set up a verification condition
VC(B- B). This involves showing that the loop invariant with initial
values of variables set, together with the condition for loop execution
Cj, implies the truth of the loop invariant with final values of variables,
ie.

J AN A

Symbolic execution can also be used to verify this step.





image25.jpeg
Since the verification conditions for all three program segments are correct,
the complete program segment is said to be partially correct.

What the verification method we have described gives us is only a proof
of partial correctness, with the implication that if the algorithm terminates
the result produced will be correct. For programs that contain loops we are
therefore left with the separate but necessary task of proving that the
program terminates in order to establish total correctness.

Before considering in detail a method for proof of termination, we will
consider setting up the verification conditions for a program example that
employs an array.





image26.jpeg
The idea of symbolic execution developed in the preceding sections can be
extended to some of the simpler examples that employ arrays although it
now becomes necessary to account for the symbolic values of all array
elements. As an example of verification of a program segment containing an
array we will set up the verification conditions for a program that finds the
position of the smallest element in the array.

The program annotated with assertions may take the following form:

A f{assert P,: n=1}

i:=1;
p:=1
B ({invariant 1;: (1<isn)A(I<p<iA\a[pl<a[l], a[2), ..., a[i])}
while i<n do
begin
i= i+l
if a[i]<a[p] then p := i

end
C fassert Pc: (1<p<n)A(apl=<all), a[2], ..., a[n])}

where we have used the shorthand convention that:

alp)<al1l, al2), ..., ain)=alpl<al1Aalp)<a[2A -+ Aalpl<aln]

Assuming that the initial values of a[1], a[2], ..., a[n] are respectively a;,
@, ..., a,, and that the initial value of n is §, we can use symbolic execution to
check the verification conditions:

VC(A-B): $=z1o(1s1s{)N(1sIs)Ax;say

With i and p having initial values of 8 and y respectively, the verification
conditions for the two paths through the loop are:




image27.jpeg




image28.jpeg
VA(B—(r)—-B): (1sB<SA(Isysp)Ma,=a,, a5, --., ag)AB<IAag.<a,
S(1=B+1=<A(1=B+1<B+ 1) ap., <ay, &y, ..., Oigsy
VC(B—(f)—B): 1<B<S)A(I<y<p)\(a,<ay, a3, --., &g)
AB<SA ~(ag.;<a,)
S(IsB+IsSHAN(I<y<B+1)A (o, <e;, @, ..., @g.3)
VC(B-O): (1sB<)A(Isy=<p)Ma,<a,, o, ..., ag)A~(B<3)
S(I=y<é)A(a,<a, ay, ..., a3)
The example above should give some flavor of how programs with
arrays may be treated. We will now return to consideration of the problem of
proving program termination.

To prove that a program terminates, it is necessary to show thai it accom-
plishes iis stated objective in a finite number of steps. This amounts to
showing that every loop in the program terminates in 2 finite number of
steps. In many instances, proof of termination follows directly from the
properties of the various iterative constructs. Consider, for example, the
for-loop below:

fori:=1ltondo
begin

end

When n is positive and finite this is guaranteed to terminate because, with
each iteration, the number of steps to the termination condition being
satisfied is reduced by at least one. This reduction can only be carried out 2
finite number of times and so the loop must terminate.

There are obviously loops for which the proof of termination is much
more subtle and elusive. One of two situations usually prevails in such
circumstances. When there is no single variable that is monotonically pro-
gressing towards the termination condition, we often find that an arithmetic
combination of two (or more) variables makes progress towards termination
with each iteration.

If the termination characteristic of the program is not of this type, it
usually remains to show that there is some property of the data (perhaps a
sentinel} that will guarantee termination.

