
UNIT-I - INTRODUCTION 

PART A 

1.  Define Signal. 

A Signal is defined as any physical quantity that varies with time, space or any other independent variables. 

2.  Define a system. (Nov/Dec 2014) 

A System is a physical device (i.e., hardware) or algorithm (i.e., software) that performs an operation on the signal. 

3.  What are the steps involved in digital signal processing?  

 Converting the analog signal to digital signal, this is performed by A/D converter  

 Processing digital signal by a digital system. 

 Converting the digital signal to analog signal, this is performed by D/A converter. 

4.  Give some applications of DSP? (Apr/May 2015) 

 Speech processing – Speech compression & decompression for voice storage system  

 Communication – Elimination of noise by filtering and echo cancellation.  

 Bio-Medical – Spectrum analysis of ECG, EEG etc.  

5.  Write the classifications of DT Signals.  

 Energy & Power signals  

 Periodic & Aperiodic signals  

 Even & Odd signals.  

6.  What is an Energy and Power signal?  

Energy signal:  

A finite energy signal is periodic sequence, which has a finite energy but zero average power.  

Power signal:  

An Infinite energy signal with finite average power is called a power signal.  

7.  What is Discrete Time Systems? (Nov/Dec 2014) 

The function of discrete time systems is to process a given input sequence to generate output sequence. In practical 

discrete time systems, all signals are digital signals, and operations on such signals also lead to digital signals. Such 

discrete time systems are called digital filter. 

8.  Write the Various classifications of Discrete-Time systems. (Nov/Dec 2014) 

Linear & Non linear system  



Causal & Non Causal system  

Stable & Un stable system  

Static & Dynamic systems  

9.  Define Linear system  

 A system is said to be linear system if it satisfies super position and homogeneity principle. Let us consider 

x1 (n) & x2 (n) be the two input sequences & y1 (n) & y2 (n) are the responses respectively, 

  1 2 1 2T ax (n) bx (n) ay (n) b y (n)      

10. Define Static & Dynamic systems 

When the output of the system depends only upon the present input sample, then it is called static system, otherwise 

if the system depends past values of input then it is called dynamic system 

11. Define causal system. 

When the output of the system depends only upon the present and past input sample, then it is called causal system, 

otherwise if the system depends on future values of input then it is called non-causal system. 

12. Define Shift-Invariant system. 

If y(n) is the response to an input x(n), then the response to an input x(n) = x(n-k) is y(n,k). If y(n,k) = y(n – k) the 

above condition is said to be shift – invariant, otherwise it is shift variant. 

13. Define impulse and unit step signal. 

Impulse signal δ(n): 

The impulse signal is defined as a signal having unit magnitude at n = 0 and zero for other values of n. 

 
(n) 1 for n 0

0; n 0

  

 
  

Unit step signal u(n): 

The unit step signal is defined as a signal having unit magnitude for all values of n ≥ 0 

 
u(n) 1 for n 0

0; n 0

 

 
  

14. What are FIR and IIR systems? 

The impulse response of a system with infinite number of samples is called IIR system & the impulse response of a 

system with finite number of samples is called FIR system. 

15.  What are the basic elements used to construct the block diagram of discrete time system?  

The basic elements used to construct the block diagram of discrete time Systems are Adder, Constant multiplier 

&Unit delay element. 



16.  Define sampling theorem. (Nov/Dec 2011, May /June 2014) 

 A continuous time signal can be represented in its samples and recovered back if the sampling frequency 
s mF 2F . 

Here ‘Fs’ is the sampling frequency and ‘Fm’ is the maximum frequency present in the signal. 

17.  Check the linearity and stability of sqrt x(n) 

Since square root is nonlinear, the system is nonlinear. 

As long as x(n) is bounded, its square root is bounded. Hence this system is stable. 

18.  Test whether the system governed by the relation 
n

k

y(n) x(k)


   is linear time invariant or not  

(NOV/DEC 2014) 

A system is said to be time invariant if it satisfies the following condition  

  y(n, r) y(n r)    

Therefore for the given 
n

k

y(n) x(k)


    

Y(n,k) delay input by ‘r’ samples i.e 
n

k

y(n, r) x(k)


    

Now delay output by ‘r’ samples i.e 
n r

k

y(n r) x(k)




    hence time invariant. 

A system is said to be linear if it obeys superposition and homogeneity principle  

  1 2 1 2T ax (n) bx (n) ay (n) by (n)   . Therefore  

For two input sequences the corresponding outputs are  

n n

1 1 2 2

k k

y (n) x (k)and y (n) x (k) (a)
 

      

A linear combination of two input sequences results in the output 

 
n n

3 1 2 1 2

k k

y (n) T ax (n) bx (n) a x (k) b x (k) (b)
 

       

A linear combination of two outputs results in the output  

n n

1 2 1 2

k k

ay (n) by (n) a x (k) b x (k) (c)
 

       

Since (b) = (c) hence linear. Therefore the given system is linear time variant. 

19.  What is aliasing? (Nov/Dec 2014) 



When the sampling frequency is less than twice of the highest frequency content of the signal, then the high 

frequency signal will interfere with the low frequency and appears as low frequency known as aliasing.  

20.  Consider the analog signal x(t) 3cos50 t 10sin300 t cos100 t      . What is the Nyquist rate for the signal? 

(MAY/JUNE 2014, NOV?DEC 2013) 

In the given signal  x(t) 3cos50 t 10sin300 t cos100 t      the frequencies are  

1 2 3F 50 / 2 25Hz,F 300 / 2 150Hz,F 100 / 2 25Hz.            The maximum frequency Fm is 150Hz, 

therefore the Nyquist rate = 2 × Fm = 300 Hz. 

21.  Determine the fundamental period of the signal 
30n

x(n) cos
105

 
  

 
  (NOV/DEC 2014) 

Given 
30n

x(n) cos
105

 
  

 
and 0 0 0

30n 30 1
,2 f ,f

105 105 7

    
       

   
.   Therefore the fundamental period is 7. 

22.  Determine whether x(n) = u(n) is a power signal or an energy signal?  (MAY?JUNE 2013) 

Given x(n) = u(n), 

Energy signal 
2 2

n n n 0

x(n) u(n) 1 1 1 1 .....
  

  

             

Power signal 

2 2N N
2

N N
n N n 0

1 1
P Lt x(n) Lt 1

2N 1 2N 1 
 

   
    

    
    

  

2

2

N N

1
N 1

N 1 1N
Lim Lim

22N 1 2
N 2

N

 

  
         

    
  

  

  

Therefore 
1

P & E
2

    hence the given signal is power signal. 

23.  What is an LTI system? (Nov/Dec 2012) 

A system which obeys two of the basic property linearity and time invariance is called LTI system. 

24.   Define Nyquist rate (May/June 2012) 

If the sampling frequency is  all the frequencies above  (folding frequency) cause aliasing. This aliasing can 

be avoided if the input signal frequencies are below one half of the sampling frequencies. This frequency is called 

Nyquist frequency or Nyquist rate. 

25.   Differentiate between Energy and Power signals (Apr/May 2015) 

Energy signals are time limited while power signals can exist over infinite time 

Non periodic signals are energy signals while power signals are periodic 



Power of an energy signal is zero and the energy of a power signals is infinite 

26.  What are the difference between discrete signal and digital signal? (Nov/Dec 2016) 

 

S.No Discrete signal Digital Signal 

1. All discrete signals are not digital 
All digital signals are discrete 

time signals  

2. 

Dependent variable should be discrete or continuous but 

independent variable should be discrete 

Both dependent variable and 

independent variable should be 

discrete 

27.  If x(n) = x(n + 1) + x(n – 2)is the system casual?  (NOV/DEC 2016) 

Solution: x(0) = x(1) + x(-2) for n = 0  

Since output depends upon future input, the system is not causal. 

28.  What is Nyquist rate of the analog signal? (Nov/Dec 2016) 

When the sampling rate becomes exactly equal to 2B (i,e. 2Fmax) samples per second for the signal bandwidth of ‘B’ 

Hz, then it is called Nyquist rate. Then the nyquist interval is obtained as, 

 Nysquist interval 
max

1 1

2B 2F
    

And  

 Nyquist rate max2B 2F    

29.  What is quantization error? (Nov/Dec 2016) 

The difference between the actual analog value and quantized digital value due is called quantization error. This 

error is due either to rounding or truncation. 

Thus the quantization error qe (n)  is defined as,  

Quantization error q qe (n) x (n) x(n),   where x(n) is discrete time signal and xq(n) is quantized signal by 

rounding. 

PART B 

1.  For the discrete time systems given below (Nov/Dec 2013)    (16) 

0i)y(n) x(n)cos( n) (ii) y(n) x(n) nx(n 1)

(iii) y(n) x(2n) (iv) y(n) cosx(n)

    

 
  

Check whether these systems are  a)  Static or Dynamic   b)  Linear or Non – Linear  c)  Time Invariant or Time 

Variant  d) Causal or Non Causal   e) Stable or Unstable 



Solution: 

 0i)y(n) x(n)cos n    

1. This is a static system since, the output of the system depends only upon the present input sample i.e, nth output 

sample depends upon nth input sample. Hence this is a static system. 

2. We know that the given system is, 

   0y(n) T x(n) x(n)cos( n)     

When the two inputs 
1 2x (n) & x (n)  are applied separately, the responses 

1 2y (n) & y (n)  will be,  

 
 

 
1 1 1 0

2 2 2 0

y (n) T x (n) x (n)cos( n)
(1)

y (n) T x (n) x (n)cos( n)

   


   

  

The response of the system due to linear combination of inputs will be, 

     

   

3 1 1 2 2 1 1 2 2 0

1 1 0 2 2 0

y (n) T a x (n) a x (n) a x (n) a x (n) cos n

a x (n)cos n a x (n)cos n (2)

    

    
  

Now the linear combination of the two outputs will be,  

 3 1 1 2 2y (n) a y (n) a y (n)    

   1 1 0 2 2 0a x (n)cos n a x (n)cos n     from equation (1) 

From above equation and equation (2) 

 3 3y (n) y (n)   

Hence the system is linear. 

3. The system equation is, 

  3 0y (n) x(n)cos n    

The response of the system to delayed input will be, 

 
    

0

y n,k T x n k

x(n k)cos( n) (3)

 

   
 

Now let us delay or shift the output y(n) by ‘k’ samples i.e, 

      0y n k x n k cos n k          

Here every ‘n’ is replaced by n – k. On comparing above equation with equation(3) we find that, 

 y(n,k) y(n k)  hence the system is shift variant. 



4. In the given system, y(n) depends upon x(n), i.e present output depends upon present input. Hence the system is 

casual. 

5. The given system equation is, 

  0y(n) x(n)cos n    

Here value of cos  0n is always bounded. Hence as long as x(n) is bounded, y(n) is also bounded. Hence the 

system is stable. 

This system is, 

Static, linear, shift variant, casual and stable. 

(ii) y(n) = x(n) +nx(n+1): 

1.  From the given equation it is clear that, the output depends upon the present input and next input. Hence system 

is dynamic. 

2. The given system equation is, 

  y(n) T x(n) x(n) nx(n 1) (4)       

If we apply two inputs x1 (n) and x2(n) separately, then the outputs become, 

 
 

 
1 1 1 1

2 2 2 2

y (n) T x (n) x (n) nx (n 1)
(4.a)

y (n) T x (n) x (n) nx (n 1)

    


    

  

Response of the system to linea combination of inputs x1(n) and x2(n) will be,  

 
 

   
3 1 1 2 2

1 1 1 2 2 2

y (n) T a x (n) a x (n)

a x (n) nx (n 1) a x (n) nx (n 1) (5)

 

      
  

The linear combination of two outputs given by equation (4.a) will be, 

 
   

3 1 1 2 2

1 1 1 2 2 2

y (n) a y (n) a y (n)

a x (n) nx (n 1) a x (n) nx (n 1)

 

     
  

On comparing above equation with equation (4.a) we observe that, 

 3 3y (n) y (n)   

Hence the system is linear. 

3. The given system equation is  

  y(n) T x(n) x(n) nx(n 1) (6)       

Response of the system to delayed input will be, 



 
 

   

y(n,k) T x(n k

x n k nx n k 1 (7)

 

     
  

Now let us delay the output of equation (5) ‘k’ samples i.e, 

      y n k x n k n k x(n k 1)         

Here we have replaced ‘n’ by ‘n-k’. On comparing above equation with equation (7) we observe that, 

 y(n,k) y(n k)    

Hence the system is shift variant. 

4. The given system equation is, 

 y(n) x(n) nx(n 1)     

Here observe that nth output sample depends upon (n+1)t hi.e next input sample. 

That is the output sample depends upon future input. Hence the system is noncasual. 

5. In the given system equation observe that as n , y(n)   even if x(n) is bounded. Hence the system 

unstable. 

Thus the given system is, 

Dynamic, linear, shift variant, non casual and stable 

(iii) y(n) = x(2n) 

1. By putting n = 1 in the given system equation, 

 Y(1) = x(2) similarly, 

 
n 2 y(2) x(4)

n 3 y(3) x(6)

  

  
 and so on. 

Thus the system needs to store the future input samples. Hence it requires memory. 

Therefore the system is dynamic. 

2. The given system equation is, 

  y(n) T x(n) x(2n) (8)     

For two separate inputs x1(n) and x2(n) the system produces the response of  

 
 

 
1 1 1

2 2 2

y (n) T x (n) x (2n)
(9)

y (n) T x (n) x (2n)

  


  

  

The response of the system to linear combination of x1(n) and x2(n) will be. 



 
 3 1 1 2 2

1 1 2 2

y (n) T a x (n) a x (n)

a x (2n) a x (2n) (10)

 

  
  

Now the linear combination of two outputs given by equation (9) will be, 

 
3 1 1 2 2

1 1 2 2

y (n) a y (n) a y (n)

a x (2n) a x (2n)

 

 
  

On comparing above equation with equation (10) we find that, 

 
3 3y (n) y (n).   

Hence the system is linear. 

3. The given system equation is, 

  y(n) T x(n) x(2n) (11)     

The response of the system to delayed input x(n – k) will be, 

  y(n,k) T x(n k) x(2n k) (12)       

Now let us delay the output y(n) given by equation (11)  by ‘k’ sample. This is obtained by replacing ‘n’ by n-k in 

equation (11) i.e,. 

 
 

 

y(n k) x 2(n k)

y(n k) x 2n 2k

  

  
  

On comparing above equation (12) we find tht, 

 y(n,k) y(n k)    

Hence the system is shift variant. 

4. The given system equation is, 

 y(n) x(2n)   

Here output depends upon future inputs i.e, nth sample of output depends upon (2n)th sample of input. Clearly the 

system is non casual. 

5. As long as x(n) is bounded, then x(2n) is also bounded. Hence output y(n) is also bounded. Therefore the system 

is stable. 

Thus the given system is 

 Dynamic, linear, shift variant, non casual and stable 

(iv) y(n)  = cos [x(n)]: 



1. A system is static if its output depends only upon the present input sample. Here since y(n) depends upon the 

cosine of x(n), i.e, present input sample, the system is static. 

2. For two separate inputs the system produces the response of, 

 
   

   
1 1 1

2 2 2

y (n) T x (n) cos x (n)

y (n) T x (n) cos x (n)

 

 
  

The response of the system to linear combination of two inputs will be, 

    3 1 1 2 2 1 1 2 2y (n) T a x (n) a x (n) cos a x (n) a x (n)      

The linear combination of two outputs will be, 

    3 1 1 2 2 1 1 2 2y (n) a y (n) a y (n) a cos x (n) a cos x (n)      

Clearly 3 3y (n) y (n)  hence system is non linear. 

3. The system is said to be shift variant or time invariant if its. Characteristics do not change with shift of time 

origin. The given system is,  

    y(n) T x(n) cos x(n) (13)     

Let us delay the input by k samples. Then output will be, 

    y(n,k) T x(n k cos x(n k) (14)       

Now let us delay the output y(n) given by equation (13) by ‘k’ samples, i.e, y(n-k). This is equivalent to replacing n 

by n – k in equation (13) i.e, 

 y(n,k) y(n k)    

This shows that the system is shift invariant. 

4. The system is said to be casual if output depends upon past and present inputs only,  

The output is given as, 

  y(n) cos x(n)   

Here observe that nth sample of output depends upon nth sample of input x(n). 

Hence the system is a casual system. 

5. For any bounded value of x(n) the cosine function has bounded value. Hence y(n) has bounded value. Therefore 

the system is said to be BIBO stable. 

Thus the given system is, 

Static, nonlinear, shift invariant, casual and stable 



2.  Consider the signal xa (t) = 10 cos 2π (1000)t +5 cos 2π (5000)t is to be sampled   (16) 

Determine the Nyquist rate for this signal. 

If the signal is sampled at 4 Khz, will the signal be recovered from its samples? 

Solution:-  

(i) Consider the given signal  

    ax (t) 10cos2 1000 t 5cos2 5000 t      

Clearly, this signal contain two cosine waves 

 
1 1

2 2

F 100Hz and A 10

f 5000Hz and A 5

 

 
  

Since the highst frequency in the given is B = Fmax = 5000 Hz, the nyquist rate is given from equation (13) as, 

Nyqusit rate max2F 2 500Hz 10kHz      

(ii) This signal is sampled at F1 = 4000 Hz when the signal xa(t) is sampled, we get x(n) as, 

 

1 2

s s

F F
x(n) 10cos 2 n 5cos 2 n

F F

1000 5000
10cos 2 n 5cos 2 n

4000 4000

1 5
10cos 2 n 5cos 2 n

4 4

   

   

   
      

   

  

The second term can be rearranged in above equation as, 

 

1 1
x(n) 10cos 2 n 5cos 2 1 n

4 4

1 1
10cos 2 n 5cos 2 2 n (14)

4 4

   
       

   

   
        

   

  

Here the second term can be simplified as, 

  cos 2 nk for,k 1,2,3.....     

Hence we can write equation (14) as, 

 

1 1
x(n) 10cos 2 n 5cos 2 n

4 4

1
15cos 2 n (15)

4

   
      

   

 
   

 

  



This is the sampled signal. observe that there is only one frequency 
1

f
4

  in the sampled signal. when this signal is 

reconstructed we get, 

  ax (t) 15cos2 1000 t (16)    from equation (15) 

Here observe that the reconstructed signal contains only one frequency of 100 Hz and amplitude of F1 = 1000 Hz is 

increased. This shows that with the sampling rate 400 Hz, the signal is not recovered from its samples. This is 

because the sampling theorem is not satisfied. The nyquist rate as calculated (i) is 10 KHz. Hence minimum 

sampling frequency should be 10kHz to avoid aliasing. 

3.  Determine whether the following discrete time signals are periodic or not? If periodic, determine the fundamental 

period.                                                                            (16) 

 

 a)x(n) cos 0.01 n

b)x(n) cos(3 n)

c) x(n) sin(3n)

n n
d) x(n) cos cos

8 8

 

 



   
    

   

  

Solution:-  

The discrete time signal is periodic if its frequency ‘f0’ can be expressed as ratio of two integers (i.e) ‘f 

‘ is rational. 

 
0

k
f

N
   

Here ‘k’ is some integer and ‘N’ is fundamental period  

(i) cos (0.01πn): 

Here  ω = 0.01π 

Since f ,   we have f
2





  

 

0.01
f

2

1

200








  

Here K = 1 and N = 200. Thus ‘f’ is expressed as ratio of two integers. Hence given sequence is periodic. Here 

period , N = 200 samples. The relation 
1

N
f

  holds only when k =1. Earlier we have considered all signals which 

have k = 1. Hence we have used the relation 
1

N
f

  . but this is not always true. 

(ii) cos 3πn: 



Here  ω = 3π 

We have  
3 3

f
2 2 2

 
  

 
  

We know that 
k

f
N

  and if k and N are integers, then signal is periodic with period ‘N’  

Thus the given signal is periodic with period N = 2 samples. 

(iii) sin (3n) 

Here  ω = 3π 

We have  
3

f
2 2


 


  

Here k = 3 and N =2π which is not an integer. Thus ‘f’ cannot be expressed as the ratio of two integers, therefore 

this signal is non periodic. 

(iv) 
n n

cos cos
8 8

   
   
   

: 

Here we can write given sequence as, 

1 2cos cos    

And  

 

1 2

1

1

1
,

8 8

f
2

1/ 8

2

1

16


   












  

Here k1 = 1 and N1 = 16π which is not an integer. Hence f1 is not the ratio of two integers, 

Therefore 
n

cos
8

 
 
 

 is non periodic. 

Now  

 

2

2f
2

/ 8

2

1

16













  



‘f2’ is the ratio of two integers with N2 = 16. Hence cos
8

 
 
 

 is periodic. The given signal is thus the product of non 

periodic signal and periodic signal. hence the product signal 
n n

cos cos
8 8

   
   
   

 is non periodic. 

4.  Explain in detail about analog to digital conversion with suitable block diagram and to reconstruct the analog 

signal. (May/June 2014)         (16) 

Solution:-  

A/D conversion  

Most of the signals are analog in nature when they are generated from the primary source. Analog signals are 

continuous in time and amplitude. The signals such as speech, video, rader, seismic signal, ECG, EMG etc signals 

are basically analog in nature. If these signals are to be processed digitally, they should be converted to digital form. 

Such conversion is performed by analog to digital (A?D) convertors. Thus A/D and D?A convertors are always used 

with DSP system. 

It consists of three basic blocks  a) Sampler  b) Quantizer  c) Encoder 

 

SAMPLING 

The continuous time signal xa(t) is converted to discrete time signal x(n) by sampling. 

The sampler takes the samples at regular time intervals. The sampling interval is denoted by T. 

Then continuous time variable ‘t’ and discrete time variable ‘n’ are related as, 

 t nT n 0,1,2,3..... (1)     

This discrete time signal is discrete time signal x(n) is defined only at n = 0, 1, 2, 3... and its value is equal to xa 

(nT). Here T is sampling interval 

 a ax (t) x (nT) x(n) n 0,1,2,3.... (2)      

The sampler is norrmally a switch and it chops off the incoming analog signal. it is illustrated in fig.1 as shown in 

the figure, the sampler switch switch operates at the sampling rate of Fs, which is given as, 

 Sampling rate s

1
F (3)

sampling int erval T
    



 

Here ‘Fs’ is also called sampling frequency. Thus ‘Fs’ can be expressed as samples per second or in hertz. The 

sampling interval T is in seconds. Fig 2 shows the input signal xa (t) and its sampled version x(nT) or x(n). in this 

figure observe that x(n) takes the  

 

 

Amplitude of xa (t) at the sampling instants t = nT. The values of ‘n’ can be only positive for real time processing. 

But ‘n’ is considered in the range n   for mathematical simplicity. Hence we can rewrite equation. As, 

 ax(n) x (nT) n (4)        

Since t = nT and s

1
F

T
  we can write an important relationship as,  

 
s

n
t nT (5)

F
     

This equation gives the relationship between time ‘t’, samples ‘n’ and sampling frequency F1. 

SAMPLING THEOREM 

It is the process of converting continuous time signal into a discrete time signal by taking samples of the continuous 

time signal at discrete time instants. 

X[n]= Xa(t) where t= nTs = n/Fs                   ….(1) 

When sampling at a rate of fs samples/sec, if k is any positive or negative integer, we cannot distinguish between the 

samples values of fa Hz and a sine wave of (fa+ kfs) Hz. Thus (fa + kfs) wave is alias or image of fa wave. 

Thus Sampling Theorem states that if the highest frequency in an analog signal is Fmax and the signal is sampled at 

the rate fs > 2Fmax then x(t) can be exactly recovered from its sample values. This sampling rate is called Nyquist 



rate of sampling. The imaging or aliasing starts after Fs/2 hence folding frequency is fs/2. If the frequency is less 

than or equal  to 1/2 it will be represented properly. 

Example: 

Case 1:            X1(t) = cos 2π (10) t                  Fs= 40 Hz                 i.e t= n/Fs 

x1[n]= cos 2π (n/4)= cos (π /2)n 

Case 2:            X1(t) = cos 2 π (50) t                 Fs= 40 Hz                   i.e t= n/Fs 

x1[n]= cos 2 π (5n/4)= cos 2 π ( 1+ ¼)n   =     cos (π /2)n 

Thus the frequency 50 Hz, 90 Hz , 130 Hz … are alias of the frequency 10 Hz at the sampling rate of 40 samples/sec 

QUANTIZATION 

The process of converting a discrete time continuous amplitude signal into a digital signal by expressing each  

sample  value  as  a  finite  number  of  digits  is  called  quantization.  The  error  introduced  in representing the 

continuous values signal by a finite set of discrete value levels is called quantization error or quantization noise. 

Example:                    x[n] = 5(0.9)n u(n)                  where 0 <n < ∞   &   fs= 1 Hz 

N [n] Xq [n] Rounding Xq [n] Truncating eq [n] 

0 5 5.0 5.0 0 

1 4.5 4.5 4.5 0 

2 4.05 4.0 4.0 -0.05 

3 3.645 3.6 3.6 -0.045 

4 3.2805 3.2 3.3 0.0195 

 

Quantization Step/Resolution : The difference between the two quantization levels is called quantization step. It is 

given by Δ = XMax – xMin / L-1 where L indicates  Number of quantization levels. 

CODING/ENCODING 

Each quantization level is assigned a unique binary code. In the encoding operation, the quantization 

sample value is converted to the binary equivalent of that quantization level. If 16 quantization levels are present, 4 

bits are required. Thus bits required in the coder is the smallest integer greater than or equal to Log2 L. i.e b= Log2 

LThus Sampling frequency is calculated as fs=Bit rate / b. 

ANTI-ALIASING FILTER 

When processing the analog signal using DSP system, it is sampled at some rate depending upon the bandwidth. For 

example if speech signal is to be processed the frequencies upon 3khz can be used. Hence the sampling rate of 6khz 

can be used. But the speech signal also contains some frequency components more than 3khz. Hence a sampling rate 

of 6khz will introduce aliasing. Hence signal should be band limited to avoid aliasing. 

The signal can be band limited by passing it through a filter (LPF) which blocks or attenuates all the frequency 

components outside the specific bandwidth.  Hence called as Anti aliasing filter or pre- filter as shown in block 

diagram. 



SAMPLE-AND-HOLD CIRCUIT 

 

The sampling of an analogue continuous-time signal is normally implemented using a device called an analogue-to- 

digital converter (A/D). The continuous-time signal is first passed through a device called a sample-and-hold (S/H) 

whose function is to measure the input signal value at the clock instant and hold it fixed for a time interval long 

enough for the A/D operation to complete. Analogue-to-digital conversion is potentially a slow operation, and a 

variation of the input voltage during the conversion may disrupt the operation of the converter. The S/H prevents 

such disruption by keeping the input voltage constant during the conversion. This is schematically illustrated by 

Figure. 

 

 

 

 

After a continuous-time signal has been through the A/D converter, the quantized output may differ from the input 

value. The maximum possible output value after the quantization process could be up to half the quantization level q 

above or q below the ideal output value. This deviation from the ideal output value is called the quantization error. 

In order to reduce this effect, we increases the number of bits. 

 

 

 



5.  Find which of the following signals are energy signals and power signals.  

     (a) 4    (b) cost + cos2t  (c) 
2 t

e


   j2 t(d)e    (Nov/Dec 2014)             (16) 

Solution:- Recall that the total energy of a signal f(t) is given by  

  

2

E f (t) dt





    

A signal is an “energy signal” if its total energy content is finite. If E = ∞, then if  

  
T/2

2

T
T/2

1
Lim f (t) dt

T


    

The signal called is power signal. 

Thus in our case: 

(a)  

  
2

4 dt





    

Is NOT an energy signal, while, 

  

T/2
2

T
T/2

1
Lim 4 dt 16W

T


   

Shows that it is a power signal. 

(b)  

  
2

cos t cos 2t dt





     

(Consider the integral as an area under the curve of the integrated). This shows that it is not an energy signal, while, 

  

T/2
2

T
T/2

T/2

2 2

T
T/2

1
Lim cos t cos 2t dt

T

1
Lim cos t cos 2t 2cos t cos 2t dt

T









 
   

 





  

Using the identities (i)  2 1
cos t 1 cos 2t

2
  , and (ii) 2cos 2t cost = cos (2t+t) + cos (2t-t) = cos 3t + cost, the value 

of the integral is computed as, 

  
1 1

P 1W
2 2

     



(c) Observe that, 

    
2

2 t 4 t 4t

0

2
e dt e dt 2 e dt 0 1 0.5J

4

  
  

 

    
     

This is therefore an energy signal. 

(d)  
2 2j2 te dt 1 dt

 



 

    Not an energy signal  

  
T/2

2

T/2

1
P 1 dt 1W

T


    Power signal  

6. Determine if each of the following signals is periodic. If a signal is periodic, determine its fundamental period. 

 j2 /4

2 2

(a)cos 3t (b)e

(c)sin (2t) (d)sin(2t )



  

Solution:- Recall that a signal f(t) is said to be periodic if there exists a number T such that for all t, f(t) = f(t+T). 

The number T is the period of the signal. 

(a)  cos 3t  is periodic because a number T can be found such that    cos 3t cos 3 t T  
  . This number is 

easily found to be T 2 / 3   (note that we are referring to the smallest possible number here.) 

(b)  
 j t T /4 j2 t /4 j2 T j2 t /4e e e e e e

             (if T = 1) 

(Since j2e 1   ). This means that the function is periodic with period T = 1. 

(c)   

 

   

2

2

1
sin (2t) 1 cos(4t) (1)

2

1
sin 2 t T 1 cos 4 t T (2)

2

  

      

  

If the function is periodic then (1) and (2) above must be equal ∡t. This happens if, 

 cos 4(t T) cos(4t),or if 4T 2 ,or T / 2         

(d) Given f(t) = sin(2t2), recall that a sine function is periodic with period 2Kπ. If f(t) is periodic, then  

      
22sin 2t 2K sin 2 t T    

 
  



 

Where T is the period. This means that,  
222t 2K 2 t T .     this simplifies to: 22T 4Tt 2K   . This means 

that f(t) is not periodic, since we cannot get a constant value for the period T from the above equation. 

7. Find which of the following signals are energy signals and power signals. 

n
j n

2 41
i)x(n) .u(n) (ii) x(n) e (iii)x(n) sin n

3 4

  
 

 
   

     
   

  (NOV/DEC 2014) (16) 

Solution:-  

(i) 

n
1

x(n) .u(n)
3

 
  
 

  

Energy signal: 

2 n
n 2

2

n n n

1 1
x(n)

3 3

 

  

   
    

   
     

   

n

n

1

9





    

n

n 0

1
(a)

1 a





 


   

Energy signal = 
1 9

E Joules
1 8

1
9

 



  

To check for power, 
N

2

n
n N

1
P Lim x(n)

2N 1




   



  

 

nN

n
n 0

N 1

N

n
n 0

N 1N
n

n 0

1 1
Lim

2N 1 9

1
1

1 9
Lim 0

12N 1
1

9

1 a
,a 1

1 a
















  
  
   

 
 

 

 
    

 







  

From the above result ‘E’ is finite and P = 0. Hence the above signal is energy signal. 

(ii) 
j n

2 4x(n) e

  
 

    

  

2

n

j

2

j n
22 4

n n

E x(n)

e 1

E e 1







    
 

 



 

   



 

  

To check for power, 
N

2

n
n N

1
P Lim x(n)

2N 1




   

2
N j n

2 4

n
n N

N
2

n
n N

n

N

n N

1
P Lim e

2N 1

1
Lim 1

2N 1

1
Lim 2N 1 1 Watt

2N 1

1 2N 1

  
 

 

















  


  







  

From the above results ‘E’ is ∞ and P = 1 wait. Hence the above signal is power signal. 

(iii) x(n) sin n
4

 
  

 
  

 

2

2 2

n n n

n n

E x(n) sin n sin n
4 4

1 cos 2 n 1 cos n
4 2

2 2

  

  

 

 

    
     

   

        
       

      
   

  

 

  



To check for power, 
N

2

n
n N

1
P Lim x(n)

2N 1




   

2
N N

2

n n
n N n N

N N

n n
n N n N

1 1
P Lim sin n Lim sin n

2N 1 4 2N 1 4

1 cos n
1 1 12

P Lim Lim 1
2N 1 2 2 2N 1

 
 

 
 

    
    

    

   
   

   
  

 
 

 

 

  

From the above result ‘E’ is ∞ and P = 0.5 watt. Hence the above signal is power signal. 

Unit – II 

Discrete Time System Analysis  

Part – A 

1. Define DTFT  

Let us consider the discrete time signal x(n). Its DTFT is denoted as X(ω). It is given as j n

n

X( x n e


 



      

2. State the condition for existence of DTFT? 

The conditions are, if x(n) is absolutely summable then x(n) .   if x(n) is not absolutely summable then it should 

have finite energy for DTFT to exit. 

3. List the properties of DTFT 

Periodicity  

Linearity  

Time shift  

Frequency shift  

Scaling  

Differentiation in frequency domain  

Time reversal  

Convolution  

Multiplication in time domain  

Parseval’s theorem  

 



4. What is the DTFT of unit sample? 

The DTFT of unit sample is 1 for all values of ω. 

5. Define Z transform  (NOV/DEC 2013) 

The Z transform of a discrete time signal x(n) is denoted by x(z) and is given by n

n

X(z) x(n)Z






    

6. Define ROC and its properties  (MAY/JUNE 2014, NOV/DEC 2013, NOV/DEC 2012) 

The values of z for which z – transform converges is called region of convergence (ROC). The z – transform is an 

infinite power series; hence it is necessary to mention the ROC along with Z – transform. 

ROC of an LTI stable system contains unit circle  

If x(n) is casual, then ROC is the entire unit circle. 

7. Find Z transform of x(n) = {1,2,3,4}  

Given x(n) = {1, 2, 3, 4}, n 1 2 3

n

X(z) x(n)Z 1 2Z 3Z 4z


   



       

8. State the convolution property of Z transform  (NOV/DEC 2013) 

The convolution property states that the convolution of two sequences in time domain is equivalent to multiplication 

of the sequences in Z domain. 

If      1 2 2 2 1 2 2 2Z x (n) X (z) and Z x (n) X (z) then Z x (n)*x (n) X (z)X (z)       

9. What Z transform of (n-m)? 

By time shifting property    mZ A n m AZ sin Z (n) 1       

10. State final and initial value theorem   (MAY/JUNE 2014) 

Let x(n) be an one – sided signal defined in the range 0 n     

If Z[x(n)] = X(z) then the initial value of x(n) is given by 
z

x(0) LimX(z)


   

If Z[x(n)] = X(z), then the final value of x(n) is given by  1

z 1
x( ) Lim 1 z X(z)


     

11. List the methods of obtaining inverse Z transform. 

Inverse Z transform can be obtained by using  

Partial fraction expansion  

Contour integration  

Power series expansion  



Convolution  

12. Obtain the inverse Z transform of 
1

X(z) , z a
z a

 


  

Given 
 

1

1

Z
X(z)

1 aZ







 by time shifting property  nx(n) a u n 1   

13. List any four properties of Z – transform. 

Linearity  

Time shifting  

Frequency shift or Frequency translation  

Time reversal  

14. What are the different methods of evaluating inverse Z – transform? 

Partial fraction expansion  

Power series expansion  

Contour integration (Residue method) 

15. What are the properties of convolution? 

Commutative property x(n)*h(n) h(n)*x(n)   

Associative property    1 2 1 2x(n)*h (n) *h (n) x(n)* h (n)*h (n)   

Distributed property      1 2 1 2x(n)* h (n) h (n) x(n)*h (n) x(n)*h (n)      

16. Define discrete Fourier series representation for a periodic sequence  (NOV/DEC 2014) 

For x(n) is a periodic signal with period N, that is x[n+N]=x(n) as is continues time period signal we would like to 

represent x(n) in terms of discrete time complex exponential with period N, these signals are given by 

j2 nk

Ne


 

17. Determine the Z – transform and ROC for the signal x(n) n k) n k)       (NOV/DEC2013, 

MAY/JUNE 2012) 

Given x(n) n k) n k)      

     

   

k k

k k k k

Z n) 1;Z (n k) Z X(z);Z n k) Z X(z)

Z x(n) Z X(z) Z X(z) Z Z X(z)



 

       

   
  

18. Given a difference equation y(n) = x(n) +3x(n – 1) +2y(n – 1). Determine the system function H(z) 



(MAY/JUNE 2013) 

Given y(n) = x(n) +3x(n – 1) +2y(n – 1). Taking Z transform on both sides  

 

 1 1 1 1

1

1

Y(z) X(z) 3z X(z) 2z Y(z) and Y(z) 1 2z X(z) 1 3z

Y(z) 1 3z
H(z)

X(z) 1 2z

   





       


 



  

19. Find the stability of the system whose impulse response 

n
1

h(n) u(n)
2

 
  
 

 (MAY/JUNE 2013) 

Given 

n
1

h(n) u(n)
2

 
  
 

the condition for stability is 
n

h(n)




    

Therefore 

n n

n n n 0

1 1
h(n) u(n) 2

2 2

  

  

   
     

   
    , hence stable. 

20. Find the convolution for x(n) = {0, 1, 2, 3} and h(n) = {2, 0, 1}   (MAY/JUNE 2012) 

Solution:-  y(n)= {0, 2, 4, 7, 2, 3} 

 

 

 

 

 

 

 

 

21. Determine the Z – transform of x(n) = an  (APR/MAY 2015) 

Let us assume given n nx(n) a is x(n) a u(n)    

Therefore   

 

n n n

n n

n n

1
n 0

X(z) x(n)Z X(z) a u(n)Z

1 1
a Z ;ROC : z a

1 A 1 az

 
 

 







  

   
 

 


  

 

x(n) 

h(n) 

2 0 1 

0 

1 

2 

3 

3 

0 0 0 

2 0 1 

4 0 2 

6 0 3 

 



PART B 

1.  Determine the z –transform and ROC of the signal                      

x(n)=[3(2n) – 4(3n)]u(n)   (Nov/De c 2014) (10) 

 

Solution:- If we define the signals   

 

  n

1x (n) 2 u(n)   

And   

  n

2x (n) 3 u(n)   

Then x(n) can be written as  

  1 2x(n) 3x (n) 4x (n)    

  1 2X(z) 3X (z) 4x (z)    

 n z

1

1
a u(n) ROC z a (1)

1 az
  


  

By setting a = 2 and a  = 3 in equation 1, we obtain  

 

n z

1 1 1

n z

2 2 1

1
x (n) 2 u(n) X (z) ROC : z 2

1 2z

1
x (n) 3 u(n) X (z) ROC : z 3

1 3z





   


   


  

The intersection of the ROC of X1(z) and X2(z) is z 3 . Thus the overall transform X(z) is  

   
1 1

3 4
X z ROC : z 3

1 2z 1 3z 
  

 
  

 

2. Determine the Z – transform of  

n n

0 0a. x(n) a cos n u(n) b. x(n) a sin n u(n)       (NOV/Dec 2013) (16) 

Solution:-  

a. 
n

0x(n) a cos n u(n)    

Let   1 0x (n) cos( n ) u(n)   



The Z – transform of  0cos n u(n)  is given by   

  
1

0

1 1 2

0

1 z cos
x (z) , ROC : z 1 (1)

1 2z cos z



 

 
  

  
  

Since  
1

z

0 1 2

0

1 z
cos n u(n) , ROC : z 1 (2)

2z cos z



 


   

 
  

Now consider the given equation i.e,  

  

  

 

 

n

0

n

1

n

1

x(n) a cos n u(n)

a x (n)

x(z) Z a x (n) (3)

 



 

  

Here let us use the scaling property of equation i.e, 

  

  n

1 2

z
Z a x(n) x , ROC : r z r

a

 
     

 
  

Applying this property to equation (3) we have, 

  1

z
X(z) X

a

 
  

 
  

1

z
X

a

 
 
 

is obtained by replacing z by 
z

a
 in X1(z) of equation (2) i.e, 

 

1

0

1 2

0

z
1 cos

a
X(z) ROC : z 1

z z
1 2 cos

a a



 

 
  
 

  
   

     
   

  

Thus we obtained the z – transform pair as, 

 

  

1

0
n z

0 2

0

z
1 cos

a
a cos n u(n) ROC : z (4)

z z
1 2 cos

a a





 
  
 

    
   

     
   

  

b. 
n

0x(n) a sin n u(n)    



Let   1 0x (n) sin n u(n)    

The Z – transform of 
0sin( n)u(n)  is given by equation (2) i.e, 

   

  
1

0

1 1 2

0

z sin
x (z) , ROC : z 1 (5)

1 2z cos z



 


  

  
  

Since  
1

z 0

0 1 2

0

z sin
sin n u(n) , ROC : z 1 (6)

1 2z cos z



 


   

  
  

Now consider the given equation i.e, 

  

 

 

n

0

n

1

n

1

x(n) a sin n u(n)

a x (n)

x(z) z a x (n) (7)

 



 

  

Here let us use the scaling property of equation i.e, 

 

  n

1 2

z
Z a x(n) X , ROC : r z r

a

 
     

 
  

Applying this property to equation (7) we have  

  1

z
x(z) X

a

 
  

 
  

Here 1

z
x

a

 
 
 

 is obtained by replacing z by X1 (z) of equation (5) i.e., 

 

1

0

2

0

z
sin

a
x(z) , ROC : z 1

z z
1 2 cos

a a





 
 

 
  

   
     

   

  

Thus we have obtained the Z – transform pair as, 

` 

  

1

0
n z

0 1 2

0

z
sin

a
a sin n u(n) , ROC : z (8)

z z
1 2 cos

a a



 

 
 

 
    

   
     

   

  

3. Determine Z transform for x(n) = n an u(n)       (8) 



 

Solution:- Let   n

1x (n) a u(n)   

 

From equation the z- transform of an u(n) is given as  

 

  

n

1

1 1

1
Z a u(n) , ROC : z

1 az

1
X (z) , ROC : z

1 az





      

  


  

Now the given function is, 

  

 

 

n

n

1 1

1

x(n) na u(n)

x(n) nx (n) sin ce x (n) a u(n)

x(z) Z nx (n) (9)



 

 

  

The differentiation in z – domain property of equation (2) states that, 

   

  
d

Z n x(n) z x(z)
dz

    

Applying this property to equation (9) we have  

 

 

 

1

1

1

2
1

d
X(z) z X (z), ROC : z

dz

d 1
z

dz 1 az

az

1 az







   

 





  

Thus we have obtained the z – transform pair, 

  

 

 

1
n z

2
1

az
n a u(n) , ROC : z (10)

1 az




   


  

Z – transform of unit ramp sequence: 



The unit ramp sequence is given as, 

  
 

x(n) n u(n)

X(z) Z n u(n)




  

By putting a = 1 in equation (10) we can get the z – transform of unit ramp sequence. 