More formally, the problem of proving loop termination can often be
approached by associating another expression, in addition to the loop
invariant, with each loop. The expression, €, should be chosen to be a
function of the variables used in the loop. It should always be non-negative
and it must be shown to decrease in value with each loop iteration. If these




image29.jpeg
criteria are satisfied, the loop must terminate. Proof of termination can
Sy S wnrdssne dl B Lol BoET N = o0 Sl B Bl __iF sl . RN o S
therefore be reduced to esiablishing the truth of the following fermingrion

{i} Referring back toour generalized loop structure we must show that the
truth of the loop invariant 7, together with condition for loop execu-

B *

tion Cj, implies that the value of the expression € is greater than zero.

TCUEB): I NC,oe =0

The condition e=0 becomes an invariant of the loop.
In some instances, the invariant used for establishing partial cor-
s is not sufficient IQ!' use in a proof of termination. This problem

o~
o
=i
o

TC2{B— B): I,ACH{e;=e)A{(e=0)

termmatien for the gquotient/remainder program given

begin
A {assert P,: (x=0A(y=0)}
ri=x;4:=0;
B {imvariant I5: r=0/x=y=g+r}

egin

rFI=r=y

i i

q:=gq+1

3

(=i

c ias erf _c{xr= uin-l-;‘lf\i’ﬁ&:r{u‘li
L= j@ssert r-. \(x=y*q JMU=r<y)i




image30.jpeg
To prove termination for this program segment we will use:
e=r+y
In order to establish the first termination condition, we will need to attach
the additional condition y>0 from P, to the invariant /;. We then have
TCUB): (r=0)A(x = y*g+ A (y=0A(y=r)o(r+y=>0)
Now
(r=0A(y>0)>(r+y>0)

and so TC1(B) can be shown to be true.
Assuming thatx, y, r and g respectively have the symbolic valuesa, 8. v,
and S on entering the loop, then for TC2(B— B) we have:

TC2(B-B): (y=0)A(a=B*5+y)AMB>0N(B=<yy+B>(y—B)+B

where
&=yt and e=(y-B)+B

which can easily be shown to be true and so the proof of termination is
complete.

Once both partial correctness and termination have been established,
the proof is complete. To embark on detailed formal proofs of programs
requires a considerable degree of mathematical maturity and experience.
The length and detail of such proofs is usually considerably greater than the
size of the original program text. In the discussions which follow, we will
therefore only attemnpt {0 annoiate programs with relevant assertions.




image31.jpeg




image32.jpeg
x:= 0;
fori:=1tondo
begin
x := x+0.01;
y := (a*a*a+c)*x*x+b*b*x;
writeln ('x ="', x,)y = ",y)
end
This loop does twice the number of multiplications necessary to com-
plete the computation. The unnecessary multiplications and additions can be

removed by precomputing two other constants a3c and b2 before executing
the loop:

adc := azatatc:
b2 := beh;
x:=0
fori:=1tonde
begin
x:=x+0.01;
y := a3ctxsx+b2+x;
writeln ('x =" x,)'y=".y)
end




image33.jpeg
Version (1)
p:i=1;
for i := 2 ton do
if a[i]>a[p] then p := i;

max := a[p]
Version (2)

pi=1

max := qg[1];

for i := 2 to n do
if a[i]>max then
begin
max := a[i];
p:i=i
end




image34.jpeg




image35.jpeg
fori:=1ton-1
forj:=1ton-1
if a[j]1>a[j+1] then “exchange a[j] with aj+1]"

With this sorting mechanism, after the i* iteration, the last / values in the
array will be in sorted order. Thus, for any given i the inner loop should not
proceed beyond n—i. The loop structure will then be:

fori:=1ton—-1
forj:=lten—i
if a[j1>a[j+1] then “exchange a[j] with a[j+1]"




image36.jpeg
1 comparison

2 comparisons

3 comparisons

“SIUBWIAIS § JO 135 B 10] 334) UOISIIIP AIeuls

4 comparisons





image37.jpeg
llogon|

s= Z [X2f

i=0

xk+1_ 1

It+x+x24 +s +xk=
x— 1

N
t><2—dx (2;\:)x:2




image38.jpeg
Llogon]

s= ) ix2=(n+1) (logn|-1)+2

i=0




image1.jpeg




image2.jpeg




image3.jpeg