Hence, 

  
 

1
z

1

z
n u(n) , ROC : z 1 (11)

1 z




  


  

4. Determine the z – transform of the signal  

 

(a)  1 0x (n) cos n u(n)    

Solution:- Using Eulers identify we have, 

  

  
j je e

cos
2

  
 

 

Hence  

  

 

j n0
0

0 0

j j

0

j n e

j n j n

e e
cos n

2

1
x(n) e u(n)

2

1 1
e u(n) e u(n)

2 2



  

 

  


 

 
 

 

  

Taking Z – transform of above function, 

  0 0j n j n1 1
X(z) Z e u(n) e u(n)

2 2

   
  

 
  

Using the linearity property of equation (1) we can write above equation as, 

  0 0j n j n1 1
X(z) Z e u(n) Z e u(n)

2 2

     
    

   
  

Here let 0 0j j
a e &b e

  
   ̧then we can write, 

  n n1 1
X(z) Z a u(n) Z b u(n) (1)

2 2
           

From equation we can write, 



  n

1

1
Z a u(n) ROC : z a (2)

1 az
     

  

We have  0j

0 0a e cos jsin


      

  2 2

0 0a cos sin 1       

Hence we can write equation (2) as, 

  
0

n

j 1

1
Z a u(n) , ROC : z 1 (3)

1 e z
 

      
  

Similarly the z – transform of second term in equation (1) can be written  as, 

  n

1

1
Z b u(n) , ROC : z b

1 bz
     

 from equation   →(4) 

We have  0j

0 0b e cos jsin
 

       

  2 2

0 0b cos sin 1       

Hence we can write equation (4) as, 

  
0

n

j 1

1
Z b u(n) , ROC : z 1 (5)

1 e z
  

      
  

Putting the individual z – transform values from above equation and equation (3) in equation (1) we get, 

  
0 0

0 0

j j1 1

j j1 1

1 1 1 1
X(z) . , ROC : z 1

2 21 e z 1 e z

1 1 1

2 1 e z 1 e z

   

   

  
 

 
  

  

  

  
 

 

0 0

0 0 0 0

0 0

0 0

j j1 1

j j j j1 1 1 1

j j1

j j1 2

1 1 e z 1 e z

2 1 e z e z e z e z

2 z e e1

2 1 z e e z

   

        

  

   

   
  

   

   
  

    

  

Here let us use Euler’s identity i.e j j2cos e e     . Hence above equation can be further simplified as, 

  

1

0

1 2

0

1

0

1 2

0

2 2z cos1
X(z)

2 1 2z cos z

1 z cos
X(z) , ROC : z 1

1 2z cos z



 



 

  
  

   

 
 

  

  

Thus we obtained the standard z – transform pair as, 



   
1

z 0

0 1 2

0

1 z cos
cos n u(n) , ROC : z 1 (6)

1 2z cos z



 

 
   

  
  

(b)  2 0x (n) sin n .u(n)    

Solution:- Using Euler’s identity we have  

  

  0 0

0 0

0 0

j j

j n j n

0

j n j n

j n j n

e e
sin

2j

1
sin n e e

2j

1
x(n) e e u(n)

2j

1 1
e u(n) e u(n)

2j 2

  

  

  

  


 

    

   

 

  

Taking Z – transform of above function, 

  0 0j n j n1 1
X(z) Z e u(n) e u(n)

2j 2 j

   
  

 
  

    0 0j n j n1 1
Z e u(n) Z e u(n)

2j 2j

  
   By linearity property   →(7) 

In the previous example we have obtained z – transform of 0j n
e u(n), i.e,


  

  0

0

j n

j n 1

1
Z e u(n) , ROC : z 1

1 e z



 
 


 By equation (3) 

Similarly Z –transform of 0j n
e u(n)
 

 also we have obtained in pervious example i.e, 

  0

0

j n

j n 1

1
Z e u(n) , ROC : z 1

1 e z

 

  
 


 By equation (5) 

Putting the above two results in equation (7) we get, 



 

 
 

0 0

0 0

0 0

0 0 0 0

0 0

0 0

j n j1 1

j n j1 1

j n j n1 1

j n j n j n j n1 1 1 1

j n j n1

j n j n1 2

1

1 1 1 1
x(z) . . , ROC : z 1

2j 2 j1 e z 1 e z

1 1 1

2j 1 e z 1 e z

1 1 e z 1e z

2j 1 e z e z e z .e z

z e e1

2j 1 z e e z

e
z

   

   

   

        

  

   



  
 

 
  

  

  
  

   

 
 
   
 


 

0 0

0 0

j n j n

j n j n1 2

e

2j

1 z e e z

  

   

 
 
 
 
   

  

  

Applying the Euler’s identity to above equation we can write, 

 
1

0

1 2

0

z sin
X(z) , ROC : z 1

1 2z cos z



 


 

  
  

Thus we have obtained the z – transform pair as, 

  
1

z 0

0 1 2

0

z sin
sin n u(n) , ROC : z 1 (8)

1 2z cos z



 


   

  
  

5. Determine the inverse Z – transform of 
1 2

1
x(z)

1 1.5z 0.5z 


 
 if     (16) 

(i)ROC: z 1 (ii)ROC: z 0.5 (iii)ROC: 0.5 z 1     

Solution:- This is the same problem that we treated in example. The partial fraction expansion for X(z) was 

determined in example. The partial – fraction expression of X(z) yields. 

 
1 1

2 1
x(z) (1)

1 z 1 0.5z 
  

 
  

To invert X(z) we should apply for p1 = 1 and p2 = 0.5. however, this requires the specification of the corresponding 

ROC. 

(a) In case when the ROC is z 1 , the signal x(n) is casual and both terms in (1) are casual terms. According to, 

we obtain  

 
n n nx(n) 2(1) u(n) (0.5) u(n) (2 0.5 ) u(n) (2)       

Which agrees with the results in example 

(b) When the ROC is z 0.5 , the signal x(n) is anticasual. Thus both terms in (1) result in anticasual components 

from we obtain 

 nx(n) 2 (0.5) u( n 1) (3)          



(c)In this case the ROC 0.5 z 1   is a ring, which implies that the signal x(n) is two – sided. Thus one of the terms 

corresponds to a casual signal the other to an anticasual signal. obviously, the given ROC is the overlapping of the 

regions z 0.5 & z 1  . Hence the pole p2 = 0.5 provides the casual part and the pole p1 = 1 the anticasual. Thus  

 n nx(n) 2(1) u( n 1) (0.5) u(n) (4)        

6. Determine the unit step response of the system described by the difference equation 

y(n) 0.9y(n 1) 0.81y(n 2) x(n)       under the following initial conditions: 

(a) y( 1) y( 2) 0      

(b) y( 1) y( 2) 1      

Solution:- The system function is  

 
1 2

1
H(z)

1 0.9z 0.81z 


 
  

This system has two complex – conjugate poles at  

 j /3 j /3

1 2p 0.9e p 0.9e      

The z – transform of the unit step sequence is  

 
1

1
X(z)

1 z



  

Therefore  

 
   

zs j /3 1 j /3 1 1

j /3 1 j /3 1 1

1
Y (z)

1 0.9e z 1 0.9e z 1 z

0.542 j0.049 0.542 j0.049 1.099

1 0.9e z 1 0.9e z 1 z

     

     


  

 
  

  

  

And hence the zero – state response is  

 
n

zsY (n) 1.099 1.088(0.9) cos n 5.2 u(n)
3

   
    

  
  

(a) Since the initial condition are zero in this case, we conclude that y(n) = yzs(n). 

(b) For the initial condition y(-1) = y(-2) = 1, the additional component in the z – transform is  

  

1

0

zs 1 2

j /3 1 j /3 1

N (z) 0.09 0.81z
Y (z)

A(z) 1 0.9z 0.81z

0.026 j0.4936 0.026 j0.4936

1 0.9e z 1 0.9e z



 

    


 

 

 
 

 

  

Consequently, the zero – input response is  

  
n

zsY (n) 0.988(0.9) cos n 87 u(n)
3

 
   

 
  



In this case the total response has the z- transform  

  
zs zi

1 j /3 1 j /3 1

Y(z) Y (z) Y (z)

1.099 0.568 j0.445 0.568 j0.445

1 z 1 0.9e z 1 0.9e z     

 

 
  

  

  

The inverse transform yields the total response in the form 

  ny(n) 1.099u(n) 1.44(0.9) cos n 38 u(n)
3

 
   

 
  

7. Determine the response y(n),n 0,  of the system described by the second order difference equation. 

 y(n) 3y(n 1) 4y(n 2) x(n) 2x(n 1)         

When the input sequence is  

 nx(n) 4 u(n)   

Solution:- We have already determined the solution to the homogeneous difference equation for this system in 

example for we have  

     
n n

n 1 2y (n) C 1 C 4 (1)      

The particular solution to is assumed to be an exponential sequence of the same form as x(n). normally, we could 

assume a solution of the form 

  n

py (n) K(4) u(n)   

However, we observe that yp(n) is already contained in the homogeneous solution, so that this particular solution is 

redundant. Instead, we select the particular solution to be linearity independent of the terms contained in the 

homogenous solution. In fact, we treat this situation in the same manner as we have already treated multiple roots in 

the characteristics equation. Thus we assume that  

  n

py (n) Kn(4) u(n) (2)    

Upon substitution of (2) into we obtain 

   

   

n n 1 n 2

n n 1

Kn(4) u(n) 3K(n 1)(4) u(n 1) 4K n 2 (4) u n 2

4 u n 2(4) u(n 1)

 



     

  
   

To determine K, we evaluate this equation for any n 2 , where none of the unit step terms vanish. To simplify the 

arithmetic, we select n = 2, from which we obtain 
6

K
5

  . Therefore  

  n

p

6
y (n) n(4) u(n) (3)

5
    



  
y(1) 3y(0) 4y( 1) 6

13y( 1) 12y( 2) 9

   

    
   

The total solution to the difference equation is obtained by adding (1) to (3). Thus  

  n n n

1 2

6
y(n) C ( 1) C (4) n(4) n 0 (4)

5
        

Where the constants C1 and C2 are determined such that the initial conditions are satisfied. To accomplish this, we 

return to from which we obtain  

  y(0) 3y( 1) 4y( 2) 1       

On the other hand, (4) evaluated at n = 0 and n = 1 yields  

  
1 2

1 2

y(0) C C

24
y(1) C 4C

5

 

   
  

We can now equate these two sets of relations to obtain C1 and C2. In so doing, we have the response due to initial 

conditions y(-1) and y(-2) (the zero- input response). And the zero stare or forced response. 

Since we have already solved for the zero – input response in example we can simplify the computations above by 

setting y(-1) = y(-2)= 0. Then we have  

  
1 2

1 2

C C 1

24
C 4C 9

5

 

   
  

Hence 
1 2

1 26
C &C

25 25
   finally, we have the zero – state response to the forcing function nx(n) (4) u(n)  in the 

form  

   
n n n

zs

1 26 6
y (n) 1 (4) n(4) n 0 (5)

25 25 5
         

The total response of the system, which includes the response to arbitrary initial conditions is the sum of equation. 

 

 

 

 

 

 

 



 

 

 

 

8.  The total response of the system, which includes the response to arbitrary initial conditions is the sum of 

equation.  

Using z-transform determine the response  y n for n 0  if      (May‘13, Nov‘16)     (16)  

           
n

1 1
y n y n 1 x n x n u n , y 1 1

2 3

 
      

 
 

Solution: 

 

   

 
 

   

1

1

1

1

1

1
1

n
n

1
Y z 0.5 z Y z 1

1
1 z

3

1
1.5 z

6Y z
1

1 z 1 0.5z
3

7

22
11 0.5z

1 z
3

7 1
hence y(n) 0.5 2 u n

2 3



  












    





 
  

 

 




  
   

   

 

9.  Find the Z-transform of x    2n n u n     (Apr/May 2015)      (8) 

 

 

   

 

 

2 n

n 0

2
2 n

2
n 0

2
2

2 1

1 1

2 3
1 1

1 1

3
1

X z n z

d
z z

dz

d 1
z

dz 1 z

z 2z

1 z 1 z

z 1 z
, z 1

1 z













 

 

 







 
   

 
 


 







 

 



10.  Determine the step response of the system      y n ay n 1 x n    -1<α<1, when the initial condition is 

y( 1) 1          (May/June 2012)     (8) 

Solution By taking the one side z tramsform of both sides, we obtained 

        1Y z z Y z y 1 X z           

Upon substrution for y(-1) and X*(z) anfd solving for Y+(z). we can obtaine the result. 

  
  1 1 1

1
Y z

1 z 1 z 1 z



  


 

  
 

By performing a partial fraction expansion and inverse transforming the result, we have 

 

 

   

n 1
n 1

n 2

1
y(n) u(n) u n

1

1
1 u n

1







  



 


 

11. Find the z-transform of the following signals and plot its ROC.            

(a) x1(n) = anu(n)  (b) x2(n) = -anu(-n-1)     (Nov/Dec 2014)     (16) 

(a)  Determine the z-transform of the signal 

    
n

n a , n 0
x n a u n

0 , n 0

 
  


 

From the definition we have  

    
n

n n 1

n 0 n 0

X z a z az
 

 

 

    

If 
1az 1  or equivalently, z a , this power serious converges to 1/(1-

1az )  

 



 

Region of convergence for X(z) and its corresponding causal and anticausal components 

 

(a)          (b) 

The exponential signal x(n) = anu(n) and its ROC 

Thus we have thr z-transform pair  

      n

z 1

1
x n a u n X z ROC z a

1 az
   


 

The ROC is the exterior of a circle having radius a . Graph if the signal x(n) and its corresponding ROC. Note that, 

in general a need not be real. If we send a =1 . we obtain the z-transform of the unit step signal. 

     z 1

1
x n u n X z ROC z 1

1 z
   


 

b)  Determine the z-transform  of the signal 

    n

n

0 n 0
x n a u n 1

a n 1


     

  
 



Solution From the definition 

      
t1

n n 1

n t 1

X z a z za
 

 

 

      

When i= -n. using the formula  

  2 3 2 A
A A A .. A 1 A A

1 A
       


 

When A 1 gives  

  
1

1 1

a z 1
X z

1 a z 1 az



 
 

 
 

Provided that 
1a z 1or equivalantly z a    thus  

   n z

1

1
x n a u( n 1) X(z) ROC z a

1 az
       


 

The ROC is now the interior of a circle having radius a . This is show in fig. 

 

The anticausal signal    nx n a u n 1    and its ROC 

Illustrate two very important issues. The first concern the uniqueness of the z transform. We see that the causual 

signal  nu n and the anticasual signal  na u n 1   have identical closed form expression for the z transform, that 

is     n

1

1
Z a u n Z au n 1

1 az
        

 

This implies that a closed form expression for the z transform does not uniquely specify the signal in the time 

domain. The ambiguity can be resolved only if in addition to the closed form expression, the ROC is specified. In 

summery a discrete time signal x(n) is uniquely  region of convergence  of X(z). in the text the term z transform is 

used to refer to both the closed form expression and corresponding ROC. The point that ROC of causal signal is the 

exterior of a circle of some radius r2while the ROC of an ant causal signal is the interior of a circle of some radius r1. 

the following example consider a sequence that is nonzero for n .       



12.   State and prove the following properties of z-transform    (16) 

(i) Time shifting        (ii) scaling in z domain   (iii) Differentiation 

Solution: 

(i) Time shifting property  

   zx n X z ROC  

   z kx n k z X z atleast ROC expect z 0 (k 0) or z (k 0)       

Proof: 

Let y(n)=x(n-k) 

 

   

 

   

   

n

n

n

n

(m k) m k

n n

k m k

n

Y z y n z

x n k z

letm n k

x m z x m z z

z x m z z X z











 
   

 


  





 

 

 

 
  

 





 



 

Time shifting Property ROC 

     zx n n X z 1 enter z plane     

Example for k = -1 

 
        

     z

y n x n 1 n n 1 n 1

y n n 1 Y z z enter the z plane

       

    
  

Example for k = 1 

 
        

     z 1

y n x n 1 n n 1 n 1

y n n 1 Y z z enter thez plane

      

    
 

ii) Scaling in the z domain 

   

   

z

1 1

n z 1

1 1

x n X z ROC r z r

a x n X a z ROCa r z a r

  

  
 

Scaling in the z-domain 

Let y(n)= anx(n) 



   

 

  

 

n

n

n n

n

n
1

n

1

1

1 2 1 2

Y z y n z

a x n z

x n za

X a z

z
ROC;r a z r a r z a r

a






























    





  

iii) Differentiation in z domain 

This property state that if  

    zx n X z  

Then  
   z d

nx n z X z
dz


 

Proof:  Consider the basic differentiation of z transform i.e., 

     n

n

X z x n z






   

Diiferentiate both the side of above equation with respect to z we get, 

 

   

 

  

  

 

 

   

n

n

n

n

n 1

n

n 1

n

1 n

n

1

d d
X z [x n z ]

dz dz

d
x n [z ]

dz

x n n z

x n n z z

z nx n z

z Z nx n by definition of z transform

d
Z nx n z X z

dz












 




 




 









 

 

    

    

   











 

Which is provided, the ROC of Z[nx(n)]is the same as that of X(z) 

13.  Find the linear convolution of   x(n) 1,1,0,1,1 with     h x 1, 2, 3,4   and verify the results of  

multiplication method with basic convolution equation and tabulation method.  (Nov/Dec 2012)    (16) 



Solution: 

The convolution of the two sequences is given by  

  

 

Computation of convolutions using multiplication 

 In the sequence x(n) observe that there are 2 digits before the zero mark   arrow. Similarly there are 3 

digits before the zero mark  arrow in h(n). Hence there will be 2+3=5 digits before the zero mark  arrow in y(n). 

Thus the result of convolution is obtained as  

  
1, 1, 5,2,3, 5,1,4

y n
   

  
 

  

The basic convolution equation is given by 

y x. h    

Since y (n) = {1, -1, -5, 2, 3, -5, 1, 4} 

y 1 1 5 2 3 5 1 4 0          

Since  x(n) 1,1,0,1,1  

Therefore x 1 1 0 1 1 4       



and    h x 1, 2, 3,4    

h 1 2 3 4 0      

Therefore  x. h 4 0 0     

Thus  y x. h    is proved. 

ii) To verify result using      y n x k h n k    

here let us compute the convention using the basic convolution equation. The given sequence are;  

 x(n) 1,1,0,1,1 and    h x 1, 2, 3,4    

These two sequence can be written as  

 

   

   

   

   

 

x 2 1 h 3 1

x 1 1 h 2 2

x 0 0 h 1 3

x 1 1 h 0 4

x 2 1

   

    

    

  



 

 

 

From  above we can write can the following: 

 Lowest index of x(n) nxl=-2 

 Highest index of x(n) nxh=2 

 Lowest index of x(n) nhl=--3 

 Highest index of x(n) nhh=0 

The convention equation is given by equation as  

         
xl

xl hl xh hh

k n

y n x k h n k and n n n n n


       

Putting values oh highest and lowest indicies in the above equation we get,  

          
2

k 2

y n x k h n k and 2 3 n 2 0


        

      
2

k 2

y n x k h n k and 5 n 2


      



Now let us compute y(n) for the complete range 

n=-5 in equation 1 given y(-5) 

 

   

                   

         

     

 

2

k 2

y( 5) x k h 5 k

x 2 h 3 x 1 h 4 x 0 h 5 x 1 h 6 x 2 h 7

1 1 1 0 0 0 1 0 1 0

sin ce h( 4) h 5 h 6 h 7 0

1 0 0 0 0

1 y 5 1



   

           

         

       

    

  



 

n= -4 in equation 1 given by y(-4) 

   

                   

         

 

 

2

k 2

y( 4) x k h 4 k

x 2 h 2 x 1 h 3 x 0 h 4 x 1 h 5 x 2 h 6

1 2 1 1 0 1 1 0 1 0

sin ce h( 4) h 5 h( 6) 0

2 1 0 0 0

1 y 4 1



   

           

         

     

     

    



 

n= -3 in equation 1 given by y(-3) 

   

                   

         

 

 

2

k 2

y( 3) x k h 3 k

x 2 h 1 x 1 h 2 x 0 h 3 x 1 h 4 x 2 h 5

1 3 1 2 0 1 1 0 1 0

sin ce h( n) h 5 0

3 2 0 0 0

5 y 3 1



   

           

         

   

     

   



 

n= -2 in equation 1 given by y(-2) 

   

                   

         

 

 

2

k 2

y( 2) x k h 2 k

x 2 h 0 x 1 h 1 x 0 h 2 x 1 h 3 x 2 h 4

1 4 1 3 0 2 1 1 1 0

sin ce h( n) h 4 0

4 3 0 1 0

2 y 2 2



   

          

         

   

    

   



 

 

 



n= -1 in equation 1 given by y(-1) 

   

                   

       

 

 

2

k 2

y( 1) x k h 1 k

x 2 h 1 x 1 h 0 x 0 h 1 x 1 h 2 x 2 h 3

0 1 4 0 3 1 2 1 1

sin ce h 1 0

0 4 0 2 1

3 y 1 3



   

         

        



    

  



 

n= 0 in equation 1 given by y(0) 

   

                   

     

   

 

2

k 2

y(0) x k h k

x 2 h 2 x 1 h 1 x 0 h 0 x 1 h 1 x 2 h 2

0 0 0 4 1 3 1 2

sin ce h 2 h 1 0

0 0 0 3 2

5 y 0 5



 

        

       

 

    

   



 

n= 1 in equation 1 given by y(1) 

 

   

                   

   

     

 

2

k 2

y(1) x k h 1 k

x 2 h 3 x 1 h 2 x 0 h 1 x 1 h 0 x 2 h 1

0 0 0 1 4 1 3

sin ce h 3 h 2 h 1 0

0 0 0 4 3

1 y 1 1



 

       

      

  

    

 



  

n= 2 in equation 1 given by y(2) 

 

   

                   

 

       

 

2

k 2

y(2) x k h 2 k

x 2 h 4 x 1 h 3 x 0 h 2 x 1 h 1 x 2 h 0

0 0 0 0 1 4

sin ce h 4 h 3 h 2 h 1 0

0 0 0 0 4

4 y 1 4



 

      

     

   

    

 



 

 Thus the sequence y(n) obtained using basic computation of convolution is as following  

 y(n) = {1,-1,-5,2,3,-5,1,4} 

iii) Tabulation method 



This example illustrates another easy method of computations of convolution  

    x(n) 1,1,0,1,1  h(x) 1, 2, 3,4    

Sometimes this method is also called tabulation  

The value of x(n) and h(n) can be written as following 

 

   

   

   

   

 

x 2 1 h 3 1

x 1 1 h 2 2

x 0 0 h 1 3

x 1 1 h 0 4

x 2 1

   

    

    

  



 

 

 



 

Thus as shown in above fig h(-3), h(-2), h(-1) and h(0), from columns of table. And x(-2), x(-1), x(0), x(1), 

x(2) from, the row of the table. In the table the multiplication of x(n ) and h(n)are written as shown. Then the 

multiplications are separately diagonally as shown by dotted line in fig 

 From given sequence x(n) and h(n) we have,  

 Lowest index of x(n) nxl =-2 

 Lowest index of x(n) nhl =-3 

 Hence lowest of y(n) nyl = nxl  + nhl =  -2-3 

    nyl = -5 

 The dfirst element in y(n) will be y(-5). This element is equal to top left diaognal array. Ait contains only 

one multiplication i.e,  

  y(-5) = x (-2) h (-3) 

 the other diagonal array are sucessively y(-4), y(-3), y(-2),… as shown in fig finally the last element in the 

array is y(2) and it is the bottom right element in table  

       y 2 x 2 h 0   



Thus the complete sequance is  

    
1, 1, 5,2,3, 5,1,4

y n   
   

  
 

 

14.  Determine the response of the system whose input x(n) and unit sample response h(n) is given as follows: 

 
1

n for 0 n 6
x n 3

0 else here


 

 



 

 
1 for 2 n 2

h n
0 else here

  
 


 

Sol : The input sequence x(n) is, 

 

 

 

1 2 3 4 5 6
0, , , , , ,

x n 3 3 3 3 3 3

1 2 4 5
0, , , 2, , , 2

x n 3 3 3 3

 
 

  
  

 
 

  
  

 

The unit sample response h(n) is    h n 1,1,1,1,1  

  
1 10 16 11

,1,2, ,5,6, ,5, , 2
y n 3 3 3 3

 
 

  
  

 

  

 



UNIT-III - DISCRETE FOURIER TRANSFORM AND COMPUTATION 

PART A 

 

1.  Define DFT. 

It is a finite duration discrete frequency sequence, which is obtained by sampling at N equally spaced 

points over the period extending from ω=0 to 2л. DFT is defined as     j nX x n e   . Here x(n)is the discrete time 

sequence X(ω)is the Discrete Fourier Transform of x(n). 

2.  Define N point DFT. 

The DFT of discrete sequence x(n) is denoted by X(K). It is given by, X(K)=
j2 knN 1

N

k 1

x(n)e
 



 .Since this 

summation is taken for N points, it is called as N-point DFT. 

3.  Define Twiddle factor 

The Twiddle factor is defined as 
2

j
N

NW e




  

4.  What is DFT of unit impulse δ(n)? (May/June 2013) 

The DFT of unit impulse δ(n) is X(K)= 
j2 kn j2 knN 1 N 1

N N

k 1 k 1

x(n)e (n)e
    

 

   = 1 

5.  Define circularly even sequence 

A Sequence is said to be circularly even if it is symmetric about the point zero on the 

circle    x N n x n , 1 n N 1      

6.  Define circularly odd sequence 

A Sequence is said to be circularly odd if it is anti symmetric about point  on the circle 

7.  Define circularly folded sequences (May/June 2014) 

A circularly folded sequence is represented as . It is obtained by plotting  in clockwise 

direction along the circle 

8.  State circular convolution 

This property states that multiplication of two DFT is equal to circular convolution of their sequence in 

time domain. 

9.  State parseval’s theorem (Nov/Dec 2014) 

Consider the complex valued sequences  and . If  

10.  List the properties of DFT. 

Linearity, Periodicity, Circular symmetry, symmetry, Time shift, Frequency shift, complex conjugate, 

convolution, correlation and Parseval’s theorem. 



11.  State Linearity property of DFT. 

DFT of linear combination of two or more signals is equal to the sum of linear combination of DFT of 

individual signal. 

12.  When a sequence is called circularly even? 

The N point discrete time sequence is circularly even if it is symmetric about the point zero on the circle. 

13.  What is the condition of a sequence to be circularly odd? 

An N point sequence is called circularly odd it if is anti-symmetric about point zero on the circle. 

14.  Why the result of circular and linear convolution is not same? 

Circular convolution contains same number of samples as that of x (n) and h (n), while in linear 

convolution, number of samples in the result (N) are, 

N=N1+N2-1 

Where N1= Number of samples in x (n) 

N2=Number of samples in h (n) 

15.  What is circular time shift of sequence? (May/June 2014) 

Shifting the sequence in time domain by ‘1’ samples is equivalent to multiplying the sequence in frequency 

domain by WN
kl 

16.  What is the disadvantage of direct computation of DFT? 

For the computation of N-point DFT, N2 complex multiplications and N[N-1] Complex additions are 

required. If the value of N is large than the number of computations will go into lakhs. This proves inefficiency of 

direct DFT computation. 

17.  What is the way to reduce number of arithmetic operations during DFT computation? 

Number of arithmetic operations involved in the computation of DFT is greatly reduced by using different 

FFT algorithms as follows. 

Radix-2  FFT algorithms. 

Radix-2 Decimation in Time (DIT) algorithm. 

Radix-2 Decimation in Frequency (DIF) algorithm.  

Radix-4  FFT algorithm. 

18.  What is the computational complexity using FFT algorithm? 

Complex multiplications = N/2 log2N  

Complex additions = N log2N  

19.  How linear filtering is done using FFT? 



Correlation is the basic process of doing linear filtering using FFT. The correlation is nothing but the 

convolution with one of the sequence, folded. Thus, by folding the sequence h (n), we can compute the linear 

filtering using FFT. 

20.  What is zero padding? What are its uses? (Nov/Dec 2014) 

Let the sequence x (n) has a length L. If we want to find the N point DFT (N>L) of the sequence x (n). 

Then appending zeros in the given sequence is called as Zero padding. This is known as zero padding. The uses of 

padding a sequence with zeros are (i) We can get ‘better display’ of the frequency spectrum (ii) With zero padding, 

the DFT can be used in linear filtering.  

21.  Why FFT is needed? 

The direct evaluation of the DFT using the formula requires N2 complex multiplications and N (N-1) 

complex additions. Thus for reasonably large values of N (in order of 1000) direct evaluation of the DFT requires an 

inordinate amount of computation. By using FFT algorithms the number of computations can be reduced. For 

example, for an N-point DFT, The number of complex multiplications required using FFT is N/2log2N. If N=16, the 

number of complex multiplications required for direct evaluation of DFT is 256, whereas using DFT only 32 

multiplications are required. 

22.  What is the speed of improvement factor in calculating 64-point DFT of a sequence using direct computation 

and computation and FFT algorithms?     Or 

Calculate the number of multiplications needed in the calculation of DFT and FFT with 64-point sequence. The 

number of complex multiplications required using direct computation is N2=642=4096. The number of complex 

multiplications required using FFT is N/2 log2N = 64/2log264=192. Speed improvement factor = 4096/192=21.33 

 

23.  What is the main advantage of FFT? 

FFT reduces the computation time required to compute discrete Fourier transform. Calculate the number of 

multiplications needed in the calculation of DFT using FFT algorithm with using FFT algorithm with 32-point 

sequence. For N-point DFT the number of complex multiplications needed using FFT algorithm is N/2 log2N. For 

N=32, the number of the complex multiplications is equal to 32/2log232=16*5=80. 

 

24.  What is FFT? What is its advantage (Nov/Dec 2012) 

The fast Fourier transforms (FFT) is an algorithm used to compute the DFT. It makes use of the Symmetry 

and periodically properties of twiddles factor WK
N to effectively reduce the DFT computation time. It is based on the 

fundamental principle of decomposing the computation of the DFT of a sequence of length N into successively 

smaller discrete Fourier transforms. The FFT algorithm provides speed-increase factors, when compared with direct 

computation of the DFT, of approximately 64 and 205 for 256-point and 1024-point transforms, respectively. 

25.  How many complex additions and complex multiplications are required to compute N-point DFT using radix-2  

       FFT? 

The number of complex additions and complex multiplications required to compute N-point DFT using 

radix-2 FFT are N log2N and N/2 log 2N respectively. 

26.  What is meant by radix-2 FFT? 



The FFT algorithm is most efficient in calculating N-point DFT. If the number of output points N can be 

expressed as a power of 2, that is, N=2M, where M is an integer, Then this algorithm is known as radix-2 FFT 

algorithm. 

27.  What is a decimation-in-time algorithm? 

Decimation-in-time algorithm is used to calculate the DFT of a N-point Sequence. The idea is to break the 

N-point sequence into two sequences, the DFTs of which can be combined to give the DFT of the original N-point 

sequence. Initially the N-point sequence is divided into two N/2-point sequences xe(n) and x0(n), which have the 

even and odd members of x(n) respectively. The N/2 point DFTs of these two sequences are evaluated and 

combined to give the N point DFT. Similarly the N/2 point DFTs can be expressed as a combination of N/4 point 

DFTs. This process is continued till we left with 2-point DFT. This algorithm is called Decimation-in-time because 

the sequence x(n) is often splitted into smaller sub sequences. 

28.  What are the differences and similarities between DIF and DIT algorithms? (May/June 2014) 

Differences: 

For DIT, the input is bit reversal while the output is in natural order, whereas for DIF, the input is in natural 

order while the output is bit reversed.  

The DIF butterfly is slightly different from the DIT butterfly, the difference being that the complex multiplication 

takes place after the add-subtract operation in DIF.  

Similarities:  

Both algorithms require same number of operations to compute the DFT. Bot algorithms can be done in 

place and both need to perform bit reversal at some place during the computation.  

29.  What are the applications of FFT algorithms? 

 Linear filtering  

 Correlation  

 Spectrum analysis  

30.  What is a decimation-in-frequency algorithm? 

In this the output sequence X (K) is divided into two N/2 point sequences and each N/2 point sequences are 

in turn divided into two N/4 point sequences. 

31.  Distinguish between DFT and DTFT. 

S.No DFT DTFT 

1. 

Obtained  by  performing  sampling 

operation  in  both  the  time  and 

frequency domains. 

Sampling  is  performed  only  in 

time domain. 



2. Discrete frequency spectrum Continuous function of ω 

 

32.  Distinguish between Fourier series and Fourier transform. 

S.No. Fourier Series Fourier transform 

1 

Gives  the  harmonic  content  of  a 

periodic time function. 

Gives the frequency information for 

an aperiodic signal. 

2. Discrete frequency spectrum Continuous frequency spectrum 

33.  Draw the butterfly diagram for decimation in time FFT algorithm.  (Nov/Dec 2013, Apr/May 2015)  

 

  

 

  

34.  Draw the butterfly diagram for decimation in time FFT algorithm. (May/June 2013) 

 

  

 

 

35.  In eight point decimation in time (DIT), what is the gain of the signal path that goes from X(7) to X(2)? 

(Nov/Dec 2013) 

Gain = W0
8 . W

0
8(-1). W2

8 = j 

 

a A =a+bWN
k 

B =a-bWN
k 

 

WN
k 

1 

-1 
b 

a A =a+b 

B =(a-b)WN
k 

 

WN
k 

1 

-1 
b 



PART B 

1. Obtain the 8 point DFT using the radix 2 DIT FFT algorithm for      (16) 

j2

N
NW e

 

  

 
K

j2
K

N
NW e

  
  
 

 

0

8

1

8

2

8

3

8

W 1

W 0.707 j0.707

W j

W 0.707 j0.707



 

 

  

 

Using butterfly diagram 

 

X(k) = {28, -4+j9.656, -4+j4, -4+j1.656, -4, -4-j1.656, -4-j4, -4-j9.656} 

2.Given , X(k) = {28,-4+j9.656,-4+4j,-4+j1.656,-4,-4-j1.656,-4-4j,-4-j4,-4-j9.656}. Find x(n) using inverse DIT FFT 

algorithm.       (16) 

 



j2

N
NW e

 

  

 
K

j2
K

N
NW e

  
  
 

 

0

8

1

8

2

8

3

8

W 1

W 0.707 j0.707

W j

W 0.707 j0.707



 

 

  

 

 

   x n 0,1,2,3,4,5,6,7  

3. Derive and draw the radix -2 DIT algorithm for FFT of 8 points.       (Nov/Dec 2012) (May/June 2012) (8) 

Ans: Basic butterfly diagram, 

 



 

 

      

    

      

 

k

1 1 N12 1

k

1 1 N12 1

k

2 2 N12 2

k

2 2 N12 2

N N
F k F{f 2n } W F f 2n 1 k 0,1,..., 1; n 0,1,..., 1;

4 4

N N N
F k F{f 2n } W F f 2n 1 k 0,1,..., 1; n 0,1,..., 1;

4 4 4

N N
F k F{f 2n } W F f 2n 1 k 0,1,..., 1; n 0,1,..., 1;

4 4

N
F k F{f 2n } W F f

4

      

 
        

 

      

 
   

 
  

N N
2n 1 k 0,1,..., 1; n 0,1,..., 1;

4 4
    

 

  F (*)  represent fourior transformer  

 

 

 



 

 

 

Complete butterfly diagram. 

 

4. Derive and draw the radix -2 DIF algorithm for FFT of 8 points         (Nov/Dec 2014) (Apr/May 2015) (8) 



 

Ans: Basic butterfly diagram, 

 

 

 

 

 

 



 

Complete butterfly diagram. 

 

5. Explain the methods of filtering long data sequences. 

 Overlap add method 

 Overlap save method 

Overlap Add Method 

Use a block length of N=L+P-1 

Append (L-1) zeros to h[n] and compute the N-length DFT H[k] once. It will be used for all blocks. 

Start the input block index at 0. 

Repeat the following: 

Get the next length L sequence of input from x[n] starting at the block index 

Append (P-1) zeros and compute the N-length DFT X[k]. 

Compute the N-point IDFT of (H[k]X[k]/N) to get a partial output sequence. 



Overlap the last partial output sequence with the current output sequence by adding the last (P-1) outputs of the last 

partial output sequence to the first (P-1) outputs of the current partial output sequence.  Output the first L outputs of 

the sum. Save the remaining (P-1) outputs for use with the next block of L input values 

Overlap Save Method 

Use a block length of N=L+P-1 

Append (L-1) zeros to h[n] and compute the N-length DFT H[k] once. It will be used for all blocks. 

Start the input block index at 0. 

Initialize the current x[n] to all zeros. 

Repeat the following: 

Get the next length L sequence of input from x[n] starting at the block index 

Store it into the last L locations of x[n]. 

Compute the N-length DFT X[k]. 

Compute the N-point IDFT of (H[k]X[k]/N) to get a temporary output sequence with  

some valid results and some invalid results. Output the L valid results for linear convolution at the end of the 

temporary output  sequence  and discard the first (P-1) invalid results. (Refer to linear convolution example  above.) 

Move the last (P-1) values in x[n] to the first [P-1] entries to be used again in the next  Block computation 

6. Derive 16 point radix –4 DIF-FFT algorithm. 

Ans: Basic butterfly diagram, 

 



 

 

(c) 16-point radix-4 DIT algorithm with input in normal order and output in bit-reversed order  



 

(d) 16-point, radix-4 DIF algorithm with input in normal order and output in bit-reversed order 

Complete butterfly diagram 

7. State and prove any five properties of DFT (Nov/Dec 2014) (May/June 2012)  (8) 

Solution: 

 

   
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N 1
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N
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N 1
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n 0

DFT; X k x n W , k 0,1,....N 1
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N









  

  


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Where WN  is defined as  

 
j2

N
NW e

 

  

  DFT

N
x(n) X k  

Periodicity:  If x(n) and X(k) are an N-point DFT pair, then  

 
   

   

x n N x n for all n

X k N X k for all k

 

 
 

We have evaluated DFT at m = 0, 1,,…, N-1. There after ( , it shows periodicity.  



For example 

           X m X N m X 2N m X N m X 2N m X kN m              

Where k is an integer. 

Proof: 

 
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
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Both k and n are integers. Hence j kne  =1; Therefore from (1) we set 

   
j2 nmN 1

N
n

n 0

X kN m x e X m
 



    

Linearity. If  

  
 

 

DFT

1 1N

DFT

2 2N

x (n) X k

x (n) X k




 

Then for any real valued or complex valued constant a1 and a2, 

        DFT

1 1 2 2 1 1 2 2N
a x n a x n a X k a X k     

Circular symmetries of a sequence. As we have seen, the N-point DFT of a finite duration sequence x(n), of the 

length L N, is equivalent to the N- point DFT of a periodic sequence xp (n), of period N, which is obtained by 

periodically extending x(n), that is, 

    px n x n N




    

 Now suppose that we shift the periodic sequence xp(n) by k units to the right. Thus we obtain another 

periodic sequence  

    p px ' (n) x n k x n k N




      

The finite duration sequence 

  
px ' 0 n 1

x ' n
0 otherwise

  
 


  

Is related to the original sequence x(n) by a circular shift. This relationship is illustrated in fig for N=4 



 

 

 

 

Circular shift of a sequence 

 In general, the circular shift of the sequence of the sequence can be represented as the index modulo N. thus 

we can write  

 
   

 
N

x ' n x n k, mod ulo N

x n k

 

 
 

For example, if k  = 2 and N= 4, we have  



    
4

x ' n x 2 k   

Which implies that  

     

     

     

     

4

4

4

4

x ' 0 x 2 x 2

x ' 1 x 1 x 3

x ' 2 x 0 x 0

x ' 3 x 1 x 1

  

  

 

 

 

 Hence x’(n) is simply x(n) shifted circulsrly by two units in time, where the counter clockwise direction has 

been arbitarly selected as the positive direction. Thus we concludes that a circular bshift an N point sequence is 

equivalent to a linear shift of its periodic extension and vise versa. 

 The inherent periodicity resulting from the arrguments of the N point sequence on the cicumference of a 

circle dictatates a different difinition of even and odd symmetry and time reversel of a sequence. An N-point 

sequence is called circularly even if it symmetric about the point zero on the circle. This implies that 

    x N n x n 1 n N 1      

An N-point sequence is called circularly even if it symmetric about the point zero on the circle. This implies that 

    x N n x n 1 n N 1       

 The timing reversal of an N-point sequence is attained by reversing its samples about the points zero on the 

circle. Thus the sequence x(-n)N is simple given as  

     
N

x n x N n 0 n N 1       

 This time reverse is equlaent to plotting x(n) in a clockwise direction on a circle.  

 An equilent definition of even and odd sequence for the associated periodic sequence xp(n) is given as 

follows  

even: xp(n) = xp (-n) = xp(N-n) 

 odd: xp(n) = - xp (-n) = - xp(N-n) 

If the periodic sequence is complex valued, we have 

 Connjugated even: xp(n) = x’p(N-n)  

 Conjucated odd: xp(n) = - x*p (N-n) 

These relationships suggest that  we decomposed the sequence xp (n) as  

    p pe pox n x n x (n)   

where 



 

   

   

pe p p

po p p

1
x (n) x n x * N n

2

1
x (n) x n x * N n

2

    

    

 

Symmetry propoerties of the DFT. The summery properties for the DFT for the DFT can be obtaibed by applying 

the methodology previously  used for the Fourier transform. Let us assume that the N- point sequence x(n) nand its 

DFT  are both complex valued. Then the sequence can be expessed as   

 
     

     
R 1

R 1

x n x n jx n , 0 n N 1

x k X k jX k , 0 n N 1

    

    
 

Substitute x(n) in DFT eqn. and X(k) in IDFT eqn. we obtain the following eqns. 
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Multiplication of two sequences. If  

    DFT

1 1N
x n X k  

And     DFT

2 2N
x n X k  

Then         DFT

1 2 1 2N

1
x n x n X k X k

N
   

This property is the duel of its proof following simply by interchanging the roles of time and frequency in the 

expression for the circular convolution of two sequences  

Paraseval’s theorem. For complex valued sequence x(n)and y(n), in general, if  

     DFT

N
x n X k  

and    DFT

N
y n Y k  

then         
N 1

* *

n 0 k 0

1
x n y n X k Y k

N



 

   

proof : the property following immediately from the circular correlation property we have  
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n 0
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And  
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Hence above equ following by evaluating the IDFT at  = 0 

 The expression in above equ is the general form of parseval’s theorem. In the special case where y(n)=x(n), 

reduces to     
N 1 N 1

2 2

n 0 n 0

1
x n x k

N

 

 

   

 Which express the energy in the finite duration sequence x(n) in terms of the frequency components 

{X(k)}. 

 Circular correlation. In general for complex valued sequence x(n) and y(n), if  

    DFT

N
x n X k  

And 

   DFT

N
y n Y k  

Then  

 

        DFT *

xy xyN
r R k X k Y k   

Where  xyr is the (un normalized) circular cross correlation sequence, defined as 

          
N 1

*

xy

n 0

r x n y n N




   

Proof   we can write  xyr as the circular convolution of x(n) with y*(-n), that is  

      *

xyr x y    

Then with the aid of the properties in the N-point DFT of  xyr is  

      *

xyR k X k Y k  

 In the special case where y(n) = x(n), we have the corresponding expression for the circular auto correction 

of x(n),      
2DFT

xx xxN
r R (k) X k   

Circular convolution  



If      DFT

1 1N
x n X k  

And     DFT

2 2N
x n X k   

Then         DFT

1 2 1 2N
x n x n X k X k   

 Where x1 (n)  x2(n) denotes the circlar convolution of the sequence x1 (n) and x2(n) 

 

 

 

 

 

 

 

 

 

 

 

 



 

UNIT-IV - DESIGN OF DIGITAL FILTER 

 

PART A 

1.  Define IIR filter?  

Filter having Infinite Impulse Response is known as IIR filter.  

2.  What are the various methods to design IIR filters? (May/June 2013) 

Approximation of derivatives  

Impulse invariance (method to digitize an analog transfer function) 

Bilinear transformation (method to digitize an analog transfer function) 

3.  Which of the methods do you prefer for designing IIR filters? Why? 

Bilinear transformation is best method to design IIR filter, since there is no aliasing in it. 

4.  What is the main problem of bilinear transformation? 

Frequency warping or nonlinear relationship is the main problem of bilinear transformation. 

5.  What is prewarping? Why it is employed? (May/June 2014, 2012, Nov/Dec 2012)  

Prewarping is the method to compensate non linear compression at high frequency. When the desired 

magnitude response is piecewise constant over frequency, this compression can be compensated by introducing a 

suitable prescaling or prewarping the critical frequencies. 

6.  State the frequency relationship in bilinear transformation? 

2
tan

T 2


   

7.  Where the jΩ axis of s-plane is mapped in z-plane in bilinear transformation? 

The jΩ axis of s-plane is mapped on the unit circle in z-plane in bilinear transformation 

8.  Where left hand side and right hand side are mapped in z-plane in bilinear transformation? 

Left hand side   -- Inside unit circle 

Right hand side – Outside unit circle 

9.  What is the frequency response of Butterworth filter?  

Butterworth filter has monotonically reducing frequency response.  

 



10.  Which filter approximation has ripples in its response?  

Chebyshev approximation has ripples in its pass band or stop band.  

11.  Can IIR filter be designed without analog filters?  

Yes. IIR filter can be designed using pole-zero plot without analog filters 

12.  What is the advantage of designing IIR Filters using pole-zero plots? 

The frequency response can be located exactly with the help of poles and zeros. 

13.  Compare the digital and analog filter. 

Digital filter Analog filter 

i) Operates on digital samples of the 

signal. 

i) Operates on analog signals. 

ii) It is governed by linear difference 

equation. 

ii) It is governed by linear difference 

equation. 

iii) It consists of adders, multipliers and 

delays implemented in digital logic. 

iii) It consists of electrical components 

like resistors, capacitors and inductors. 

iv) In digital filters the filter coefficients 

are designed to satisfy the desired 

frequency response. 

iv) In analog filters the hardware parameters has to 

be tuned to satisfy the desired frequency response. 

 

14.  What are the advantages and disadvantages of digital filters?  

Advantages of digital filters: 

 High thermal stability due to absence of resistors, inductors and capacitors 

 Increasing the length of the registers can enhance the performance characteristics like accuracy, dynamic 

range, stability and tolerance 

 The digital filters are programmable 

 Multiplexing and adaptive filtering are possible  

Disadvantages of digital filters: 

 The bandwidth of the discrete signal is limited by the sampling frequency.  

 



 The performance of the digital filter depends on the hardware used to implement the filter.  

  

15.  What is impulse invariant transformation? 

The transformation of analog filter to digital filter without modifying the impulse response of the filter is called 

impulse invariant transformation. 

16.  How analog poles are mapped to digital poles in impulse invariant transformation?  

In impulse invariant transformation the mapping of analog to digital poles are as follows, 

The analog poles on the left half of s-plane are mapped into the interior of unit circle in z-plane.  

The analog poles on the imaginary axis of s-plane are mapped into the unit circle in the z-plane.  

The analog poles on the right half of s-plane are mapped into the exterior of unit circle in z-plane.  

17.  What is the importance of poles in filter design? (May/June 2012) 

The stability of a filter is related to the location of the poles. For a stable analog filter the poles should lie 

on the left half of s-plane. For a stable digital filter the poles should lie inside the unit circle in the z-plane. 

 

18.  Why an impulse invariant transformation is not considered to be one-to-one? 

In impulse invariant transformation any strip of width 2π/T in the s-plane for values of s-plane in the range 

(2k-1)/T ≤ Ω ≤(2k-1) π/T is mapped into the entire z-plane. The left half of each strip in s-plane is mapped into the 

interior of unit circle in z-plane, right half of each strip in s-plane is mapped into the exterior of unit circle in z-plane 

and the imaginary axis of each strip in s-plane is mapped on the unit circle in z-plane. Hence the impulse invariant 

transformation is many-to-one. 

19.  What is Bilinear transformation? 

The bilinear transformation is conformal mapping that transforms the s-plane to z-plane. In this mapping 

the imaginary axis of s-plane is mapped into the unit circle in z-plane, The left half of s-plane is mapped into interior 

of unit circle in z-plane and the right half of s-plane is mapped into exterior of unit circle in z-plane. The Bilinear 

mapping is a one-to-one mapping. 

 

20.  How the order of the filter affects the frequency response of Butterworth filter. 

The magnitude response of butterworth filter approaches the ideal response as the order of the filter is increased. 

21.  Write the properties of Chebyshev type –1 filters. (Nov/Dec 2014) (May/June 2013) 

 The magnitude response is equi-ripple in the passband and monotonic in the stopband 

 The chebyshev type-1 filters are all pole designs 

 The normalized magnitude function has a value of at the cutoff frequency ωc. 



 The magnitude response approaches the ideal response as the value of N increases. 

 The poles of the chebyshev filter lie on an ellipse  

22.  Compare the Butterworth and Chebyshev Type-1 filters. 

 

Butterworth Chebyshev Type - 1 

i. All pole design. i. All pole design. 

ii. The poles lie on a circle in s-plane. ii. The poles lie on a ellipse in s-plane. 

iii. The magnitude response is 

maximally flat at the origin and 

monotonically decreasing function of Ω. 

iii. The magnitude response is equiripple 

in passband and monotonically 

decreasing in the stopband. 

iv. The normalized magnitude response 

has a value of 1 / √(1+ε2) at the cutoff 

frequency Ωc. 

iv. The normalized magnitude response 

has a value of 1 / √2 at the cutoff 

frequency Ωc. 

v. A large number of parameters has to 

be calculated to determine the transfer 

function. 

v. Only few parameters has to be 

calculated to determine the transfer 

function. 

 

23.  What is FIR filters? 

The specifications of the desired filter will be given in terms of ideal frequency response Hd(w). The impulse 

response hd(n) of the desired filter can be obtained by inverse fourier transform of Hd(w), which consists of infinite 

samples. The filters designed by selecting finite number of samples of impulse response are called FIR filters. 

 

24.  What are the different types of filters based on impulse response? 

Based on impulse response the filters are of two types 1. IIR filter 2. FIR filter 

The IIR filters are of recursive type, whereby the present output sample depends on the present input, past input 

samples and output samples. 

The FIR filters are of non recursive type, whereby the present output sample depends on the present input, and 

previous output samples. 



25.  What are the different types of filter based on frequency response? 

The filters can be classified based on frequency response. They are I) Low pass filter ii) High pass filter iii) 

Band pass filter iv) Band reject filter. 

26.  Distinguish between FIR and IIR filters. (May June 2012) 

S.No. FIR filter IIR filter 

1. 

These filters can be easily designed 

to have perfectly linear phase. These filters do not have linear phase. 

2. 

FIR filters can be realized 

recursively and non-recursively. IIR filters can be realized recursively. 

3. 

Greater flexibility to control the 

shape of their magnitude response. 

Less flexibility usually limited to 

kind of filters. 

4. 

Errors due to roundoff noise are 

less severe in FIR filters, mainly 

because feedback is not used. 

The roundoff noise in IIR filters are 

more. 

 

27.  What are the techniques of designing FIR filters? 

There are three well-known methods for designing FIR filters with linear phase. These are 1) window 

method 2) Frequency sampling method 3) Optimal or min-max design. 

28.  State the condition for a digital filter to be causal and stable. 

A digital filter is causal if its impulse response h(n) = 0 for n<0. A digital filter is stable if its impulse response is 

absolutely summable. 

 

29.  What is the reason that FIR filter is always stable? 

FIR filter is always stable because it is an all zero filter which is finite and bounded. Hence it is inherently 

stable. 

30.  What are the properties of FIR filter? 

FIR filter is always stable.  

A realizable filter can always be obtained.  

FIR filter has a linear phase response.  



31.  How phase distortion and delay distortions are introduced? 

The phase distortion is introduced when the phase characteristics of a filter is not linear within the desired 

frequency band. The delay distortion is introduced when the delay is not constant within the desired frequency 

range. 

32.  Write the steps involved in FIR filter design. 

Choose the desired (ideal) frequency response Hd(w).  

Take inverse fourier transform of Hd(w) to get hd(n).  

Convert the infinite duration hd(n) to finite duration h(n). 

Take Z-transform of h(n) to get the transfer function H(z) of the FIR filter. 

33.  What are the advantages of FIR filters? (Nov/Dec 2014) 

Linear phase FIR filter can be easily designed 

Efficient realization of FIR filter exist as both recursive and nonrecursive structures 

FIR filters realized non recursively are always stable 

The round off noise can be made small in non recursive realization of FIR filters 

34.  What are the disadvantages of FIR filters? 

The duration of impulse response should be large to realize sharp cutoff filters. 

The non-integral delay can lead to problems in some signal processing applications. 

35.  What is the necessary and sufficient condition for the linear phase characteristic of an FIR filter? 

The necessary and sufficient condition for the linear phase characteristic of an FIR filter is that the phase 

function should be a linear function of ω, which in turn requires constant phase and group delay. 

36.  What are the conditions to be satisfied for constant phase delay in linear phase FIR filters? 

The conditions for constant phase delay are Phase delay, α = (N-1)/2 (i.e., phase delay is constant) Impulse 

response, h(n) = -h(N-1-n) (i.e., impulse response is antisymmetric) 

 

37.  How constant group delay & phase delay is achieved in linear phase FIR filters? 

The following conditions have to be satisfied to achieve constant group delay & phase delay. Phase delay, 

α = (N-1)/2 (i.e., phase delay is constant) Group delay, β = π/2 (i.e., group delay is constant) Impulse response, h(n) 

= -h(N-1-n) (i.e., impulse response is antisymmetric) 

38.  What are the possible types of impulse response for linear phase FIR filters? 

There are four types of impulse response for linear phase FIR filters 



Symmetric impulse response when N is odd.  

Symmetric impulse response when N is even.  

Antisymmetric impulse response when N is odd.  

Antisymmetric impulse response when N is even.  

 

39.  List the well-known design techniques of linear phase FIR filters. 

There are three well-known design techniques of linear phase FIR filters. They are 

Fourier series method and window method  

Frequency sampling method.  

Optimal filter design methods.  

 

40.  What is Gibb’s phenomenon (or Gibb’s Oscillation)? (May/June 2012) 

In FIR filter design by Fourier series method the infinite duration impulse response is truncated to finite 

duration impulse response. The abrupt truncation of impulse response introduces oscillations in the passband and 

stopband. This effect is known as Gibb’s phenomenon (or Gibb’s Oscillation). 

 

41.  When cascade form realization is preferred in FIR filters? 

The cascade form realization is preferred when complex zeros with absolute magnitude is less than one. 

42.  What are the desirable characteristics of the frequency response of window function? 

The desirable characteristics of the frequency response of window function are The width of the main lobe should be 

small and it should contain as much of the total energy as possible. The side lobes should decrease in energy rapidly 

as ω tends to π.  

 

43.  Write the procedure for designing FIR filter using frequency-sampling method. 

 

Choose the desired (ideal) frequency response Hd(ω).  

Take N-samples of Hd(ω) to generate the sequence  

 Take inverse DFT of to get the impulse response h(n). 

The transfer function H(z) of the filter is obtained by taking z-transform of impulse response. 

 



44.  What are the drawback in FIR filter design using windows and frequency sampling method? How it is 

overcome? 

The FIR filter design using windows and frequency sampling method does not have Precise control over 

the critical frequencies such as wp and ws. This drawback can be overcome by designing FIR filter using Chebyshev 

approximation technique.In this technique an error function is used to approximate the ideal frequency response, in 

order to satisfy the desired specifications. 

 

45.  Write the characteristic features of rectangular window. 

The mainlobe width is equal to 4π/N. 

The maximum sidelobe magnitude is –13dB. 

The sidelobe magnitude does not decrease significantly with increasing w. 

 

46.  List the features of FIR filter designed using rectangular window. 

The width of the transition region is related to the width of the mainlobe of window spectrum. Gibb’s 

oscillations are noticed in the passband and stopband. The attenuation in the stopband is constant and cannot be 

varied. 

 

47.  Why Gibb’s oscillations are developed in rectangular window and how it can be eliminated or reduced? 

The Gibb’s oscillations in rectangular window are due to the sharp transitions from 1 to 0 at the edges of 

window sequence. These oscillations can be eliminated or reduced by replacing the sharp transition by gradual 

transition. This is the motivation for development of triangular and cosine windows. 

 

48.  List the characteristics of FIR filters, designed using windows. 

The width of the transition band depends on the type of window.  

The width of the transition band can be made narrow by increasing the value of N where N is the length of the 

window sequence. The attenuation in the stop band is fixed for a given window, except in case of Kaiser window 

where it is variable 

49.  Compare the rectangular window and hanning window. 

Rectangular window Hanning Window 

i) The width of mainlobe in window 

spectrum is 4π/N 

i)The width of mainlobe in window 

spectrum is 8π/N 



ii) The maximum sidelobe magnitude in 

window spectrum is –13dB. 

ii) The maximum sidelobe magnitude in 

window spectrum is –31dB. 

iii) In window spectrum the sidelobe 

magnitude slightly decreases with 

increasing w. 

iii) In window spectrum the sidelobe 

magnitude decreases with increasing w. 

iv) In FIR filter designed using hanning 

window the minimum stopband 

attenuation is 44dB. 

iv) In FIR filter designed using 

rectangular window the minimum 

stopband attenuation is 22dB. 

 

50.  Compare the rectangular window and hamming window. 

Rectangular window Hamming Window 

i) The width of mainlobe in window 

spectrum is 4π/N 

i)The width of mainlobe in window 

spectrum is 8π/N 

ii) The maximum sidelobe magnitude in 

window spectrum is –13dB. 

ii) The maximum sidelobe magnitude in 

window spectrum is –41dB. 

iii) In window spectrum the sidelobe 

magnitude slightly decreases with 

increasing w. 

iii) In window spectrum the sidelobe 

magnitude remains constant. 

iv) In FIR filter designed using 

rectangular window the minimum 

stopband attenuation is 22dB. 

iv) In FIR filter designed using hamming window 

the minimum 

stopband attenuation is 44dB. 

 

51.  Write the characteristic features of hanning window spectrum. 

The mainlobe width is equal to 8π/N.  

The maximum sidelobe magnitude is –41dB.  

The sidelobe magnitude remains constant for increasing ω.  

 

52.  What is the mathematical problem involved in the design of window function?  



(Nov/Dec 2012) 

The mathematical problem involved in the design of window function(or sequence) is that of finding a 

time-limited function whose Fourier Transform best approximates a band limited function. The approximation 

should be such that the maximum energy is confined to mainlobe for a given peak sidelobe amplitude. 

53.  List the desirable features of Kaiser Window spectrum. 

The width of the main lobe and the peak side lobe are variable. The parameter α in the Kaiser Window 

function is an independent variable that can be varied to control the side lobe levels with respect to main lobe peak.  

The width of the main lobe in the window spectrum can be varied by varying the length N of the window sequence 

54.  Compare the hamming window and Kaiser window. 

Hamming Window Kaiser Window 

i)The width of mainlobe in window 

spectrum is 8π/N 

i) The width of mainlobe in window 

spectrum depends on the values of α & 

N. 

ii) The maximum sidelobe magnitude in 

window spectrum is –41dB. 

. 

ii) The maximum sidelobe magnitude 

with respect to peak of mainlobe is 

variable using the parameter α. 

iii) In window spectrum the sidelobe 

magnitude remains constant 

iii) In window spectrum the sidelobe 

magnitude decreases with increasing w. 

iv) In FIR filter designed using Kaiser 

window the minimum stopband 

attenuation is variable and depends on 

the value of α. 

iv) In FIR filter designed using hamming 

window the minimum stopband 

attenuation is 44dB. 

 

55.  Give hamming window function (May/June 2014) 

Hamming window function is given as  

 H

2 n N 1 N 1
n 0.54 0.46cos ; n to

N 1 2 2

       
         

     
 

56.  Is the given transfer function  
1

1

1 0.8z
H(z)

1 0.9z









represents a low pass or high pass filter? 

(Nov/Dec 2013) 



Given zero =0.8 and pole = -0.9. Since zero is close to (1,0) and pole is close to (-1,0), the given transfer function is 

a high pass filter. 

 

57.  The impulse response of an analog filter is given in below figure. Let h(n)=ha(nT) where T=1. Determine 

the system function. (Nov/Dec 2013) 

Given h(n) = {0,1,2,3,4,5,4,3,2,1,0,…} 

10
n

n 0

0 1 2 2 4

5 6 7 8 9

H(z) h(n)z

0z z 2z 3z 4z
H(z)

5z 4z 3z 2z z





    

    



    
        


 

 

 58.  What is the need for employing window for design of FIR filter           (Nov/Dec 2012) 

Unit sample response of the desired filter is obtained from frequency response Hd(ω). This unit sample response is 

normally infinite in length. Hence it is truncated to some finite length. This truncation creates oscillation in pass 

band and stop band of the filter. To avoid this problem a suitable windowing technique is used. The length of the 

window can be selected to desired value such that the ripples in the pass band and stop bands are reduced. 

 

59.  Comment on the pass band and stop band characteristic of Butterworth filter    (Apr/May 2015) 

The frequency response of the Butterworth Filter approximation function is also often referred to as “maximally 

flat” (no ripples) response because the pass band is designed to have a frequency response which is as flat as 

mathematically possible. However, one main disadvantage of the Butterworth filter is that it achieves this pass band 

flatness at the expense of a wide transition band as the filter changes from the pass band to the stop band. In practice 

however, Butterworth’s ideal frequency response is unattainable as it produces excessive passband ripple. 
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PART B 

 

1. Design a Butterworth filter using the impulse invariance method for the following specifications: 

0.8 ≤|H( )| ≤1,  0 ≤ ω ≤ 0.2π 

        |H( )| ≤ 0.2, 0.6 π ≤ ω ≤ π 

Solution: 

Given,  
2

1
0.8 0.75;

1
   

 
 

 
2

0.2 4.899
1

  


 

S P0.6 rad; 0.2     Assume T = 1 sec 

 

S s S

P P P

S

P

T 0.6
3

T 0.2

4.899
log LOG

0.75
N 1.71

log3
log

N 2

   
   

   

   
   
   

  
 
 
 



 

For N = 2 the transfer function of normalized Butterworth filter is, 

  
2

1
H(s)

s 2s 1


 
 

Obtauin cut – off frequency, 
   

P

c 1 1
N N

0.2
0.231

0.75

 
    


 

 

 

  

c

sa s

2

H s H(s)

0.5266

S 1.03S 0.5266

0.5266

s 0.51 j0.51 s 0.51 j0.51







 


   

 

Applying partial fractions, 



 

   
a

j0.516 j0.516
H (s)

s 0.51 j0.51 s 0.51 j0.51
 

     
 

Using impulse invariance method. 

If 
k

N N
k k

a P T 1
k 1 k 1k

c c
H (s) , then H(z)

s p 1 e z
 

 
 

   

 

0.51 j0.51 1 0.51 j0.51 1

0.51 j0.51 1 0.51 j0.51 1

0.51 1 0.51 j0.51 1

j0.51 j0.51 2 j0.51 1 j0.51

j0.516 j0.516
H(z)

1 e z 1 e z

j0.516 j0.516

1 e e z 1 e e z

j0.516 j0.516e z j0.516 j0.516e e z

1 0.36e e z 0.6e z 0.6e

     

    

    

   

 
 

 
 

  

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   

1

1 1

j0.51 j0.51 1 j0.51 j0.51 2

1 2

z

j0.3096 0.873 j0.488 z j0.3096 0.873 j0.488 z

1 0.6 e e z 0.36e e z

0.3022
H(z)

1 1.047z 0.36z



 

   

 

  


    

 
 

 

 

2. Design a Butterworth filter using the bilinear transformation for the above problem  

Solution:-  

s p0.6 rad; 0.2 rad.       Assume T = 1 sec  

Prewarping the frequencies we get, 

 

s

S p

2 2

2 tan 2.752; 2 tan 0.6498
2 2

1 1
0.8 0.75; 0.2 4.899

1 1


 

     

       
   

 

  

4.899
log log

0.75
N 1.3

1 log 4.235
log

k

N 2

   
   
   

  
 
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 



 

For N = 2, the transfer function of normalized Butterworth filter is, 

 
2

1
H(s)

s 2s 1


 
 

Obtain cut off frequency, 

   

p

c 1 1
N 2

0.2
0.75rad / sec

0.75

 
   


 



 
c

sa s

2

H (s) H(s)

0.5625

s 1.06s 0.5625







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For a bilinear transformatiuon,  

 
1

2a 1S
T

1 z
H(z) H (s) ;

1 z





 
  
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Assume T = 1 

 
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2
1

2 2
1 2 1

2
1

1 2

0.5625 1 z
H(z)

4 1 z 2.12 1 z 0.5625 1 z

0.084 1 z

1 1.028z 0.3651z


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

 




    




 

 

 

3. Design a Chebyshev filter for the following specifications using (a) Bilinear transformation (b) impulse 

invariance method. 

≤|H( )| ≤1,  0 ≤ ω ≤ 0.2π 

  |H( )| ≤ 0.2, 0.6 π ≤ ω ≤ π 

j

j

H(e ) 0.2

H(e ) 0.2,0.6





    

    
 

Solution;- (a). Using bilinear transformation  

 s p0.6 rad; 0.2rad.     Assume T = 1sec 

Prewarping the frequencies, 

 

ps

S P

2

S

P

1

1 S

P

2 tan 2.752; 2 tan 0.6498
2 2

1 1
0.8 0.75; 0.2 4.899

1 1

1
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 
 

  
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 
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To find a & b:  



 

1 2

1 1
N N

P

1 1
N N

P

1 3

a 0.3752
2

b 0.75
2

 





      

  
  

  
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  
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To find the poles: 

 
k k kS a cos jbsin ; k 1,2,...N      

Where, k

2k 1
; k 1,2....N

2 2N

  
     

 
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3
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2 4 4
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Denominator of H(s): 

 
  

   
2 2

s 0.2653 j0.53 s 0.2653 j0.53

s 0.2653 0.53

   
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For even N, sub s =0 in the denominator polynomial & divide the value by 21  which is the denominator of the 

transfer function. 

 Den. Polynomial: 
   

2 2

s 0

2

s 0.2653 0.53

1


 
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Numerator of 
2

0.28
H(s)

s 0.5306s 0.3516


 
 

Using bilinear transformation  
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(b) Impulse invariant method  

  
p P s S

t

T & T

  
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For T = 1 sec 
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Applying partial fractions, 
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4.  Explain the design procedure of low pass Butterworth IIR filter.    (16) 

Solution: Designing IIR digital filter involves the design of equivalent analog filter & then  

           converting analog filter to digital filter. 

 

• First analog Butterworth IIR filter transfer function is determined using the specifications. 

• Then, analog transfer function is converted to a digital filter transfer function using, 

Impulse invariance transformation 

Bilinear transformation 

Analog Butterworth filter: 

The magnitude response of LPF is given by, 

2

a 2N

C

1
H ( )

1

 
 

  
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The magnitude response of the Butterworth filter is said to be maximally flat. 

 

 

 

Find order of the filter, 
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Where  ε – parameter specifying allowable passband  

  - parameter specifying allowable stopband  

  p s
2 2

1 1

1 1
   

   
 

Obtain cut – off frequency, 
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With the order of the filter, obtain the transfer function H(s), by substituting s by  

Convert analog transfer function Ha(s) to digital function H(z), using either impulse invariance method or bilinear 

transformation method. 

To obtain the poles which h lies on LHS of the s – plane  
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Denominator:    s ( 1) s 1      

List of Butter worth polynomials: 
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5.  Convert the analog transfer function
a

2
H (s)

(s 1)(s 2)


 
to digital IIR filter using impulse invariance method 

and bilinear transformation method. Assume T = 1 sec.   (Nov/Dec 2013)     (16) 

Solution:-  

Impulse invariance method 
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Applying partial fractions, 
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  


 
   

 
 

1 1 2 1

1 1

2 2
H(z)

1 e z 1 e z

2

1 0.3678z 0.1353z

   

 

 
 


 

 

Simplifying  

 
1

1 2

0.465z
H(z)

1 0.503z 0.0497z



 


 
 

Bilinear transformation method 

Substitute, 

 
1

1

2 1 z
s

T 1 z





 
  

 
 

 
   1

1

2 1 z
s

T 1 z

2
H(z)

s 1 s 2 



 
  

  


 

 



 

1 1

1 1

2
1

1

2
H(z)

1 z 1 z
2 1 2 2

1 z 1 z

1 z

1
6 1 z

3

 

 






      

      
      




 
 

 

 

6.  Draw the structures of IIR filters  

Direct form I 

 

 

Direct form II 

 

 



Cascade structure 

 

Lattice Ladder structure 

 

Parallel structure 



 

 

7.  Convert the analog filter with system function Ha(s) into digital filter using impulse invariance method 

 
a 2

s 0.1
H (s)

s 0.1 9




 
               (16) 

Solution:-  We note that the anolog filter has a zero at s = -0.1  and  a point of complex conjugate poles at  

  kp 0.1 j3    

We do not have to determine the impulse response ha(t) in order to design the digital IIR filter based on the method 

of impulse invariant. Instead, we directly determine H(z), as given by, from the partial – fraction expansion of Ha(s). 

Thus we have  

  `

1 1

2 2H(s)
s 0.1 j3 s 0.1 j3

 
   

 

Then  

  
0.1 j3T 0.1T j3T 1

1 1

2 2H(z)
1 e e 1 e e z   

 
 

  



 

 

 

Pole-zero locations for analog filter 

 

Frequency response of digital filter 

Since the two poles are complex conjugates, we cab combine them to form a single two – pole filter with system 

function  

  
 

 

0.1T 1

0.1T 1 0.2T 1

1 e cos3T z
H(z)

1 2e cos3T z e z

 

   


 
 

The magnitude of the frequency response characteristics of this filter is plotted in fig. 8.34 for T = 0.1 and T = 0.5. 

For purpose of comparison, we have also plotted that aliasing is significantly more prevalent when T = 0.5 than 

when T = 0.1. also note the shift of the resonant frequency as T changes. 



 

 

The preceding example illustrates the importance of selecting a small value for T to minimize the effect of aliasing. 

Due to the presence of aliasing, the impulse invariant method is appropriate for the design of low pass and bandpass 

filters only. 

 

8.  The system function of the analog filter is given as,                (16) 

 
 

a 2

s 0.1
H (s)

s 0.1 16




 
 obtain the system function of the digital filter using bilinear transformation which is 

resonant at
r

2


  .  

Solution:- First, we note that the anolog filter  has a resonant frequency R 4.  This frequency is to be, mapped 

into r
2


  by selecting the value of the have parameter T. from the relationship in, we must select T = ½ in order to 

have r
2


  . Thus the desired mapping is  

   
1

1

1 z
s 4

1 z





 
  

 
 

The resulting digital filter has the system function 

   
1 2

1 2

0.128 0.006z 0.122z
H(z)

1 0.0006z 0.975z

 

 

 


 
 

We note that the coefficient of the z-1 term in the denominator of H(z) is extremely small and can be approximated 

by zero. Thus we have the system function. 

   
1 2

2

0.128 0.006z 0.122z
H(z)

1 0.975z

 



 



 



This filter has poles at  

   /2

1.2p 0.987e  

And zeros at  

   Z1.2 = -1.095 

Therefore, we have succeeded in designing a two- pole filter that resonates near / 2    

In this example the parameter T was selected to map the resonant frequency of the analog filter into the desired 

resonant frequency of the digital filter. Usually the design of the digital filter begins with specification in the digital 

domain, which involve the frequency variable ω. These specifications in frequency are converted to the analog 

domain by means of the relation in (8.3.43). The analog filter is then designed that meets these specifications and 

converted to a digital filter by means of the bilinear transformation in (8.3.401). In this procedure, the parameter T is 

transparent and may be set to any arbitrary value (e.g, T = 1). The following example illustrates this point. 

 

9.  The system function of the first order low pass butterworth filter is given as  (16)  

C

a

C

H (s)
S





                  

Here Ωc is the 3dB cutoff frequency of the analog filter. Apply bilinear transformation to this filter such that the 

digital filter will have 3dB frequency of 0.2π. 

Solution:- The digital filter is specified to have its -3dB gain at c 0.2   . In the frequency domain of the analog 

filter c 0.2   corresponds to  

  
C

2
tan 0.1

T

0.65

T

  



 

Thus the analog filter has the system function  

  
0.65 / T

H(s)
s 0.65 / T




 

This represents our filter design in the analog domain. 

Now, we apply the bilinear transformation given by (8.3.40) to convert the analog filter into the desired digital filter. 

Thus we obtain 

  
 1

1

0.245 1 z
H(z)

1 0.509z









 

Where the parameter T has been divided out. 

The frequency response of the digital filter is  



  
 j

j

0.245 1 e
H( )

1 0.509e

 

 


 


 

At 0H(0) 1,& 0.2 , H(0.2 ) 0.707,      Which is the desired response. 

 

10.  The  desired frequency  response of a low  pass filter is     (16) 

 

j j2

aH (e ) e , / 4 / 4

0 , / 4

     

    
 

Determine Hd(n). Also determine h(n) using rectangular window with N= 5. Determine the frequency response 

H(ejω) of the designed filter. 

Solution: 

Given  

 

j j2

aH (e ) e , / 4 / 4

0 , / 4

     

    
  

 

Step 1:  

To find hd(n) 



 

 

 

 

jw jwn

0

/4

2 jw

/4

/4

jw(n 2)

/4

j(n 2) j(n 2)
4 4

j(n 2) j(n 2)
4 4

0

1
h (n) Hd(e )e dw

2

1
e dw

2

1
e dw

2

1 1 e e

2 n 2 j 2 j

1 e e

n 2 2j

1
h (n) sin n 2

(n 2) 4

















 
 

 
  










 
 

  
  

 
 

  
  


 
 







 

When n = 0 

 

D

D

D

1 2
h (0) sin

2 4

1
sin

2 2

1
h (0) 0.159

2

h (0) 0.159

  
  
   

  
  
   

 




 

When n= 1  

 

D

D

1
h (1) sin

4

1
sin

4

h (1) 0.225

 
  
  







 

When n= 2 

 D

1
h (2) sin(n 2)

(n 2) 4


 
 

 

Using ‘L’ hospital rule  



 

 

 

D

D

cos n 2
dh (n) 4 4

dn

cos 0
4 0.25

h (2) 0.25

  
 

 






 




 

Since FIR filter impulse response is response is symmetric in nature   

 

D D D

D D D

D

D

h(n) h(N 1 n)

h (3) h (5 1 3) h (1)

h (4) h (5 1 4) h (0)

h (3) 0.225

h (4) 0.159

  

   

   





 

Given window is rectangular  

 
w(n) 1 0 n 4

0 otherwise

  
 

Step 2: Top find the coefficients: 

 

h(n) hd(n)w(n)

h(0) hd(0)w(0) 0.159(1) 0.159

h(1) hd(1)w(1) 0.225

h(2) hd(2)w(2) 0.25

h(3) hd(3)w(3) 0.225

h(4) hd(4)w(4) 0.159



  

 

 

 

 

 

Filter coefficients: 

h(0) 0.159, h(1) 0.225, h(2) 0.25, h(3) 0.225, h(4) 0.159      

To find the system function: 

 

N 1
n

n 0

4
n

n 0

H(z) h(n)z

H(z) h(n)z

















 

1 2 3 4

4 1 3 2

4 1 3 2

h(0) h(1)z h(2)z h(3)z h(4)z

h(0) 1 z h(1) z z h(2)z

H(z) 0.159 1 z 0.225 z z 0.25z

   

   

   

    

          

          

 

To find the frequency response: 



 
   

 

jw jw

jw j4w jw j3w 2 jw

2 jw 2 jw 2 jw jw jw

jw 2 jw

H(e ) H(Z e )

H(e ) 0.159 1 e 0.225 e e 0.25e

e 0.25 0.159 e e 0.225 e e

H(e ) e 0.25 0.318cos 2w 0.45cos w

   

  



 

          

     
 

  

 

11.  Design a low pass filter with desired frequency response    (16) 

 

j j3

dH (e ) e for 3 / 4 / 4

0 for 3 / 4

       

     
 

Use Hamming window for N = 7. 

Solution:-  

j j3

dH (e ) e for 3 / 4 / 4

0 for 3 / 4

       

     
 

 

 

Given N = 7 

 jw j3w 3 3
Hd(e ) e w

4 4

   
    

Step 1:  

To find hd(n)  



 

 

 

 

 

 

   

jw jwn

3

4
j3w jwn

3

4
jw

3

4

3

j n 3 4

3

4

3 3
j n 3 j n 3

4 4

1
hd(n) Hd e e dw

2

1
e e dwe

2

1
e n 3 dw

2

1 e

2j n 3 j n 3

1
e e

2j(n 3)

1 3
hd(n) sin (n 3)

(n 3) 4













 





 

 
  







 


 
  
    

 
  
   

 
     






 

N = 7 n = 0, 1, 2, 3, 4, 5, 6, 7 … 

1 9
hd(0) sin

3 4

1 9
sin

3 4

hd(0) 0.0750

1 3
hd(1) sin

2 2

hd(1) 0.159

1 3
hd(2) sin

4

hd(2) 0.225

  
     

 
    



 
    

 

 
    



 

When n = 3 

3 3
cos (n 3)

dhd(n) 4 4

d(n)

3
cos 0

4

hd(3) 0.75

hd(4) 0.225

hd(5) hd(1) 0.159

hd(6) hd(0) 0.0750

  
 

 













  

 

 

Step 2: To find window coefficients Hamming  



 

2 n
w(n) 0.54 0.46cos

N 1

2 n
w(n) 0.54 0.46cos

6

w(0) 0.54 0.46 0.08

2
w(1) 0.54 0.46cos 0.31

6

4
w(2) 0.54 0.46cos 0.77

6

6
w(3) 0.54 0.46cso 1

6

w(4) w(2) 0.77

w(5) w(1) 0.31

w(6) w(0) 0.0


 



 
   

 

  

 
   

 

 
   

 

 
   

 

 

 

  8

 

Step 3: To find the filter coefficients  

 

h(n) hd(n) w(n)

h(0) hd(0) w(0) 0.0750 0.08 0.006

h(1) hd(1) w(1) 0.159 0.31 0.0494

h(2) hd(2) w(2) 0.225 0.77 0.1733

h(3) hd(3) w(3) 0.75 1 0.75

h(4) hd(4) w(4) h(2) 0.1733

h(5) hd(1) 0.0494

h(6) hd(0) 0.006



   

     

   

   

  

  

 

 

Filter coefficients  

h(n) 0.006, 0.0494, 0.1733,0.75,0.1733, 0.0494,0.006    

Step 4: To find the system response  

  

N 1

n 0

6
n

n 0

H(z) h(n)

h(n)z
















 

     

     

1 2 3 4 5 6

6 1 5 2 4 3 4

6 1 5 2 4

h(0) h(1)z h(2)z h(3)z h(4)z h(5)z h(6)z

h(0)(1 z ) h(1) z z h(2) z z h(3) z z

H(z) 0.006 1 z 0.0494 z z 0.1733 z z 0.75z

     

      

    

      

       

      

 

 

12.  Design an ideal HPF with  
 jw

dH e 1 for / 4

0 for / 4

     

   
(May/June 2012) (16) 



Using Hamming window for N = 11 

Solution;-  

Given the desired frequency response  

  

jw

jw jwn

4 4
jwn jwn

4 4

Hd(e ) 1 w
4 4

1
hd(n) Hd e e dw

2

1
1e dw e dw

2





 

 

 
   




 
 

  
 
 



 

 

 

 

  

jwn jwn4

n n

4 4

n n
j j

j n j n 4 4

1 e e
hd(n)

2 j j

1
e e e e

2 jn

1 n
hd(n) sin n sin

n 4




 

 


  

 
    

     
     
 

  
     

    

 
    

 

From the given frequency response τ = 0 hence the filter coefficients are symmetrica about n = 0 satisfying the 

condition h(n) h(-n) 

To find hd(0) 



 

n p
cos n ( ) cos

dhd(n) 4 4

dn

n 1
cos n cos

4 4

 
    

 




 
   

 

 

Hd(0) = 0.75 

 

sin sin
4hd(1) hd( 1) 0.225

sin 2 sin
2hd(2) hd( 2) 0.159

2

3
sin 3 sin

2hd(3) hd( 3) 0.075
3

sin 4 sin
hd(4) hd( 4) 0

4

5
sin 5 sin

2hd(5) hd( 5) 0.045
5




    





    





    


 
   






   


 

Hamming window (non – casual window) 

  

   

HM

HM

HM HM

HM HM

HM HM

HM HM

2 n N 1 N 1
w (n) 0.54 0.46cos for n

N 1 2 2

W (0) 0.54 0.46 1

W ( 1) W (1) 0.54 0.46cos 0.912
5

2
W 2 W (2) 0.54 0.46cos 0.682

5

3
W 3 W 3 0.54 0.46cos 0.398

5

4
W ( 4) W (4) 0.54 0.46cos 0.167

5

   
    

  

  


    


    


    


    

HM HM

8

W ( 5) W (5) 0.54 0.46cos 0.08     

 

Filter coefficients  

 

  

  

  

 

M

HM

HM

HM

HM

HM

HM

h(n) hd(n)W (m) 5 n 5

h(0) hd(0)W (0) 1.075 0.75

h( 1) hd(1)W (1) 0.225 0.912 0.205

h( 2) hd(2)W (2) 0.159 0.682 0.1084

h( 3) hd(3)W (3) 0.075 0.398 0.03

h( 4) hd(4)W (4) 0 0.1678 0

h( 5) hd(5)W (5)

   

  

     

     

     

   

    0.045 0.08 0.0036  

 



N  -5 -4 -3 -2 -1 0 1 2 3 4 5 

jw

dH (e )db   0.0036 0 -0.03 -0.108 -0.205 0.75 -0.205 0.108 -0.03 0 0.0036 

 

Table: Filter coefficient  

h(0) h(10) 0.0036

h(1) h(9) 0

h(2) h(8) 0.03

h(3) h(7) 0.1084

h(5) 0.75

 

 

  

  



 

To find the system function 

`        

 

       

10
n

n 0

10 1 9 2 8 3 7

4 6 5

10 2 8 3 7 4 6 5

H(z) h(n)z

h(0) 1 z h(1) z z h(2) z z h(3) z z

h(4) z z h(5)z

H(z) 0.0036 1 z 0.03 z z 0.1084 z z 0.2502 z z 0.75z





      

  

       



       

  

        



 

Frequency response: 

 

       

jw j10w 2 jw 8 jw 3 jw 7 jw 4 jw 6 jw 5 jw

5 jw 5 jw 5 jw 3 jw 3 jw 2 jw 2 jw jw jw

jw 5 jw

H(e ) 0.0036 1 e 0.03 e e 0.1084 e e 0.2052 e e 0.75e

e 0.75 0.0036 e e 0.03 e e 0.1084 e e 0.2052 e e

H(e ) e 0.75 0.0072cos5

       

    



                  

         
 

  w 0.06cos3w 0.21684cos 2w 0.4104cos w  

 

 

13.  Design a high pass filter of length 7 with cutoff frequency of 2 rad/sec using Hamming window. 

Determine its magnitude and phase response.   (Nov/Dec 2007) (16) 

Solution: 

 

 



Given Wc = 2 rad/sec 

N =7 

 

 
 

2

3 jw jwn 3 jw jwn

4

2
jw jw

2

j 2(n 3) j (n 3) j (n 3) j2(n 3)

j (n 3) j (n 3)

1
Hd(n) e e dw e e dw

2

1 e (n 3) e (n 3)
hd(n) dw

2 j(n 3) j(n 3)

1
e e e e

2 j n 3

1 e e

(n 3) 2j

 

 



 

 

       

    

 
 

  
 
 

      
     

       

          



 

 

 

   

 

  

2 j(n 3) 2 j(n 3)e e

2j

1
hd(n) sin (n 3) sin 2(n 3)

(n 3)

1
hd(0) sin 3 sin 6

3

1
sin 3 sin 6

3

1
0 0.279

3

hd(0) 0.0296

   
 

 

    
 

       

 


  




 

   

 

 

   

1
hd(1) sin 2 sin 2 2

2

1
sin 2 sin 4

2

1
0.7568

2

0.1205

1
hd(2) sin sin 2

1
(sin sin 2)

0.2895

       

 







     

 




 

For n = 3 

Using ‘L’ hospital Rule  

 
n 3

cos (n 3) cos 2(n 3)2
lim

2



   







 



 

hd(3) 0.363

hd(4) hd(2) 0.2895

hd(5) hd(1) 0.1205

hd(6) hd(0) 0.0296



 

 

 

 

Find the window coefficients  

 

HM

HM HM

HM HM

HM HM

HM HM

2 n
W (n) 0.54 0.46cos

N 1

W (0) W (6) 0.54 0.46 0.08

2
W (1) W (5) 0.54 0.46cos 0.31

6

4
W (2) W (4) 0.54 0.46cos 0.77

6

6
W (3) W (3) 0.54 0.46cos 1

6


 



   

 
    

 

 
    

 

 
    

 

 

To find the filter coefficients 

 

h(n) hd(n)w(n)

h(0) h(6) 0.0296 0.08 0.002368

h(1) h(5) 0.1205 0.31 0.0373

h(2) h(4) 0.2895 0.77 0.2229

h(3) h(3) 0.363 1 0.363



   

   

   

   

 

System function  

 
6

n

n 0

H(z) h(n)z



  

 

 

 

 

 

 

 

 

 

 



UNIT V - DIGITAL SIGNAL PROCESSOR 

 

PART A 

 

1.  Write short notes on general purpose DSP processors (Apr/May 2015) 

 

General-purpose digital signal processors are basically high speed microprocessors with hard ware architecture and 

instruction set optimized for DSP operations. These processors make extensive use of parallelism, Harvard 

architecture, pipelining and dedicated hardware whenever possible to perform time consuming operations 

2.  Write notes on special purpose. (Apr/May 2015) 

There are two types of special purpose DSP processors based on hardware. (i) Hardware designed for efficient 

execution of specific DSP algorithms such as digital filter, FFT.              (ii) Hardware designed for specific 

applications, for example telecommunication, digital audio.  

3.  Briefly explain about Harvard architecture. (May/June 2013) 

The principal feature of Harvard architecture is that the program and the data memories lie in two separate spaces, 

permitting full overlap of instruction fetch and execution. 

Typically these types of instructions would involve their distinct type. 

 Instruction fetch  

 Instruction decode  

 Instruction execute  

4.  Briefly explain about multiplier accumulator.  

The way to implement the correlation and convolution is array multiplication Method. For getting down these 

operations we need the help of adders and multipliers. The combination of these accumulator and multiplier is called 

as multiplier accumulator. 

5.  What are the types of MAC is available? 

There are two types MAC’S available 

 Dedicated & integrated  

 Separate multiplier and integrated unit  

6.  What is meant by pipeline technique? What are the advantages?  

(May/June 2013) (Nov/Dec 2012) 



The pipeline technique is used to allow overall instruction executions to overlap. That is where all four phases 

operate in parallel. By adapting this technique, execution speed is increased. 

7.  What are four phases available in pipeline technique? (Nov/Dec 2014) 

The four phases are 

 Fetch  

 Decode 

 Read  

 Execution  

In a non-pipeline machine, the instruction fetch, decode and execute take 30ns, 45 ns and 25 ns respectively. 

Determine the increase in throughput if the instruction were pipelined. 

Assume a 5ns pipeline overhead in each stage and ignore other delays. The average instruction time is = 30 ns+45 ns 

+ 25 ns = 100 ns 

Each instruction has been completed in three cycles = 45 ns * 3 = 135ns  

Throughput of the machine = The average instruction time/Number of M/C per instruction  

= 100/135 = 0.7407.  

But in the case of pipeline machine, the clock speed is determined by the speed of the slowest stage plus overheads. 

In our case is = 45 ns + 5 ns =50 ns,  

The respective throughput is = 100/50 = 2.00,  

The amount of speed up the operation is = 135/50 = 2.7 times 

Assume a memory access time of 150 ns, multiplication time of 100 ns, addition time of 100 ns and overhead of 10 

ns at each pipe stage. Determine the throughput of MAC 

After getting successive addition and multiplications 

The total time delay is 150 + 100 + 100 + 5 = 355 ns 

System throughput is = 1/355 ns. 

8.  Write down the name of the addressing modes. 

 Direct addressing. 

 Indirect addressing. 

 Bit-reversed addressing. 

 Immediate addressing. 

 Short immediate addressing 



 Long immediateaddressing 

 Circular addressing 

9.  What are the instructions used for block transfer in C5X Processors? 

The BLDD, BLDP and BLPD instructions use the BMAR to point at the source or destination space of a block 

move. The MADD and MADS also use the BMAR to address an operand in program memory for a multiply 

accumulator operation 

10.  Briefly explain about the dedicated register addressing modes. 

The dedicated-registered addressing mode operates like the long immediate addressing modes, except that the 

address comes from one of two special-purpose memory-mapped registers in the CPU: the block move address 

register (BMAR) and the dynamic bit manipulation register (DBMR). 

The advantage of this addressing mode is that the address of the block of memory to be acted upon can be changed 

during execution of the program. 

11.  Briefly explain about bit-reversed addressing mode? 

In the bit-reversed addressing mode, INDX specifies one-half the size of the FFT. The value contained in the current 

AR must be equal to 2n-1, where n is an integer, and the FFT size is 2n. An auxiliary register points to the physical 

location of a data value. When we add INDX t the current AR using bit reversed addressing, addresses are generated 

in a bit-reversed fashion. Assume that the auxiliary registers are eight bits long, that AR2 represents the base address 

of the data in memory (0110 00002), and that INDX contains the value 0000 10002. 

12.  Briefly explain about circular addressing mode. 

Many algorithms such as convolution, correlation, and finite impulse response (FIR) filters can use circular buffers 

in memory to implement a sliding window; which contains the most recent data to be processed. The ‘C5x supports 

two concurrent circular buffer operating via the ARs. The following five memory-mapped registers control the 

circular buffer operation. 

CBSR1- Circular buffer 1 start register.  

CBSR2- Circular buffer 2 start Register,  

CBER1- Circular buffer 1 end register  

CBER2- Circular buffer 2 end register  

CBCR - Circular buffer control register.  

 

13.  Write the name of various part of C5X hardware. 

Central arithmetic logic unit (CALU)  

Parallel logic unit (PLU)  

Auxiliary register arithmetic unit (ARAU)  



Memory-mapped registers.  

Program controller 

14.  List the various registers used with ARAU of DSP processor  

(Nov/Dec 2014) (May/June 2014) 

 Eight auxiliary registers 

 Auxiliary register pointer 

 Unsigned 16 bit ALU 

 

15.  Write short notes about arithmetic logic unit and accumulator. 

The 32-bit general-purpose ALU and ACC implement a wide range of arithmetic and logical functions, the majority 

of which execute in a single clock cycle. Once an operation is performed in the ALU, the result is transferred to the 

ACC, where additional operations, such as shifting, can occur. Data that is input to the ALU can be scaled by the 

prescaler. 

The following steps occur in the implementation of a typical ALU instruction: 

 Data is fetched from memory on the data bus,  

 Data is passed through the prescaler and the ALU, where the arithmetic is performed, and  

 The result is moved into the ACC.  

The ALU operates on 16-bit words taken from data memory or derived from immediate instructions. In addition to 

the usual arithmetic instructions, the ALU can perform Boolean operations, thereby facilitating the bit manipulation 

ability required of high-speed controller. One input to the ALU is always supplied by the ACC. The other input can 

be transferred from the PREG of the multiplier, the ACCB, or the output of the prescaler. After the ALU has 

performed the arithmetic or logical operation, the result is stored in the ACC. 

 

16.  Write short notes about parallel logic unit. (Nov/Dec 2012) 

The parallel logic unit (PLU) can directly set, clear, test, or toggle multiple bits in control/status register pr and data 

memory location. The PLU provides a direct logic operation path to data memory values without affecting the 

contents of the ACC or the PREG. 

17.  What is meant by auxiliary register file? 

The auxiliary register file contains eight memory-mapped auxiliary registers (AR0-AR7), which can be used for 

indirect addressing of the data memory or for temporary data storage. Indirect auxiliary register addressing allows 

placement of the data memory address of an instruction operand into one of the AR. The ARs are pointed to by a 3-

bit auxiliary register pointer (ARP) that is loaded with a value from 0-7, designating AR0-AR7, respectively. 

 



18.  Write short notes about circular registers in C5X. 

The ‘C5x devices support two concurrent circular buffers operating in conjunction with user-specified auxiliary 

register. Two 16-bit circular buffer start registers (CBSR1 and CBSR2) indicate the address where the circular 

buffer starts. Two 16-bit circular buffer end registers (CBER1 and CBER2) indicate the address where the circular 

buffer ends. The 16-bit circular buffer control register (CBCR) controls the operation of these circular buffers and 

identifies the auxiliary registers to be used. 

 

19.  What are the different buses of TMS 320C54X processor and list their functions? 

(May/June 2014) 

 

 The TMS 320C54X processor has the following 4 pairs/8 buses 

 PB : Program Bus  Program memory bus to read opcode   

 PAB : Program Address Bus immediate operand 

 CB : C Bus   Two independent data memory buses to read two  

 CAB : C Address Bus  data simultaneously from memory 

 DB : D Bus 

 DAB : D Address Bus 

 EB  : E Bus    Data memory bus to write data in data memory 

 EAB  : E Address Bus 

 

 

 

 

 

 

 

 

 

 

 



PART B 

1.  Discuss about the addressing modes used in DSP processor   

(Apr’15)(May’12) (Nov’12) (May’13) (Nov’13) (8) 

 Direct addressing 

 Indirect addressing 

 Immediate addressing 

 Dedicated-register addressing 

 Memory-mapped register addressing 

 Circular addressing 

Direct Addressing 

In the direct memory addressing mode, the instruction contains the lower 7 bits of the data memory address (dma). 

The 7-bit dma is concatenated with the 9 bits of the data memory page pointer (DP) in status register 0 to form the 

full 16-bit data memory address. This 16-bit data memory address is placed on an internal direct data memory 

address bus (DAB). The DP points to one of 512 possible data 

memory pages and the 7-bit address in the instruction points to one of 128 words within that data memory page. You 

can load the DP bits by using the LDP or the LST #0 instruction. 

Figure illustrates how the 16-bit data memory address is formed. 

 



 

Figure shown below illustrates the direct addressing mode. Bits 15 through 8 contain the opcode. Bit 7, with a value 

of 0, defines the addressing mode as direct, and bits 6 through 0 contain the dma. 

 

Indirect Addressing 

 

Eight 16-bit auxiliary registers (AR0–AR7) provide flexible and powerful indirect addressing. In indirect 

addressing, any location in the 64K-word data memory space can be accessed using a 16-bit address contained in an 

AR. Figure shows the hardware for indirect addressing. 

 



 

To select a specific AR, load the auxiliary register pointer (ARP) with a value from 0 through 7, designating AR0 

through AR7, respectively. The register pointed to by the ARP is referred to as the current auxiliary register (current 

AR). You can load the address into the AR using the LAR instruction and you can change the content of the AR by 

the: 

 

ADRK instruction 

MAR instruction 

SBRK instruction 

Indirect addressing field of any instruction supporting indirect addressing. 

 

The content of the current AR is used as the address of the data memory operand. After the instruction uses the data 

value, the content of the current AR can be incremented or decremented by the auxiliary register arithmetic unit 

(ARAU), which implements unsigned 16-bit arithmetic. 

The ARAU performs auxiliary register arithmetic operations in the decode phase of the pipeline (when the 

instruction specifying the operation is being decoded). This allows the address to be generated before the decode 

phase of the next instruction. The content of the current AR is incremented or decremented 

after it is used in the current instruction. You can load the ARs via the data bus by using memory-mapped writes to 

the ARs. The following instructions can write to the memory-mapped ARs: 



APL  OPL  SAMM  XPL 

BLDD  SACH  SMMR 

LMMR  SACL  SPLK 

 

Be careful when using these memory-mapped loads of the ARs because, in this case, the memory-mapped ARs are 

modified in the execute phase of the pipeline. This causes a pipeline conflict if one of the next two instruction words 

modifies that AR. For further information on the pipeline and possible pipeline conflicts. 

There are two ways to use the ARs for purposes other than referencing data memory addresses: 

Use the ARs to support conditional branches, calls, and returns by using the CMPR instruction. This instruction 

compares the content of the current AR with the content of the auxiliary register compare register (ARCR) and puts 

the result in the test/control (TC) flag bit of status register ST1. 

Use the ARs for temporary storage by using the LAR instruction to load a value into the AR and the SAR instruction 

to store the AR value to a data memory location. 

 

Indirect Addressing Options 

The ’C5x provides four indirect addressing options: 

No increment or decrement: The instruction uses the content of the current AR as the data memory address, but 

neither increments nor decrements the content of the current AR. 

Increment or decrement by one: The instruction uses the content of the current AR as the data memory address 

and then increments or decrements the content of the current AR by one. 

Increment or decrement by an index amount: The value in INDX is the index amount. The instruction uses the 

content of the current AR as the data memory address and then increments or decrements the content of the current 

AR by the index amount. 

Increment or decrement by an index amount using reverse carry: The value in INDX is the index amount. The 

instruction uses the content of the current AR as the data memory address and then increments or decrements the 

content of the current AR by the index amount. The addition or subtraction is done using reverse carry propagation. 

Indirect Addressing Opcode Format: 

Indirect addressing can be used with all instructions except those with immediate operands or with no operands.  

 

Indirect Addressing Opcode Format Diagram 

 



ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ 

Immediate Addressing: 

 

In immediate addressing, the instruction word(s) contains the value of the immediate operand. The ’C5x has both 1-

word (8-bit, 9-bit, and 13-bit constant) short immediate instructions and 2-word (16-bit constant) long immediate 

instructions. Table 5–5 lists the instructions that support immediate addressing. 

 

Short Immediate Addressing 

In short immediate instructions, the operand is contained within the instruction machine code. Figure 5–5 shows an 

example of the short immediate mode. Note that in this example, the lower 8 bits are the operand and will be added 

to the ACC by the CALU. 

 

Long Immediate Addressing 

In long immediate instructions, the operand is contained in the second word of a two-word instruction. There are 

two long immediate addressing modes:  

 One-operand instructions 

 Two-operand instructions 

Long Immediate Addressing with Single/No Data Memory Access 

 

Figure shows an example of long immediate addressing with no data memory access. In Figure 5–6, the second 

word of the 2-word instruction is added to the ACC by the CALU. 



 

 

Long Immediate Addressing with Dual Data Memory Access 

 

The long immediate addressing also could apply for a second data memory access for the execution of the 

instruction. The prefetch counter (PFC) is pushed onto the microcall stack (MCS), and the long immediate value is 

loaded into the PFC. The program address/data bus is then used for the operand fetch or write. At the completion of 

the instruction, the MCS is popped back to the PFC, the program counter (PC) is incremented by two, and execution 

continues. The 

PFC is used so that when the instruction is repeated, the address generated can be autoincremented. 

 

Figure shows an example of long immediate addressing with two operands. In Figure, the source address 

(OPERAND1) is fetched via PAB, and the destination address (OPERAND2) uses the direct addressing mode. Bits 

15 through 8 of machine code1 contain the opcode. Bit 7, with a value of 0, defines the addressing mode as direct, 

and bits 6 through 0 contain the dma. 

 

 



 

 

Dedicated-Register Addressing 

 

The dedicated-registered addressing mode operates like the long immediate addressing mode, except that the address 

comes from one of two special-purpose memory-mapped registers in the CPU: the block move address register 

(BMAR) and the dynamic bit manipulation register (DBMR). The advantage of this addressing mode is that the 

address of the block of memory to be acted upon can be changed during execution of the program. The syntax for 

dedicated-register addressing can be stated in one of two ways: 

 

Specify BMAR by its predefined symbol: 

BLDD BMAR,DAT100 ;DP = 0. BMAR contains the value 200h. 

The content of data memory location 200h is copied to data memory location 

100 on the current data page. 

 

Exclude the immediate value from a parallel logic unit (PLU) instruction: 

OPL DAT10 ;DP = 6. DBMR contains the value FFF0h. 

                      ;Address 030Ah contains the value 01h 

 

The content of data memory location 030Ah is ORed with the content of the DBMR. The resulting value FFF1h is 

stored back in memory location 030Ah. 

 

Using the Contents of the BMAR 

 

The BLDD, BLDP, and BLPD instructions use the BMAR to point at the source or destination space of a block 

move. The MADD and MADS instructions also use the BMAR to address an operand in program memory for a 

multiply accumulate operation. Figure shows how the BMAR is used in the dedicated-register addressing mode. Bits 

15 through 8 of the machine code contain the opcode. Bit 7, with a value of 0, defines the addressing mode as direct, 

and bits 6 through 0 contain the dma. 

 



 

 

 

 

 

Using the Contents of the DBMR 

 

The APL, CPL, OPL, and XPL instructions use the PLU and the contents of the DBMR when an immediate value is 

not specified as one of the operands. Figure 5–9 illustrates how the DBMR is used as an AND mask in the APL 

instruction. Bits 15 through 8 of the machine code contain the opcode. Bit 7, with a value of 0, defines the 

addressing mode as direct, and bits 6 through 0 contain the dma. 

 

 

 

Memory-Mapped Register Addressing 



 

With memory-mapped register addressing, you can modify the memory mapped registers without affecting the 

current data page pointer value. In addition, you can modify any scratch pad RAM (DARAM B2) location or data 

page 0. The memory-mapped register addressing mode operates like the direct addressing mode, except that the 9 

MSBs of the address are forced to 

0 instead of being loaded with the contents of the DP. This allows you to address the memory-mapped registers of 

data page 0 directly without the overhead of changing the DP or auxiliary register. 

 

The following instructions operate in the memory-mapped register addressing mode. Using these instructions does 

not affect the contents of the DP: 

 

LAMM — Load accumulator with memory-mapped register 

LMMR — Load memory-mapped register 

SAMM — Store accumulator in memory-mapped register 

SMMR — Store memory-mapped register 

 

Figure illustrates how this is done by forcing the 9 MSBs of the data memory address to 0, regardless of the current 

value of the DP when direct addressing is used or of the current AR value when indirect addressing is used.  

 



 

 

Circular Addressing 

 

Many algorithms such as convolution, correlation, and finite impulse response (FIR) filters can use circular buffers 

in memory to implement a sliding window, which contains the most recent data to be processed. The ’C5x supports 

two concurrent circular buffers operating via the ARs. The following five memory-mapped registers control the 

circular buffer operation: 

CBSR1 — Circular buffer 1 start register 

CBSR2 — Circular buffer 2 start register 

CBER1 — Circular buffer 1 end register 

CBER2 — Circular buffer 2 end register 

CBCR — Circular buffer control register 

The 8-bit CBCR enables and disables the circular buffer operation. To define circular buffers, you first load the start 

and end addresses into the corresponding buffer registers; next, load a value between the start and end registers for 

the circular buffer into an AR. Load the proper AR value, and set the corresponding circular buffer enable bit in the 

CBCR. Note that you must 

not enable the same AR for both circular buffers; if you do, unexpected results occur. The algorithm for circular 

buffer addressing below shows that the test of the AR value is performed before any modifications: 

If (ARn = CBER) and (any AR modification), 

Then: ARn = CBSR. 

Else: ARn = ARn + step. 

If ARn = CBER and no AR modification occurs, the current AR is not modified and is still equal to CBER. When 

the current AR = CBER, any AR modification (increment or decrement) will set the current AR = CBSR.  



In circular addressing, the step is the quantity that is being added to or subtracted from the specified AR. Take care 

when using a step of greater than 1 to modify the AR pointing to an element of the circular buffer. If an update to an 

AR generates an address outside the range of the circular buffer, the ARAU does not detect this situation, and the 

buffer does not wrap around. AR updates are performed, Indirect Addressing. Because of the pipeline, there is a 

two-cycle latency between configuring the CBCR and performing AR modifications. Circular buffers can be used in 

increment- or decrement-type updates. For incrementing the value in the AR, the value in CBER must be greater 

than the value in CBSR. For decrementing the value in the AR, the value in CBSR must be greater than the value in 

CBER. 

 

2.  Draw the block diagram of Von Neumann, Harvard architecture and modified Harvard  

     architecture and explain. (Nov/Dec 2012) (Nov/Dec 2013)    (16) 

Solution:  

 

 



 

 

VON NEUMANN ARCHITECTURE 

 

 

 



VERY LONG INSTRUCTION WORD (VLIW) OR MODIFIED VON NEUMANN ARCHITECTURE 

 

 

 

 



 

 

 

 

 

 

 



3. Explain in detail about  Pipelining    (May/June 2014) (16) 

 

 



 

 



 

 

 

 



4.  Draw and explain  the architecture of TMS 320C54x processor (Apr/May 2015) (Nov/Dec 2014)              

(May/June 2014) (May/June 2013) (May/June 2012)       (16) 

The architectural structure of the C5x which consists of the buses, on-chip memory, central processing unit (CPU) 

and on-chip peripherals.  

 

The ’C5x uses an advanced, modified Harvard-type architecture based on the ’C25 architecture and maximizes 

processing power with separate buses for program memory and data memory. The instruction set supports data 

transfers between the two memory spaces. The Figure shown below is a functional block diagram of the ’C5x. All 

’C5x DSPs have the same CPU structure; however, they have different on-chip memory configurations and on-chip 

peripherals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Functional Block Diagram 

 

 

 

Bus Structure 

Separate program and data buses allow simultaneous access to program instructions and data, providing a high 

degree of parallelism. For example, while data is multiplied, a previous product can be loaded into, added to, or 

subtracted from the accumulator and, at the same time, a new address can be generated. Such parallelism supports a 

powerful set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine 

cycle. In addition, the ’C5x includes the control mechanisms to manage interrupts, repeated operations, and function 

calling. 

The ’C5x architecture is built around four major buses: 

 Program bus (PB) 



 Program address bus (PAB) 

 Data read bus (DB) 

 Data read address bus (DAB) 

The PAB provides addresses to program memory space for both reads and writes. The PB also carries the instruction 

code and immediate operands from program memory space to the CPU. The DB interconnects various elements of 

the CPU to data memory space. The program and data buses can work together to transfer data from on-chip data 

memory and internal or external program memory to the multiplier for single-cycle multiply/accumulate operations 

 

Central Processing Unit (CPU) 

The ’C5x CPU consists of these elements: 

 Central arithmetic logic unit (CALU) 

 Parallel logic unit (PLU) 

 Auxiliary register arithmetic unit (ARAU) 

 Memory-mapped registers 

 Program controller 

 

The ’C5x CPU maintains source-code compatibility with the ’C1x and ’C2x generations while achieving high 

performance and greater versatility. Improvements include a 32-bit accumulator buffer, additional scaling 

capabilities, and a host of new instructions. The instruction set exploits the additional hardware features and is 

flexible in a wide range of applications. Data management has been improved through the use of new block move 

instructions and memory-mapped register instructions.  

 

Central Arithmetic Logic Unit (CALU) 

 

The CPU uses the CALU to perform 2s-complement arithmetic. The CALU consists of these elements: 

 16-bit x 16-bit multiplier 

 32-bit arithmetic logic unit (ALU) 

 32-bit accumulator (ACC) 

 32-bit accumulator buffer (ACCB) 

 Additional shifters at the outputs of both the accumulator and the product register (PREG)  

 



Parallel Logic Unit (PLU) 

 

The CPU includes an independent PLU, which operates separately from, but in parallel with, the ALU. The PLU 

performs Boolean operations or the bit manipulations required of high-speed controllers. The PLU can set, clear, 

test, or toggle bits in a status register, control register, or any data memory location. 

The PLU provides a direct logic operation path to data memory values without affecting the contents of the ACC or 

PREG. Results of a PLU function are written back to the original data memory location.  

 

Auxiliary Register Arithmetic Unit (ARAU) 

 

The CPU includes an unsigned 16-bit arithmetic logic unit that calculates indirect addresses by using inputs from the 

auxiliary registers (ARs), index register (INDX), and auxiliary register compare register (ARCR). The ARAU can 

autoindex the current AR while the data memory location is being addressed and can index either by 􀀀1 or by the 

contents of the INDX. As a result, accessing data does not require the CALU for address manipulation; therefore, 

the CALU is free for other operations in parallel. For information on the ARAU. 

 

Memory-Mapped Registers 

 

The ’C5x has 96 registers mapped into page 0 of the data memory space. All ’C5x DSPs have 28 CPU registers and 

16 input/output (I/O) port registers but have different numbers of peripheral and reserved registers. Since the 

memory-mapped registers are a component of the data memory space, they can be written to and read from in the 

same way as any other data memory location. The memory-mapped registers are used for indirect data address 

pointers, temporary storage, CPU status and control, or integer arithmetic processing through the ARAU.  

 

Program Controller 

 

The program controller contains logic circuitry that decodes the operational instructions, manages the CPU pipeline, 

stores the status of CPU operations, and decodes the conditional operations. Parallelism of architecture lets the ’C5x 

perform three concurrent memory operations in any given machine cycle: fetch an instruction, read an operand, and 

write an operand. The program controller consists of these elements: 

 Program counter 

 Status and control registers 

 Hardware stack 

 Address generation logic 



 Instruction register 

 

On-Chip Memory 

 

The ’C5x architecture contains a considerable amount of on-chip memory to aid in system performance and 

integration: 

 Program read-only memory (ROM) 

 Data/program dual-access RAM (DARAM) 

 Data/program single-access RAM (SARAM) 

The ’C5x has a total address range of 224K words x 16 bits. The memory space is divided into four individually 

selectable memory segments: 64K-word program memory space, 64K-word local data memory space, 64K-word 

input/ output ports, and 32K-word global data memory space.  

 

Program ROM 

 

All ’C5x DSPs carry a 16-bit on-chip maskable programmable ROM. The ’C50 and ’C57S DSPs have boot loader 

code resident in the on-chip ROM, all other ’C5x DSPs offer the boot loader code as an option. This memory is used 

for booting program code from slower external ROM or EPROM to fast on-chip or external RAM. Once the custom 

program has been booted into RAM, the boot ROM space can be removed from program memory space by setting 

the MP/MC bit in the processor mode status register (PMST). The on-chip ROM is selected at reset by driving the 

MP/MC pin low. If the on-chip ROM is not selected, the ’C5x devices start execution from off-chip memory. The 

on-chip ROM may be configured with or without boot loader code. However, the on-chip ROM is intended for your 

specific program. Once the program is in its final form, you can submit the ROM code to Texas Instruments for 

implementation into your device.  

 

Data/Program Dual-Access RAM 

 

All ’C5x DSPs carry a 1056-word x 16-bit on-chip dual-access RAM (DARAM). The DARAM is divided into three 

individually selectable memory blocks: 

 

512-word data or program DARAM block B0, 512-word data DARAM block B1, and 32-word data DARAM block 

B2. The DARAM is primarily intended to store data values but, when needed, can be used to store programs as well. 

DARAM blocks B1 and B2 are always configured as data memory; however, DARAM block B0 can be configured 

by software as data or program memory. The DARAM can be configured in one of two ways: 



 

 All 1056 words × 16 bits configured as data memory 

 544 words × 16 bits configured as data memory and 512 words × 16 bits configured as program memory  

 

DARAM improves the operational speed of the ’C5x CPU. The CPU operates with a 4-deep pipeline. In this 

pipeline, the CPU reads data on the third stage and writes data on the fourth stage. Hence, for a given instruction 

sequence, the second instruction could be reading data at the same time the first instruction is writing data. The dual 

data buses (DB and DAB) allow the CPU to read from and write to DARAM in the same machine cycle.  

 

Data/Program Single-Access RAM 

 

All ’C5x DSPs except the ’C52 carry a 16-bit on-chip single-access RAM (SARAM) of various sizes (see Table 1–

1). Code can be booted from an offchip ROM and then executed at full speed, once it is loaded into the on-chip 

SARAM. The SARAM can be configured by software in one of three ways: 

 

 All SARAM configured as data memory 

 All SARAM configured as program memory 

 SARAM configured as both data memory and program memory 

 

The SARAM is divided into 1K- and/or 2K-word blocks contiguous in address memory space. All ’C5x CPUs 

support parallel accesses to these SARAM blocks. However, one SARAM block can be accessed only once per 

machine cycle. In other words, the CPU can read from or write to one SARAM block while accessing another 

SARAM block. When the CPU requests multipleaccesses, the SARAM schedules the accesses by providing a not-

ready condition to the CPU and executing the multiple accesses one cycle at a time. SARAM supports more flexible 

address mapping than DARAM because SARAM can be mapped to both program and data memory space 

simultaneously.However, because of simultaneous program and data mapping, an instruction fetch and data fetch 

that could be performed in one machine cycle with DARAM may take two machine cycles with SARAM.  

 

On-Chip Memory Protection 

 

The ’C5x DSPs have a maskable option that protects the contents of on-chip memories. When the related bit is set, 

no externally originating instruction can access the on-chip memory spaces.  

 

On-Chip Peripherals 



 

All ’C5x DSPs have the same CPU structure; however, they have different onchip peripherals connected to their 

CPUs. The ’C5x DSP on-chip peripherals available are: 

 

 Clock generator 

 Hardware timer 

 Software-programmable wait-state generators 

 Parallel I/O ports 

 Host port interface (HPI) 

 Serial port 

 Buffered serial port (BSP) 

 Time-division multiplexed (TDM) serial port 

 User-maskable interrupts 

 

Clock Generator 

 

The clock generator consists of an internal oscillator and a phase-locked loop (PLL) circuit. The clock generator can 

be driven internally by a crystal resonator circuit or driven externally by a clock source. The PLL circuit can 

generate an internal CPU clock by multiplying the clock source by a specific factor, so 

you can use a clock source with a lower frequency than that of the CPU. 

  

Hardware Timer 

 

A 16-bit hardware timer with a 4-bit prescaler is available. This programmable timer clocks at a rate that is between 

1/2 and 1/32 of the machine cycle rate (CLKOUT1), depending upon the timer’s divide-down ratio. The timer can 

be stopped, restarted, reset, or disabled by specific status bits.  

 

Software-Programmable Wait-State Generators 

 



Software-programmable wait-state logic is incorporated in ’C5x DSPs allowing wait-state generation without any 

external hardware for interfacing with slower off-chip memory and I/O devices. This feature consists of multiple 

waitstate generating circuits. Each circuit is user-programmable to operate in different wait states for off-chip 

memory accesses. 

 

Parallel I/O Ports 

 

A total of 64K I/O ports are available, sixteen of these ports are memory-mapped in data memory space. Each of the 

I/O ports can be addressed by the IN or the OUT instruction. The memory-mapped I/O ports can be accessed with 

any instruction that reads from or writes to data memory. The IS signal indicates a read or write operation through 

an I/O port. The ’C5x can easily interface with external I/O devices through the I/O ports while requiring minimal 

off-chip address decoding circuits.  

 

Host Port Interface (HPI) 

 

The HPI available on the ’C57S and ’LC57 is an 8-bit parallel I/O port that provides an interface to a host processor. 

Information is exchanged between the DSP and the host processor through on-chip memory that is accessible to both 

the host processor and the ’C57.  

 

 

Serial Port 



 

Three different kinds of serial ports are available: a general-purpose serial port, a time-division multiplexed (TDM) 

serial port, and a buffered serial port (BSP). Each ’C5x contains at least one general-purpose, high-speed 

synchronous, full-duplexed serial port interface that provides direct communication with serial devices such as 

codecs, serial analog-to-digital (A/D) converters, and other serial systems.  

 

The serial port is capable of operating at up to onefourth the machine cycle rate (CLKOUT1). The serial port 

transmitter and receiver are double-buffered and individually controlled by maskable external interrupt signals. Data 

is framed either as bytes or as words. 

 

 

 

Buffered Serial Port (BSP) 

 

The BSP available on the ’C56 and ’C57 devices is a full-duplexed, doublebuffered serial port and an autobuffering 

unit (ABU). The BSP provides flexibility on the data stream length. The ABU supports high-speed data transfer and 

reduces interrupt latencies. 

 

TDM Serial Port 

 

The TDM serial port available on the ’C50, ’C51, and ’C53 devices is a fullduplexed serial port that can be 

configured by software either for synchronous operations or for time-division multiplexed operations. The TDM 

serial port is commonly used in multiprocessor applications. 

 

User-Maskable Interrupts 

 

Four external interrupt lines (INT1–INT4) and five internal interrupts, a timer interrupt and four serial port 

interrupts, are user maskable. When an interrupt service routine (ISR) is executed, the contents of the program 

counter are saved on an 8-level hardware stack, and the contents of eleven specific CPU registers are automatically 

saved (shadowed) on a 1-level-deep stack. When a return from interrupt instruction is executed, the CPU registers’ 

contents are restored.  

 

Test/Emulation 

 



On the ’C50, ’LC50, ’C51, ’LC51, ’C53, ’LC53, ’C57S and ’LC57S, an IEEE standard 1149.1 (JTAG) interface 

with boundary scan capability is used for emulation and test. This logic provides the boundary scan to and from the 

interfacing devices. It can be used to test pin-to-pin continuity and to perform operational tests on devices that are 

peripheral to the ’C5x.  

 

On the ’C52, ’LC52, ’C53S, ’LC53S, ’LC56, and ’LC57, an IEEE standard 1149.1 (JTAG) interface without 

boundary scan capability is used for emulation purposes only and is interfaced to other internal scanning logic 

circuitry that has access to all of the on-chip resources. Thus, the ’C5x can perform on-board emulation by means of 

the IEEE standard 1149.1 serial scan pins and the emulation-dedicated pins.  

 

The on-chip analysis block in conjunction with the ’C5x debugger software provides the capability to perform 

debugging and performance evaluation functions in a target system. The full analysis block provides the following 

capabilities: 

 

Flexible breakpoint setup. Breakpoints can be triggered based on the following events: 

 Program fetches/reads/writes 

 EMU0/1 pin activity 

 Data reads/writes 

 CPU events (calls, returns, interrupts/traps, branches, pipeline clock) 

 Event counter overflow 

 

Counting of the following events for performance analysis: 

 CPU clocks 

 Pipeline advances 

 Instruction fetches 

 Calls, returns, interrupts/traps, branches 

 Program fetches/reads/writes 

 Data reads/writes 

Program counter discontinuity trace buffer to monitor program counter flow. 

 

The reduced analysis block on the ’C53S and ’LC53S provides the capability for breakpoint triggering based on 

program fetches/reads/writes and EMU0/1 pin activity. 



 

 

 

CENTRAL PROCESSING UNIT (CPU) 

 

The TMS320C5x DSP central processing unit (CPU) can perform high-speed arithmetic within a short instruction 

cycle by means of its highly parallel architecture, which consists of the following elements: 

 Program controller 

 Central arithmetic logic unit (CALU) 

 Parallel logic unit (PLU) 

 Auxiliary register arithmetic unit (ARAU) 

 Memory-mapped registers 

 

Functional Overview 

 

The block diagram shown in Figure outlines the principal blocks and data paths within the ’C5x. The succeeding 

sections provide further details of the functional blocks of the CPU. The internal hardware of the ’C5x executes 

functions that other processors typically implement in software or microcode. For example, the ’C5x contains 

hardware for single-cycle 16 x 16-bit multiplication, data shifting, and address manipulation.  

BLOCK DIAGRAM OF ’C5X DSP – CENTRAL PROCESSING UNIT (CPU) 

 



 

Data Bus 

 

Note:  All registers and data lines are 16-bits wide unless otherwise specified. 

†Not available on all devices. 



 

Central Arithmetic Logic Unit (CALU) 

 

The CALU components, shown in Figure below, consists of the following: 

 

 16-bit x 16-bit parallel multiplier 

 32-bit 2s-complement arithmetic logic unit (ALU) 

 32-bit accumulator (ACC) 

 32-bit accumulator buffer (ACCB) 

 0-, 1-, or 4-bit left or 6-bit right shifter 

 to 16-bit left barrel shifter 

 to 16-bit right barrel shifter 

 to 7-bit left barrel shifter 

 

Multiplier, Product Register (PREG), and Temporary Register 0 (TREG0) 

 

The 16-bit x 16-bit hardware multiplier can compute a signed or an unsigned 32-bit product in a single machine 

cycle. All multiply instructions except the multiply unsigned (MPYU) instruction perform a signed multiply 

operation in the multiplier. That is, two numbers being multiplied are treated as 2s-complement 

 

numbers, and the result is a 32-bit 2s-complement number. One input to the multiplier is from memory-mapped 

temporary register 0 (TREG0), and the other input is from the data bus or the program bus. The 32-bit result from 

the multiplier is stored in the PREG and is available to the ALU. The ALU uses the 16-bit words taken from data 

memory or derived from an immediate instruction, or the ALU uses the 32-bit result stored in the PREG to perform 

arithmetic operations. The ALU can also perform Boolean operations. 

 

The 32-bit result from the ALU is stored in the ACC; the ACC also supplies the second input to the ALU. 

Instructions are provided for storing the high and low-order accumulator words in memory. The shifters (p-scaler, 

prescaler, and postscaler) make it possible for the CALU to perform numerical scaling, bit extraction, extended-

precision arithmetic, and overflow prevention. These shifters are connected to the output of the PREG and the ACC. 

 



The four product shift modes (PM) at the PREG output are useful for performing multiply/accumulate operations 

and fractional arithmetic and for justifying fractional products. The PM field of status register ST1 specifies the PM 

shift mode of the p-scaler: 

 

If PM = 002, the PREG 32-bit output is not shifted when transferred into the ALU or stored. 

If PM = 012, the PREG output is left-shifted 1 bit when transferred into the ALU or stored, and the LSB is zero 

filled. This shift mode compensates for the extra sign bit gained when multiplying two 16-bit 2s-complement 

numbers. 

 

 

 

 

Central Arithmetic Logic Unit 

 



 

Notes: All registers and data lines are 16-bits wide unless otherwise specified. 

 

If PM = 102, the PREG output is left-shifted 4 bits when transferred into the ALU or stored, and the 4 LSBs are zero 

filled. This shift mode is used in conjunction with the MPY instruction with a short immediate value (13 bits or less) 

to eliminate the four extra sign bits gained when multiplying a16-bit number times a 13-bit number. 

 

If PM = 112, the PREG output is right-shifted 6 bits, sign extended, when transferred into the ALU or stored, and 

the 6 LSBs are lost. This shift mode enables the execution of up to 128 consecutive multiply/accumulates without 

the possibility of overflow. Note that the product is always sign extended, regardless of the value of the sign 

extension mode (SXM) bit in ST1. 



The PM shifts also occur when the PREG contents are stored to data memory.The PREG contents remain unchanged 

during the shifts.  

 

The LT (load TREG0) instruction loads TREG0, from the data bus, with the first operand; the MPY instruction 

provides the second operand for multiplication operations. To perfrom a multiplication with a short or long 

immediate operand, use the MPY instruction with an immediate operand. A product can be obtained every two 

cycles except when a long immediate operand is used. 

 

 Four multiply/accumulate instructions (MAC, MACD, MADD, and MADS) fully utilize the computational 

bandwidth of the multiplier, which allows both operands to be processed simultaneously. The data for these 

operations can be transferred to the multiplier each cycle via the program and data buses. When any of the four 

multiply/accumulate instructions are used with the RPT or RPTZ instruction, the instruction becomes a single-cycle 

multiply/accumulate function. In these repeated instructions, the coefficient addresses are generated by the PC while 

the data addresses are generated by the ARAU. This allows the RPT instruction to sequentially access the values 

from the coefficient table and step through the data in any of the indirect addressing modes. The RPTZ instruction 

also clears the ACC and the PREG to initialize the multiply/accumulate operation. 

 

Parallel Logic Unit (PLU) 

 

The parallel logic unit (PLU) can directly set, clear, test, or toggle multiple bits in a control/status register or any 

data memory location. The PLU provides a direct logic operation path to data memory values without affecting the 

contents of the ACC or the PREG The PLU executes a read-modify-write operation on data stored in data space. 

First, one operand is fetched from data memory space, and the second is fetched from a long immediate on the 

program bus or from the dynamic bit manipulation register (DBMR). Then, the PLU executes a logical operation on 

the two operands as defined by the instruction. The result is written to the same data memory location from which 

the first operand was fetched. 



 

 

Auxiliary Register Arithmetic Unit (ARAU) 

 

The auxiliary register file contains eight memory-mapped auxiliary registers (AR0–AR7), which can be used for 

indirect addressing of the data memory or for temporary data storage. Indirect auxiliary register addressing allows 

placement of the data memory address of an instruction operand into one of the AR. The ARs are pointed to by a 3-

bit auxiliary register pointer (ARP) that is loaded with a value from 0–7, designating AR0–AR7, respectively. 

 

The ARs and the ARP can be loaded from data memory, the ACC or the PREG or by an immediate operand defined 

in the instruction. The contents of the ARs can be stored in data memory or used as inputs to the CALU. The 

memory-mapped ARs reside in data page 0, Local Data Memory Address Map. 

 

The auxiliary register file (AR0–AR7) is connected to the auxiliary register arithmetic unit (ARAU), shown in 

Figure 3–6. The ARAU can autoindex the current AR while the data memory location is being addressed; it indexes 

either by ±1 or by the contents of the index register (INDX). As a result, the CALU is not needed for address 

manipulation when tables of information are accessed; it is free for other operations in parallel. For more advanced 

address manipulation, such as multidimensional array addressing, the CALU can directly read from or write to the 

ARs. 

 



 



 

 

Program Counter (PC) 

 

The ’C5x has a 16-bit program counter (PC) which contains the address of internal or external program memory 

used to fetch instructions. The PC addresses program memory, either on-chip or off-chip, via the program address 

bus (PAB). Through the PAB, an instruction is loaded into the instruction register (IREG). Then the PC is ready to 

start the next instruction fetch cycle. Refer to Figure 4–1 for a functional block diagram of the program control 

elements.The PC is loaded in a number of ways. Table shows what address is loaded into the PC, depending on the 

code operation performed. 

 

 



 

 

 

 

 

 

 

 

 

5.  Explain what is meant by bit reversed addressing mode.   (Nov/Dec 2014) (8) 

In the bit-reversed addressing mode, INDX specifies one-half the size of the FFT. The value contained in the current 

AR must be equal to 2n-1, where n is an integer, and the FFT size is 2n. An auxiliary register points to the physical 



location of a data value. When we add INDX t the current AR using bit reversed addressing, addresses are generated 

in a bit-reversed fashion. Assume that the auxiliary registers are eight bits long, that AR2 represents the base address 

of the data in memory (0110 00002), and that INDX contains the value 0000 10002.  

Example shown below is a sequence of modifications to AR2 and the resulting values of AR2. Table 5–4 shows the 

relationship of the bit pattern of the index steps and the four LSBs of AR2, which contain the bit reversed address. 

Example: Sequence of Auxiliary Register Modifications in Bit-Reversed Addressing 

 

 

Bit-Reversed Addresses 

 

 

 


	Where x1 (n) x2(n) denotes the circlar convolution of the sequence x1 (n) and x2(n)

